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Asymptotically Efficient Adaptive Allocation 
Schemes for Controlled I.I.D. Processes: 

Finite Parameter Space 
RAJEEV AGRAWAL, DEMOSTHENIS TENEKETZIS, AND VENKATACHALAM ANANTHARAM, MEMBER, IEEE 

Abstruct-We consider a controlled i.i.d. process whose distribution is 
parametrized by an unknown parameter 8 belonging to some known 
parameter space 8, and a one-step reward associated with each pair of 
control and the following state of the process. The objective is to 
maximize the expected value of the sum of one-step rewards over an 
infinite horizon. By introducing the loss associated with a control scheme, 
we show that our problem is equivalent to minimizing this loss. We define 
uniformly good adaptive control schemes and restrict attention to these 
schemes. We develop a lower bound on the loss associated with any 
uniformly good control scheme. Finally, we construct an adaptive control 
scheme whose loss equals the lower bound, and is therefore asymptoti- 
cally efficient. 

I. INTRODUCTION 

ONSIDER the following stochastic adaptive control problem. C The system is modeled as a controlled i.i.d. process with an 
unknown parameter, i.e., the state X n  at time n is distributed as 
p ( X n ;  U,, e) where U, is the control preceding Xn and 0 is an 
unknown parameter belonging to some known parameter space 8. 
There is a one-step reward associated with each pair of control 
and the following state: r (Xn ,  U,,). The objective is to find an 
adaptive control scheme which maximizes, in some sense, the 
expected value of the sum of one-step rewards 

n 

E8Jn=E8 r (& ur), as n+co. (1.1) 

One of the current approaches to stochastic adaptive control 
problems is the so-called certainty equivalent control with forcing 
(cf. [l]). This scheme is self-tuning in the Cesaro sense (cf. [l]) 
and is therefore also optimal for an average reward per unit time 
criterion. The reward criterion described by (1.1) suggests that we 
need to determine the maximum rate of increase of &J,, as n + 

00. This requirement introduces a notion of optimality that is 
stronger than the one suggested by the average reward per unit 
time criterion. For the criteriotl(l.1) it is no longer clear that the 
certainty equivalent control with forcing is optimal. 

The same reward criterion as (1.1) was previously used by h i  
and Robbins [2], [3] in their study of multiarmed bandit problems. 
Various extensions of the Lai and Robbins formulation of 
multiarmed problems have been reported in 141 and 151. In this 
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paper we show that the adaptive control problem of i.i.d. 
processes can be interpreted as a bandit problem. Such an 
interpretation provides a convenient way of analyzing the prob- 
lem, and allows us to develop an efficient adaptive control 
scheme. 

The paper is organized as follows. In Section 11 we give a 
precise formulation of the problem and relate it to the multiarmed 
bandit problem. In Section III we obtain an asymptotic lower 
bound on the loss associated with any adaptive control scheme. In 
Section IV we construct an adaptive control scheme which 
achieves the lower bound. 

II. THE PROBLEM 

A .  Problem Formulation 

Consider a stochastic system described by a controlled i.i.d. 
process on the state-space X, with control set 'U, and the 
probability mass function (of Xn,  n = 1, 2, ... )p (x ;  U, e). The 
parameter 0 is unknown, but belongs to a known set 8. Assume 
that X, 'U, and 8 are all finite. 

An adaptive control scheme 4 is a sequence of random 
variables { U,,} ,"= taking values in the set 'U such that the event 
{ U,, = U} belongs to the a-field 5,-1 generated by U,, X I ,  U,, 
X2, ..., U,- 1 ,  X n -  I .  Let r ( X r ,  U,) represent the one-step reward, 
where r : X  x 'U -, R. Further, define J,, : = E:=, r ( X r ,  U,),  the 
total reward at stage n as the sum of the one-step rewards up to 
stage n. 

Our objective is to find an adaptive control scheme 4 which 
maximizes, in some sense, E d n  as n + 00. We shall shortly 
clarify this notion of optimality. 

Let &(U) : = E g ( X ,  U). For any given 0 E 8, let U*(@ be the 
control that maximizes &(U) over all U E 'U. Assume for 
simplicity that U*(@ is unique for each 0 E 8. 

Define 
n 

Tn(u) := l ( Q = u )  
i =  1 
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This clearly implies that if we know 8, the control policy that 
would maximize Edn for all n is the stationary (in fact, constant) 
control Ui = U*(@, in which case the expected total reward is 
nRe(u*(8)). In the absence of the knowledge of the true 
parameter, it is desirable to approach this performance as closely 
as possible. For this purpose we define the loss 

L,(O) : = nRe(u*(0))-EeJn. (2.2) 

Maximizing EJn is thus equivalent to minimizing the loss. More 
precisely, we want to minimize the rate at which the loss increases 
with n (e.g., finite, logarithmic, linear, etc.). Thus, this is a 
stronger criterion for optimality than the average reward per unit 
time criterion which only requires the loss to be o(n). In view of 
(2.1), it follows that: 

Ln(e)= (Mu*@)) -Re(U))EeTn(u) (2.3) 

which reduces the above problem to minimizing the rate at which 
EeTn(U) increases for U E ‘U, U # U*@). 

Note that it is impossible to minimize Ln(8) uniformly over all 
parameters 8 E 8. For example, the constant control scheme U, 
= U *(e) for all i will have zero loss when the true parameter is 8. 
However, when the true parameter is 8’ such that u* (e ’ )  # 
U*(@, then this scheme will have a loss proportional to n. Having 
made this observation we call a scheme uniformly good if for 
every parameter 8 E 8 

U€% 

L,,(O)=o(n“) for every a>O. (2.4) 

Such schemes do not allow the loss to increase very rapidly for 
any 8 E 8. We restrict attention to the class of uniformly good 
schemes, and consider any others as uninteresting. 

The loss as a performance measure has previously been used in 
the classical multiarmed bandit problem. In the formulation of the 
bandit problem appearing in [2]-[SI, the objective, like in our 
problem, is to minimize the loss over the class of uniformly good 
schemes. The formulation of the bandit problem proposed in [8] 
and [9] considers a minimax loss criterion. 

To complete the problem formulation, we make the following 
technical assumption: for all 

x E x, U E ‘U, e, e’ E e , p ( x ;  U, e)>o =. p ( x ;  U, e’)>o. 

(2.5) 
The above assumption means that for any U E ‘U, the 
distributions of the state under any two parameters 8 and 8’ are 
mutually absolutely continuous. This in turn implies that the 
Kullback-Leibler number 

which is a well-known distance measure between two distribu- 
tions, is finite. If under 8, P ( 8 ,  8‘) was infinite for some U E ‘U 
and 8’ E 8, then distinguishing between 8 and 8’ would be a 
trivial identification task. We shall not treat this case here as it 
does not contribute to the conceptual understanding of our 
adaptive control problem. 

B. Relation to the Multiarmed Bandit Problem 

The controlled i.i.d. process problem formulated in Section II- 
A can be viewed as a multiarmed bandit problem. Consider each 
control action U E U as an arm, and r ( X l ,  U,), r(X2, U2), . .., as 
the sequence of rewards obtained by choosing arms U,, Uz, . . . , 
etc. Since the set ‘U is finite, we have a finite number of arms 
which is a usual condition in multiarmed bandit problems. Then, 
the problem of finding an adaptive control scheme so as to 

maximize EJ:=,  r(Xi ,  Vi) = EeJn as n + 00 is essentially the 
same as finding an adaptive allocation rule in the multiarmed 
bandit problem as formulated by Lai and Robbins [2], [31. 
However, there is one major difference between our formulation 
of the controlled i.i.d. process problem and the multiarmed bandit 
problem in [2] and [3]. This is in the way the parameter space 8 is 
defined in the two problems. In the controlled i.i.d. sequence 
problem the parameter 8 E 8 parametrizes all the arms U E ‘U, 
whereas in the multiarmed bandit problem the parameter 8, E 8 
parametrizes the individual arms. Thus, 8 in the controlled i.i.d. 
sequence problem corresponds to 8 p  in the multiarmed bandit 
problem, where p is the number of arms. Therefore, the 
parameter space of the multiarmed bandit problem has the 
following special structure. Each of the arms is parametrized on 
the same set of distributions, and any combination of parameters 
for individual arms is allowed. This structure is not necessarily 
present in the parameter space of the controlled i.i.d. process 
problem. As a consequence, the minimum loss over the class of 
uniformly good control schemes is different for the two problems. 

Having given a precise formulation of the problem and having 
discussed its relation to the multiarmed bandit problem, we now 
proceed in two main steps. First in Section III we present an 
asymptotic lower bound on the loss. Then in Section IV we 
construct a scheme which achieves the lower bound. 

III. A L ~ W E R  BOUND ON THE Loss 

In this section we obtain a lower bound on the loss Ln(8) for 
certain values of the parameter 0 E 8. Before we present the 
bound, we introduce the necessary notation. Let 

B(e)={e’ E e : p ( . ;  uye), e ’ ) = p ( . ;  u*(e), e) 
and U* (e ’1 + u*(e)}, 

%=‘U - {U*(@}, 

d S ( U )  =RS(u*(e))-RB(U)* (3.1) 

The bound is now presented in the form of Theorem 3.1 below. 
Theorem 3.1: Let 8 E 8 be such that B(8) is nonempty. Then 

for any uniformly good control scheme 4, under the parameter 0, 

1 

Consequently, 

%e 

[Note that Zu(e, e’) is the Kullback-Leibler number that was 
defined by (2.6).] 

Discussion: The key steps in the proof of Theorem 3.1 can be 
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described as follows. Define the event Lemma 3.2: For any uniformly good rule, under Per, 8‘ E 
B(O), we have 

T,(u)de(u)<k log n =o(n“-I) for every a, k>O. 

(3.8) 

1 

In order to show that Pg(A,) = 0, we consider any 8 ’  E 
B(0) and relate Pg(A,) to P g I ( A , )  by a measure transformation 
(Radon-Nikodym derivative). The measure transformation is the 
likelihood ratio of 8’ versus 0. Since under 0 and 0’ E B(0) the 
distribution under U*(@ coincides, this likelihood ratio reduces to 
the likelihood ratio of samples obtained when U # U * (e) is used. 
An upper bound is then obtained on PO(A,) by getting an upper 
bound on PO I (A,) and a lower bound on the measure transforma- 
tion (from 0 to 0’). Actually, we use a prior distribution n(0’) on 
B(0) as an artifice to obtain a tighter upper bound on Pg(A,) than 
the one that would be obtained by considering each 8‘  E B(0) 
separately. Finally, we get (3.2) by showing that in the limit the 
upper bound on Pe(A,) tends to 0 as n + 00. 

We now present two lemmas before we prove Theorem 3.1. 
Lemma 3.1 is useful in getting the lower bound on the measure 
transformation (from 0 to e ’ )  and it uses the fact that the 
normalized log likelihood ratio of samples obtained under a fixed 
control U converges to Z”(0, 8 ’ )  a.s. Pe by the strong law of large 
numbers. Lemma 3.2 obtains the required upper bound on 
P g I ( A n )  by exploiting the fact that the rule in consideration is 

Lemma 3.1: For each U E U, let Xy, X;, * - a ,  be the 
sequence of states observed when the preceding control action is 
U. Then for every E > 0, p > 0, U E U, and 8’ E 8 there is a 
constant KY(c, p ,  e‘) < 00, and an event A”(€, p,  0’) with 
P9(Au(e, p,  e’)) > 1 - E ,  such that 

uniformly good. 

for appropriate constants b, c>O, 

for all nh 1 on AU(c, p,  e’). (3.4) 

Proof:ForO’ E 8 a n d u  E ‘Usuchthatp(.;u,O’) = p ( . ;  
U, e), the result is trivial. Otherwise, note that under 8,  Xy, X;,  - * - , are i.i.d. r.v.’s with marginal p(x;  U, e). By the strong law 
of large numbers it follows that 

I “(”) by Markov’s inequality 

=o(nU- l )  by the definition of uniformly good. 0 

Proof of Theorem 3.1: Fix a distribution n(0’) on B(0) 
1 n ~ ( x y ;  U, e) with U@’) > 0 for every 8 ’  E B(0). Let Pn denote the 
- -Z”(e, 6 ’ )  a.s. pe as n - w .  (3.5) corresponding distribution on the sequence of controls and 

observed states. Note that, conditional on knowing 6 ’ , this is just n I =  1 logp(xy; U, e’) 
P e g .  Then, for any event A, E 5, = a(&, XI, UZ, X,, * * * , U,, 
X,)  

bn-c log n 

Thus, 

r ( 1  +p)zu(e,  e’) < w a.s. pg (3.6) 1 
. .  

Equation (3.4) follows from (3.6) and (3.7). 
This gives us the previously discussed measure transformation 
between PO and Pn. Now on ns.EB(s) nuEQe AU(c, p,  e’),  where 0 
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AU(6, p,  0’) are as obtained in Lemma 3.1, we have 

where 

T,= T,(u) and 
uE’U8 

Let 

Therefore, 

26 1 

(3.11) 

(3.12) 

Letting E + 0 for fixed p > 0, we get (3.2) 

lim Ps(A,) = 0. 
n-m 

By using Markov’s inequality and letting p + 0, we get (3.3) 

Notice that for those 8 E 8 for which B(8) is empty, Theorem 
3.1 does not provide a lower bound. This in fact allows us to 
construct uniformly good schemes which have a finite loss for 
those values of 8. This will become clear in Section IV. 

IV. THE CONTROL SCHEME 

We first introduce some notation in Section IV-A. Then, in 
Section IV-B we describe in detail the adaptive control scheme, 
and in Section IV-C we give a heuristic interpretation of its key 
features. In Section IV-D we derive an upper bound on the loss 
associated with it. This bound is the same as the lower bound 
derived in Section III. Thus, the proposed control scheme is 
asymptotically efficient. 

A. Notation 

In this section we introduce the notation used for the description 
of the control scheme we construct in Section IV-B. 

Let M(’) be the unit simplex in W I I identified with the space of 
probability measures on ‘32. Thenp(u, 8) : = {p(x;  U, 8):x E ‘XI 
E W). Since 8 is finite, p(u,  e) takes on only a finite number of 
values for each U E U. Therefore, for each value of U C U, it is 
possible to find an > 0 such that for all values ofp(u,  0) we can 
identify eneighborhoods 

c-nbd(p(u, e)) : = { p  E M(’)  : max x€X Ip (x ) -p (x ;  u, e)( < e u }  

(4.1) 

which are disjoint for distinct values of p(u,  e). 
Also, define 

s(e) := {e’ E e : p(u*(e), e’)=p(u*(e), e) 
and u*(e’) = uye)}. (4.2) 

This is the set of parameters for which the optimal control actions 
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are the same as that for 0, and the distributions under the optimal 
control action are also identical. Let 

v(s(e)) : = { U  : P ( U ,  e ' )+p(U,  e), e'  E s(e)}. (4.3) 
Recall from Section III that 

B(e) : = {e' E e : p(u*(e), e ' )=p(u*(e) ,  e) 
and u*(O')#u*(e)}. (4.4) 

This is the set of parameters for which the optimal control actions 
are better than the optimal control action for 8, and the 
distributions under the optimal control action for 8 are identical. 
Also let 

(4.5) 

achieve the minimum in the lower bound for the loss in (3.2), 
where 'UB = 'U - { U * ( @ } .  Let k = #'U. 

cY(e)={aye) : U E vue} 

B. Description of the Control Scheme 

From then on at each stage n, compute the empirical measure 
To start off, use each of the control actions U E 'U once each. 

q,(u) : = { q,(u)(x); x E 'X} E M(' )  

corresponding to each U E 'U as 

Define the following conditions. 
Cl(8): qn(u) E enbd ( p ( u ,  e)) v U E 'U and B(8) is empty. 
C2(8): qn(u) E E-nbd ( p ( u ,  e)) v U E 'U and B(0) is 

C3: There does not exist 0 E 8 such that qn(u)  E enbd ( p ( u ,  

(Note that C3 = (UueEe(Cl(0) U C2(8)))'.) Proceed as 

1) If Cl(0) is satisfied for some 0 E 8, then use U * @ ) .  
2) If C2(8) is satisfied for some 0 E 8, then do the following: 

maintain a count of the number of times condition C2(8) is 
satisfied. Of these, for the first time choose among the control 
actions U E 'Uue randomly with probabilities a"(@. Refer to this 
process as randomization. For those instants when this count is 
even (say C2(8)a), use u*(O). For other instants when the count is 
odd (call this situation C2(8)b), compute the likelihood ratio 

nonempty. 

e)) v U E 'U. 

follows. 

(4.7) 

of 0 versus B(O), where (U;, X i ) ,  e . . ,  (U;;, X;;) is the 
sequence of pairs of control actions and observed states up to stage 
n when randomization is done with a(@. If C2(B)bl:An > Kn+l ,  
where Kn = n(1og n ) P  for some fixed p > 1, then use U * ( @ .  If 
C2(8)b2:An 5 K, ,  then do the following. Maintain a count of 
the number of times this condition (C2(0)b2) is satisfied. If this 
count is a perfect square (say C2(8)b2a), then use round robin 
among U E 'U(S(f3)). If this count is not a perfect square (say 
C2(8)b2b), then do randomization using a(0). 

3) If C3 is satisfied, then use round-robin among U E 'U. 

C. Discussion of the Control Scheme 

In this section we give a heuristic interpretation of the control 
scheme constructed in Section IV-B and some of the key 

The entire control scheme is based on an identification strategy 
that makes use of empirical measures. From the theory of large 
deviations it follows that the empirical measure of an i.i.d. 
process should converge to any €-neighborhood of its true 
distributions in finite time. Using this idea, at each stage we 
compute the empirical measure corresponding to states observed 
when the various control actions are used, and identify three types 
of situations Cl(e), C2(8), and C3 which need to be treated 
differently. Whenever condition Cl(0) is satisfied there is no 
conflict between learning and control, in the sense that the 
apparent best action is also appropriate for information gathering. 
This condition is akin to the closed-loop identifiability condition. 
However, when condition C2(8) is satisfied there is a conflict 
between learning and control. The apparent best action in this 
situation does not probe the system adequately, and consequently 
we need to repeatedly use forcing controls to learn about the 
system. The amount of information already available is quantified 
by means of certain likelihood ratios, and by comparing these to 
an appropriately time-varying threshold, we decide: 1) we have 
sufficient information and we can go ahead and use the apparent 
best control action; or 2) we have insufficient information and we 
need to use one of the forcing controls to learn more about the 
system. This scheme quantifies the available and required 
information very precisely, and uses the various controls in 
proportion that is least expensive and most effective for learning, 
and is consequently able to achieve the optimal rate of learning. 
Finally, when condition C3 is true, then we clearly have 
insufficient information about the system and we need to concern 
ourselves with identification alone. 

D. Upper Bound on the Loss 

In this section we derive an upper bound on the loss associated 
with the adaptive control scheme q5 * constructed in Section IV-B. 
The bound is given by the main Theorem 4.2. Lemmas 4.1, 4.2, 
4.3, and Theorem 4.1 are needed for the proof of the main 
theorem. - , be i.i.d. r.v.'s on the finite state- 
space X , with marginal p (x )  . Let M I )  be the unit simplex in W 1 3c ' 
identified with the space of probability measures on X, and let K 
C MI), closed, such that p 6 K .  Let 

Lemma 4.1: Let XI, X,, 

1 "  
qn := {qn(x) lx  E 'X} whereq,(x) := - l ( X , = x ) .  

r = l  

Then 

i) P(qn E K)<Ae-un 

LetL := sup { n  2 llq, E K } .  Then 

ii) EL < m. 

for all n r l  

for some positive constants A,  a. 

Proof: i) follows from the theory of large deviations (see [7, 
Theorem II.4.31). 

To prove ii) note that 
m 

E L = E  1 ( 3 i r n ,  q, E K )  
n =  1 

m /  \ 

underlying ideas. <m. 
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Lemma 4.2: Let Xi, X,, - e ,  be i.i.d. r.v.’s on the finite state- 
space ‘X with marginals p(x ) .  Let f :‘X + R be such that Ef(XJ 
= ZxExp(x)f(x) > 0. For n 1 1, let Sn := C;=_,f(Xi). 

Then 

i) P(Sn50)<Ae-on for all n r l  

for some positive constants A,  a. 
Let L := sup { n  L l(S, I 0). Then 

ii) EL < W. 

Proof: Let K = { q  E M(’)(ZXExf(x)q(x) I 0). Then K 
K. Also since C M(’) is closed and p 

SI= nqn(xlf(x) 
XEX 

{Sn501 = { n  2 4%(x)f(x)so) 

1 = {ZX 4nWf(x ) sO 

x E  E 

(4.8) 

The proof of Lemma 4.2 follows from (4.8) and Lemma 4.1. 
Lemma 4.3: Let X ,  , X2,  * * , be i.i.d. r.v. ’s on the finite state- 

space ‘X, with marginals p ( x ) .  Let $:X + R be such that 0 < 
Ef’(Xl) < 00, i E 1, finite. Let Sk = f(Xl) + f’(X2) + * + 
f’(Xn), Lb = 1(inffzn Si I A),  ahd LA = maxiEI LL. 
Then 

(4.9) 

= { q n  E K1. 

ELA 1 
lim sup -5 

A - m  A 2: (Ef’(X1)) * 

Proof: For E > 0, and for any fixed i E Z 

. A ( l + ~ f  L’ <- + L’ 
A - Ef’ (Xi) 

(4.10) 

263 

By (4.12) and (4.13) it follows that: 

By letting E + 0, we get the desired result. 0 
Theorem 4.1: Let 0 E 8 be such that B(0) is nonempty. Then 

(4.14) 

for e’ E w e )  (4.15) 

where 

(U:, X i )  is the pair of control action and observed state at the 
randormzing instants (note that (U;, Xi) (U;, Xi) ,  * e ,  are i.i.d. 
with marginal cr”(B)p(x; U, e’) under e’) and 

K, = n (log n)P for some p > 1. 

Proof: 
where 

L ’ = c  1 (!;fl ( S I - T ) S O )  tEf’(X1) . (4.11) sup { 1 s i i n  1 Ai(0)sKn+ I} 

n= 1 

Consider the i.i.d. r.v.’s X , ,  X,, * * , and$% + RI given by 

n P(x:; U;, e) 
w:; U;, e’) f (XI)  =f’(XO - Ef’(XI) * 

Ef’ (XI) > 

= max i I ( i n f c l o g  
I=  1 e r a w e )  i = l  

(4.16) 

We can now use Lemma 4.3 by making the following translation. 

Then 

Ef (Xf)=Ef’(Xl) -- 
Let 

l + €  

Then, by Lemma 4.2 it follows that EL‘ < 00. Therefore, ! X = % X %  

E ( m a x L i ) s E  ( g L 1 ) = C E L i = k ( € ) < ~  (4.12) 
X,= (U;, x;, 

i E I  Z= B(8) i E I  

for some constant k ( ~ )  independent of A .  p(x;7 U;* e) , e, E B(e) f 8‘  (X I )  =log PW;; U;, 0’) 

Sen‘ := f s ’ ( X r ) = Z  log 

Now, 

iE I n p w ; ;  U;, 0) 

I =  1 f = 1  P(x;;  U;, 0’) 
5 A(’+€) +maxLi. (4.13) 

A=lOg Kn+i % (Ef’(Xl)) iEI 
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Proof: For U # U*(@, we have 

n 
T n ( u ) = E  l(Uj=U) 

i=  I 

n 
= 1 +  l(Ui=U) 

i = k + l  

n 
= I +  ~ { u ~ = u ,  ci(w)issatisfiedat 

i = k + l  

stage i for some 0’ E e} 
(4.17) 

n 
+ I { u ~ = u ,  c 2 ( e t )  is satisfied at 

i = k + l  ~ o t e  that Es(fe’(Xl)) = Cue a’(0)Iu(O, 0’) > 0. 

Lemma 4.3 to (4.16) along with the translation (4.17). 
Hence, (4.14) follows by a straightforward application of 

To prove (4.13, note that 
stage i for some 0’ E 0)  

n 
+ 1 {vi= U, ~3 is satisfied at stage i }  

i = k + l  

=l+Term 1+Term2+Term3 (say) (4.20) 

{ M O )  > Kn+ 1 for some is n} 

where Cl(0‘), C2(0’), and C 3  are defined in Section IV-B. Let 
us now examine each term separately. Defining &, by for any 0’ E B(0) 

3u : = SUP { q n ( U )  a E-nbd(p(u, e))} (4;21) 
Tn(u)al where 

and noting that E& < m by Lemma 4.1 ii), we get Term 3 
I C u E ’ U 3 u ,  thus 

Eo Term 3s EeSu<w (4.22) 
U € %  is a martingale under 0 ’ .  Therefore, (4.15) follows by the 

U 
Lemmas 4.1-4.3 and Theorem 4.1 are now used to characterize 

the performance of the proposed adaptive control scheme. 
Theorem 4.2: Under the adaptive control scheme +*, for U # 

U * (0) 

martingale inequality (cf. [6, p. 2431). 
and Term 1 I 3u, thus, 

E# Term l s E e 3 , < ~ .  (4.23) 

n 

Term 2 =  E 1 {Ui=u,  C2(0’) is satisfied at 
i = k + l  

stage i for some 0‘  E 8 such that p(u*(0’), 0’) 

+P(U*@’),  0)) if B(0) is nonempty 

EoTn(u)sM< 00 if B(0) is empty. 
n 

+ 1 {vi= U, c 2 ( e t )  is satisfied at 
i = k + l  

(4.18) 

Consequently, stage i for some 0 ’ E €3 such that 0 E B (0 ’)} 

I n 
+ 1 { ui= U, c2(0’) is satisfied at 

i = k + l  

stage i for some 0’ E 8 such that 0 E S ( 0 ’ ) )  

n 

+ C I { u ~ = u ,  c2(0) is satisfied at stage i). 
i = k + l  

=Term 2a+Term 2b+Term 2c+Term 2d (say). 

14.241 

if B(0) is nonempty 

L n ( 0 ) s M <  03 if B(0) is empty (4.19) 

where a(0) = { a”(0):u E ?lo} is defined by (4.5). . ,  
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Next we upperbound Terms 2a-2d separately. 

Term 2a= i i{uj=U, c2(e7 
O’:B(B’) is not empty and i =  k +  1 

p(u*(e’) ,e’)  +p(u*(e‘),e) 

is satisfied at stage i )  

5 [ i t  i i {u;=u*(e’ ) ,  
B’:B@’)isnotemptyand i = k + l  

p(u*(e’) ,e’)fp(u*(e’) ,e)  

I C2(O‘) is satisfied at stage i }  

The first of the inequalities of (4.25) holds because under C2(0’), 
u*(0’) is used on all the even times, therefore, at least as many 
times as any other control minus one. The second of the 
inequalities of (4.25) holds because the sum on the left-hand side 
counts a subset of the time instants when u*(0’) is used and 
qn(u*(O‘)) 6 E-nbd (p(u*(e’ ) ,  e)) where 8 is the true 
parameter. 

By Lemma 4.1 ii), it follows that 

Term 2 b s  {C2(0’) is satisfied at stage i }  
8’:BEB(B‘) 

1 satisfied at stage i} 

= 2 [ 1 +  i l(C2(O’)bl is 
@’:BEB(B’) i = k + l  

satisfied at stage i} 

n I + 1 {C2(O’)b2 is satisfied at stage i} 
i = k + l  

n 1 + 1 {C2(O’)b2 is satisfied at stage i} 
i = k + l  

I 2 [1+ i 1{Xj(8’)>Kiforsomejsi-1} 
e‘ :e€ B(e‘) i = k + l  

n I + 1 { c 2 ( e f ) b 2  is satisfied at stage i} 
i = k + l  

The first of the inequalities of (4.27) results by removing the 
condition Vi = U .  The second one results by observing that the 
total number of time instants that C2(O’) is satisfied is upper- 
bounded by twice the odd instants that C2(O’) holds, and by 
noting that the first time we randomize and the other odd times we 
call C2(0’)b. The third inequality results because { C2(0’)b2 is 
satisfied at stage i }  implies {Aj-](0’) > K ; } .  

Consider now the term Cy=k+ I 1 { C2(0’)b2 is satisfied at stage 
i}. 

5 1 {C2(13’)b2 is satisfied at stage i }  
i = k + l  

= 2 1 {C2(01)b2a is satisfied at stage i} 
i = k + l  

+ i  1 
i = k + l  

n 

5 1 + 2  
i = k t  

n 

= 1 + 2  

C2(O’)b2b is satisfied at stage i }  

1{C2(O‘)b2b is satisfied at stage i }  

1{C2(O’)b2b is satisfied at stage i; 
i = k + l  

of the number of times that C2(8’)b2b has been 
satisfied so far, the fraction of times that U’  

is used E a u ’ ( e t ) + E ) }  
n 

+ 2  1{C2(O’)b2b is satisfied at stage i; 
i = k + l  

of the number of times that C2(8‘)b2b has been 
satisfied so far, the fraction of times that U’ 

is used 6 ( a u ’ ( e ’ ) - E ,  a”’(O’)+E)} 
m 

5 1 + 2  l { q ; ( u ’ )  6 E-nbd(p(u’, e)) 
j =  1 

for some i>(au’(O’)-E)j} 
m 

+ 2 1 {of j  the fraction of times U’ 
j =  1 

is used B (aU’(f3’)--E, .“’(e’)+€)} (4.28) 

where U ’  E U@, is such that p(u’ ,  0 )  # p(u’ ,  0 ’ ) .  
The first of the inequalities of (4.28) results by observing that 

the number of times condition C2(0’)b2a is satisfied (Le., the 
count of the number of times C2(0’)b2 is satisfied is a perfect 
square) is upperbounded by the number of times condition 
C2(0‘)b2b is satisfied plus one. Consider now changing the index 
of summation to the time instants when randomization is done. 
Then the condition C2(0’)b2b, along with the condition that the 
fraction of times that U ’  is used E(au’(O’)  - E, au’(O’) + E) at 
stage i, imply that qi(u’) 6 E-nbd ( p ( u ’ ) ,  0 ) )  for some i > 
(a”’(0’) - ~ ) j .  By extending the summation to infinity together 
with the above observation establishes the last of the inequalities 
of (4.28). 

Thus, by Lemma 4.1 i) and (4.15) it follows that 

+ 2  5 Ale-“ l i+2  5 A2e-“2J I < w  (4.29) 
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where A I ,  al, AZ,  az > 0 are some constants. 

Term 2c= {Ui=u ,  C2(B’) is 
n 

e ‘ : e E s ( e ’ )  i = k +  I 

satisfied at stage i} 

I [1+ i l{Ui=u, C2(8’)b2is 
O’:O€S(O’) i = k +  1 

I 

1 

satisfied at stage i} 

5 [ I +  i 1{C2(e‘)b2is 
e’:eEs(e‘) i = k +  I 

satisfied at stage i }  

j =  I 

I * (2j+ 1)P (4.30) 

where U’ E Q(S(0’)) is such that p(u’ ,  e) # p ( u ’ ,  e’) and 

The first inequality of (4.30) results by noting that since 8 E 
S(e’ ) ,  U # U*@’) = U*(@ can be used only when condition 
C2(8‘)62 is satisfied, or at the first instant when C2(8’) is true. 
The second inequality results by removing the requirement U, = 
U. The third inequality results by upperbounding the number of 
times condition C2(8’)b2 is satisfied. This can be achieved as 
follows. First restrict attention to those time instants that are 
perfect squares and the control U’ is used. At these time instants 
since C2(0‘) is satisfied qn(u’)  E c-nbd ( p ( u ’ ,  e’)), thus, by the 
choice of U‘ E Q(S(O‘)), qn(u’)  C$ E-nbd (p (u ’ ,  e)). Consider 
the sum of the intervals between the above time instants. (Note 
that the length of thejth interval is upperbounded by [ ( j  + 1)2 - 
j z ] /2  = (2j + 1)12.) Then the number of times condition 
C2(0‘)62 is satisfied cannot exceed this sum. Finally, the 
inequality results by changing the summation index to all the times 
when U‘ is used and upperbounding the interval following the 
time qj(u’) C$ enbd ( p ( u ‘ ,  e)) by (2j + 1)P. 

#Q(s(ey = 1. 

Again, by using Lemma 4.1 i) we get 

(4.31) 

I 1 + P + C  Ae-Q (2j+1)12 <m. = [ ,Il Eo Term 2c1 
e’:eEs(e’) 

Now if B(0) is empty then, 

Term 2d=0. (4.32) 

Otherwise, 

n 

Term 2d=  1 { Ui= U, C2(8) is satisfied at stage i} 
i = k + l  

5 1 + i 1 { ~ ; = u ,  ~ 2 ( e ) b 2  is satisfied at stage i} 
i = k + l  

n 

= 1 + 1 {vi= U, ~ 2 ( 0 ) b 2 a  is satisfied at stage i} 
i = k + l  

n 

+ 1 {U,= U, c2(e)b2b is satisfied at stage i }  
i = k + l  

s 2 +  i l{Ui=u,  c2(e)b2b is satisfied at stage i} 
i = k + l  

i = k + l  

(4.33) 

The first of the inequalities of (4.33) is obtained by noting that U 
# U*(@ can be used only at the first instant when, C2(@ is 
satisfied (in which case randomization is done) or when C2(8)b2 
is satisfied. The last of the inequalities of (4.33) results because 
the number of times condition C2(8)b2a is satisfied is upper- 
bounded by one plus the square root of the number of times 
C2(B)b2b is satisfied. 

To upperbound Eo Term 2d we use (4.33), Jensen’s inequality, 
and the following fact. At each stage i when condition C2(8)b2b 
is satisfied, the choice of the control action cl; E is made by an 
independent randomization a(@. Then, 

n 

E@ Term 2d12+ Pe{C2(0)b2b is satisfied 
i = k + l  

at stage i} au(0) 

I 2 + au(0)Ee [sup { 1 I is n 1 X i ( @  I K n +  ,}I 
+ (EO [sup { 1 4 k I n I Ai(@ I K,+ I }]) I”. (4.34) 

Using (4.14) we get 

. (4.35) a! (8) lim sup Eo Term 2dAog n I 
n-rr, min orqe)rqe, e’) 

e ’ E B ( e )  

Combining (4.20), (4.22), (4.23), (4.24), (4.26), (4.29), 
(4.31), (4.32), and (4.35) we get (4.18). Equation (4.19) follows 

0 

%e 

easily from (4.18) and (2.3). 

V. CONCLUSION 

In this paper we considered the problem of adaptive control of 
i.i.d. processes. The optimality criterion we used, namely 
minimizing the rate at which the loss increases is stronger than the 
average reward per unit time criterion. We showed that this 
problem can be viewed as a multiarmed bandit problem like the 
one considered in [2]. However, the parametrization of arms is 
not independent. This difference is reflected in the lower bound on 
the loss we obtain in Section III, and also needs to be kept in mind 
when designing an optimal scheme like the one of Section IV. The 
control scheme presented in Section IV has an intuitively 
appealing structure as it clearly specifies the conditions under 
which there is either only identification, or only control, or 
identification and control, and treats each one of these conditions 
optimally. 
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