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Abstmct- We consider a controlled Markov chain whose transition 
probabilities and initial distribution are parametrized by an unknown 
parameter 6 belonging to some known parameter space 9. There is a 
one-step reward associated with each pair of control and the following 
state of the process. The objective is to maximize the expected value of 
the sum of one-step rewards over an infinite horizon. The loss associated 
with a control scheme at a parameter value is the function of time 
giving the difference between the maximum reward that could have 
been achieved if the parameter were known, and the reward achieved 
by the scheme. Since it is impossible to uniformly minimize the loss for 
all parameter values we define uniformly good adaptive control schemes 
and restrict attention to these schemes. We develop a lower bound on 
the loss associated with any uniformly good control scheme. Finally, we 
construct an adaptive control scheme whose loss equals the lower bound 
for every parameter value, and is therefore asymptotically efficient. 

I. INTRODUCTION 
ONSIDER the following stochastic adaptive control problem. C The system is modeled by a controlled Markov chain with an 

unknown parameter, i.e., 

PO {Xn+l = Y IXn = X, Xn-1, . . , X O ,  U n  9 .  ’ 3  U0 ) 
=w, Y ;  U , ,  e)  (1.1) 

where X O ,  Uo, X I ,  U ] ; . . , X , ,  U, ,  X,,?I,. . .  is the chrono- 
logical sequence of states and control actions, and 0 is an un- 
known parameter belonging to some known parameter space 0; 
furthermore, 

(1.2) 

where 0 is the same as in (1.1). At each time i we 
choose a control action U; (on the basis of the entire 
past X O ,  U, ,  X 1 ,  U , ,  . . . ,X i )  and collect a one-step reward 
r ( X i ,  U;). The idea is to maximize, in some sense, the ex- 
pected value of the sum of one-step rewards up to time n [i.e., 
EO xygl r ( X i ,  U;U-a,s n + CO. In particular, let J,*(O) be the 
supremum of E@ r ( X ; ,  U;) over all control schemes, and 
define the loss L,(@ as 

C P ~ ( X ~  = x) = p ( x ;  e )  

n - I  

L,(e) = J,*(e) -Eo r ( ~ ; ,  U;) .  (1.3) 
i =O 
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The problem is to find an adaptive control scheme that minimizes 
the rate at which the loss ,!,,(e) increases n + m. This criterion 
will be clarified further in Section 11, and we shall henceforth 
refer to it as the loss criterion. 

One of the current approaches to stochastic adaptive control 
problems is the so-called “certainty equivalence control with forc- 
ing” (cf. [l]). This scheme has the following features: i) at al- 
most every instant of time the unknown parameter 0 is estimated 
first and then the corresponding optimal control law is used (cer- 
tainty equivalence); ii) every once in a while experimentation with 
various control actions (forcing) is done in order to escape false 
identification traps. Even though “certainty equivalence control 
with forcing” is self-tuning in the Cesaro sense and is therefore 
optimal for the average-reward-per-unit-time criterion (cf. [ l]), 
there remains the problem of how much reward such a strategy 
sacrifices. How often is experimentation needed in order to avoid 
false identification while still achieving the maximum possible re- 
ward for all parameter values? This issue can be investigated by 
introducing the loss criterion. The loss criterion used in this pa- 
per is stronger than the average-reward-per-unit-time criterion, 
used in [1]-[7], which just requires ,!,,(e) to be o(n). For the loss 
criterion it is no longer clear that certainty-equivalence-control- 
with-forcing is optimal. 

The loss criterion was first used by Lai and Robbins in the 
context of the multiarmed bandit problem, and a solution method- 
ology was developed for bandits with independent identically dis- 
tributed arms in their seminal papers [9], [ 101. Various extensions 
of the Lai-Robbins formulation of the multiarmed bandit prob- 
lems have been reported in [l l] ,  [12]. A crucial aspect of the 
bandit problem (see [9] for an introduction) is that the arms of 
the bandit are independent. This results in a clear definition of the 
role of experimentation: experimenting with one arm gives infor- 
mation only about the parameter of that arm; knowledge about 
the parameters of the other arms is unchanged. In the context of 
controlled Markov chains, experimentation corresponds to using 
a control strategy that does not appear optimal. However, use of 
such a strategy changes the state of knowledge for all parameter 
values simultaneously. 

In spite of these difficulties, we are able to address the issue 
of optimal experimentation for controlled Markov chains in this 
paper, by treating the problem as a kind of multiarmed bandit 
problem in a manner similar to what we did for the controlled 
i.i.d. process in [8]. The crucial new idea is the “translation 
scheme” (Section 11-B) which along with the construction of an 
“extended probability space” (Section 11-C) allow us to convert 
the original control problem into one of “playing” stationary 
control strategies. The subsequent analysis is also more delicate 
than that of [9]-[ 121 because of the mixed role of experimentation 
discussed above. 

The rest of the paper is organized as follows. In Section I1 it 
is shown that the original control problem can be converted into 
one of “playing” stationary control strategies. More specifically, 
it is shown that the loss L,(O) can be expressed in terms of the 
expected number of times each stationary control law g is used 
up to time n and the expected one-step reward under the invariant 
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distribution corresponding to each g. A lower bound on the loss 
L,(8) is developed in Section 111. An adaptive control scheme is 
proposed in Section IV; it is shown that the loss associated with 
the proposed control scheme is equal to the lower bound on Ln (e), 
thus proving that the proposed control scheme is “asymptotically 
efficient. ” 

11. THE PROBLEM 

A .  The System Model 
Consider a stochastic system described by a controlled Markov 

chain on the state space X, with control set ‘U, transition prob- 
ability matrix 

(2.1) P(U,  e)  := {m, Y ;  U ,  a x ,  Y E XI, 

p(e)  := {P(x; e)lx E XI. 

and initial probability mass function 

(2.2) 

The parameter 6’ is unknown, but belongs to a known set 8. 
Assume that X,  U, and 0 are all finite. Further, assume that for 

x ,  y E X; U E ‘U; e, e /  E 0, P(X, y ;  U ,  e )  > o 
+ P(X, Y ;  U ,  e’) > 0. (2.3) 

For every stationary control law g: X + U 

w e )  := {P(x, Y ;  g w ,  w ,  Y E X} (2 -4) 

is irreducible and aperiodic for all 0 E 8, and 

p(x; e)  > 0 for all x E ‘X and 0 E 8. (2.5) 

Let 

+(e) := { T ~ ( x ;  e)lx E X) (2 -6) 

be the stationary distribution corresponding to Pg(e), let 
r(X;, U;) represent the one-step reward at time i ,  where r :  X x 
’U --+ R, and define 

P g ( @  := r8(x; W ( x ,  g(x)) (2.7) 
XEX 

to be the mean reward under the stationary distribution 7rg(e). 
Further, define Jn := Cysi r(Xi, U;), the total reward at time 
n ,  as the sum of the one-step rewards up to time n. 

An “adaptive control scheme” y is a sequence of random 
variables {U }” taking values in the set ‘U such that the 
event {U,, 1’3 belongs to the a-field 3, generated by 

Our objective is to find an adaptive control scheme y which 
maximizes, in some sense, E i J ,  as n --+ CO. We shall now clarify 
this notion of optimality. For each 0 E 8, and each n 2 1 ,  let 
J,* (e) be the supremum of q J ,  over all control schemes y . In 
most cases of interest, this supremum will not be attained by the 
same control scheme for different values of 0 and n. Thus, for 
any control scheme y we define the loss 

XO, UO, X i  .U1 9.. . ‘ 9  un - 1  3 Xn. 

L;(O) :=J,*(O) - E ,  y J  n > O  - (2.8) 

which represents the shortfall from the best possible. Minimiz- 
ing the loss is then equivalent to maximizing the expected sum 
of rewards. The objective is to find one control scheme y that 
works well for all 0 E 8 and for large n. In particular, we want 
to restrict attention to (asymptotically) uniformly good control 
schemes, i.e., those for which 

L;(e) = o(n*), va > 0, e E Q. (2.9) 

Such schemes do not allow the loss to increase too rapidly for any 

0 E 8. We would like to find a control scheme that minimizes 
the rate at which the loss increases within the class of uniformly 
g o o d  schemes. 

Note that optimality with respect to the average-reward (cost)- 
per-unit-time criterion requires the weaker condition 

Thus, the notion of optimality we are using here is clearly 
stronger than the average-reward (cost)-per-unit-time criterion. 

In order to evaluate the performance of any control scheme we 
would like to view this adaptive control problem as a multianned 
bandit problem where the arms now correspond to stationary con- 
trol laws. The motivation for doing this is to express E i J ,  and 
thus Li  (e) in terms of the expected number of times each station- 
ary control law (arm) g is used up to time n ,  and the expected 
one-step reward under the invariant distribution corresponding to 
each g. 

To relate our problem to a multiarmed bandit problem we note 
that if we have a multiarmed bandit problem with Markovian ob- 
servations (rewards), then the sequence of observations can be 
realized by appropriate interleaving of the sequences of Marko- 
vian observations (rewards) corresponding to different arms. We 
want to “imitate” this feature of the multiarmed bandit problem 
in the controlled Markov chain problem in the following manner. 
First by a tmnslation scheme (Section 11-B) we identify for any 
adaptive control scheme an “equivalent adaptive control scheme” 
that chooses a stationary control law (arm) g, at each state n. 
Then, we extend the probability space (Section 11-C) so that we 
now start with sequences of Markovian observations (rewards) 
corresponding to different stationary control laws g, i.e., with 
transition probabilities Pg(6). By using the extended probability 
space and the translation scheme, we can construct a sequence 
of observations (and actions) that has the same statistics as the 
original controlled Markov chain. 

After we relate our problem to the multiarmed bandit problem, 
we show by analysis of the reward criterion (Section 11-D) that 
we can express q J ,  , and thus Li (e) in terms of the expected 
number of times each stationary control law g is used up to time n 
and the expected one-step reward under the invariant distribution 
corresponding to each g. 

B. Tmnslation Scheme 
In this section, by means of Theorem 2.1, we show that given 

any adaptive control scheme we can find another adaptive control 
scheme which at each stage n chooses stationary control laws g, 
instead of control actions U,. This scheme is equivalent to the 
original control scheme in the sense that U, = gn(Xn) for each 
n [Theorem 2.1 $1. Furthermore, the successive times at which 
any particular stationary control law g is used are such that the 
corresponding sequence of observations is Markovian with tran- 
sition probability Pg(0). The Markovian property of the sequence 
of observations is achieved by ensuring that the successive states 
(observations) in the process corresponding to each stationary 
control law continue each other, in the sense that for any two 
successive time instants nk and n k + l  at which the same station- 
ary control law is used, the states Xnk+l and X,,+, are the same 
(Theorem 2.1 iii)] . 

The translation scheme developed in this section is the first 
step in our effort to relate our problem to the multiarmed bandit 
problem. 

Theorem 2.1: Given a controlled Markov chain on a finite 
state-space X and with a finite control set ‘U, for any adaptive 
control scheme y (as defined earlier) there exists an “equivalent 
adaptive control scheme” y’ taking values on the set 6 := {g :  X-, 
‘U} of stationary control laws with the following properties. 

i) y’ is a sequence of random variables {g, },“=o taking values 
on the set 6 such that the event {g, = g }  belongs to the a-field 
5; generatedbyXo,gotXI,gl,...,gn-l,X n .  

ii) Un(w) = gn(Xn)(w) Vn, w .  
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iii) If nk and nk+l  are any two successive time instants at which 
a stationary control law g (fixed, but arbitrary) is used, i.e., g,, = 

(Notice that 1) mplies 5 ,  = SA.) 
P m f ,  (by Construction): Let #X = k and let X I ' ,  

x 2 ' ,  . . . ,xk  be a prior (but arbitrary) ordering of x.  Similarly, 
let #U = 1 and U = {U', u2 ,  . . . , U'). To start off, observe 
X o  and then reorder X as X I ,  x 2 ,  . . . , x by a left cyclic shift of 
the prior ordering, such that X I  = X O .  Define So, i = 1, . . . , k 
inductively as follows: 

gn,,, = g and g, .# gl n k  < n < nk+l, then X n c + l  = X,,,, . 

= {g E 6 : g(x') = u l ,  1 < j I k} 

i - I  

6: = {g E 6 : g(x') = U', i < j I k} - U Si; 
j=1 

i = 2 , . . . , k  . 
Notice that 9;; 1 = l , . . . , k  defines a partition of s, i.e., 

Now suppose at time n 2 0, i.e., after observing X, ,  we 
have a partition 9; : i = 1,.  . . , k of with the following five 
properties. 

P1) si, i = l , . . . , k  is determined by 5;. 
P2) V l  I i I k 

the control g was used (if any) was followed by the state x' . 
Let 

96 = 6 and i # j + 96 n si,= 4. 

Vg E Vi, the last time up to time n - 1 that 

-IEMES 1251 

X ,  = x J n  for some j, = l ; . . ,k.  (2.11) 

P3) Vj, 5 m I k and for any fm: { x l , . . . , x m }  .--f U there 
Then, 

exists a unique 
m 

g E UsI, 3 g ~ { ~ l , . . . ~ m }  = f m .  

i=1 

P4) V I  I m < j ,  there exists a unique 
m 

f:,: { x l , - , x m }  - + U 3 V g  EUGi.,gl{xl,. .- .P} #f:,- 
i = l  

P5) V I  < m < j, the above found fA's satisfy f A - l  = 

Also assume the following. 
P6) g, , 0 I j < n satisfy properties i), ii), and iii) of Theorem 

2.1. 
We shall now show that we can choose a g, satisfying property 

P6) on the basis of 5; and construct a new partition i = 
1,.  . . , k satisfyi,ng properties Pl)-P5) assumed true for time n. 
Choose g, E SJn" U, as determined by (2.1 l)] such that 

g n l { x t , . . . x l n - ~ }  andg,(x") = g , ( X , )  = U,,. (2.12) 

Such a choice is clearly possible by the above induction hy- 
pothesis [properties P3) and P4)]. By noting the fact that U ,  
is determined by 5, = 5; and by the induction hypothesis 
[properties Pl) ,  E!), and P6)] it follows that P6) is satisfied 
for n + 1. Next, let X,+1 = xJn+l for some jn+l = l , . .  . , k .  
If j n + l  = j , ,  then si+l := s',Vi = l , . . . , k ,  and it triv- 
ially follows that SL+l,.i = l , . . . , k .  satisfy P1)-P5). Else, if 
j n + l  # j ? ,  6: I := 62,- {&) ,  Sf:; := SJn"+' + {gn},  and 
Vi # { n ,  J n + ! ,  GL+l := si .  In this case also,it is easy to check 
that s,+l satisfy P1) and P2). To show that satisfy P3)-P5) 
consider two cases. 

Case I jn+l > j , :  
v j n + i  I m I k,  UEl = UEl 6', - {g,} + {g , }  = q=, 6,. Thus, P3) is satisfied. 
VI I m < j , ,  U E l  9,+' = UEl vi. Thus, P4) and P5) are 

satisfied for 1 I m < j, and 1 < m < j , ,  respectively. 
vJn I m < j n + l ,  UEl Sy+l = UEl 6; - {g , } .  Consider 

f A l{x' , . . . , x m  - I  } . 

the f:, = g,l 
follows that Pbjlis'c&fied for j, I m < j n + i .  

Clearly, this construction of fh  also satisfies 

By the induction hypothesis P3) it then 

fhp1  = fh l{xl , . . .xm-l}  V j ,  < m < j n + l  

and by (2.12) it also follows that 

=f / " I {X I , . . . x l " - I } .  

cold) (new) 

Thus, P5) is satisfied for j, I m < j n + l .  
Case 2 j ,+ ,  < j,: 

V j n  I m I k,  Uc1 9;+1 = UEi Si, - {gn} + {gn) = 
q=l 9,. Thus, P3) is satisfied. for j, 5 m 5 k.  

Vj,+l I m < j, L& $$+i = uE, 9, + {g , } .  And since 
fk = g, I , . . X m  1 was the unique one missing from q=l 9, [by 
(2.12) and the induction hypothesis on P4), P5)] it follows that 
P3) is now satisfied for jn+l. 5 m < j , .  

0 V l  5 m < jn+' uEl 9,+1 = uEl Si, and thus P4) and P5) 
are satisfied. 

The proof of Theorem 2.1 is now complete (using induction) 
by checking that the induction hypothesis is satisfied at n = 0. 

C .  Extending the Probability Space 
In this section we construct an underlying probability space 

which is defined in terms of sequences of observations, corre- 
sponding to each stationary control law g, that are Markovian 
with transition probabilities Pg(0) and are also independent of 
each other conditioned on the initial state. This construction along 
with the translation scheme developed in Section 11-B allow us to 
construct a sequence of Markovian observations (and actions) that 
has the same statistics as the original controlled Markov chain. 
Thus, combining the translation scheme developed in Section 
11-B with the results of this section we manage to "imitate" the 
feature of the multiarmed bandit with Markovian rewards, dis- 
cussed in Section 11-A (namely, that in a multiarmed bandit prob- 
lem with Markovian observations, the sequence of observations 
can be realized by appropriate interleaving of the sequences of 
Markovian observations corresponding to different arms). 

We proceed with the construction by first specifying the min- 
imal underlying probability space needed to describe the con- 
trolled Markov chain, and then by "extending" it to the above- 
mentioned probability space. 

Let R = (X x U)" be the space of all X x Tl sequences (i.e., 
sequences of the type X O ,  UO,  XI ,  U 1 , .  . .). Give (X x U)m the 
product a-field 5 = a(@ x U)M), namely, the smallest a-field 
such that X O ,  U,, XI, U1, . . . are measurable. There is a unique 
probability 6'; on (R, 5)  such that for all n and all X O ,  . . . ,x,  in 
X and u o , . . '  ,U, in U, 

This triple (0, 5 ,  6';) is the minimal underlying probability space 
required for the description of the problem we address in this 
paper. 

We now construct the extended probability space as follows. 
Let 6 = {gi, ...,fd}, and X d  = {x = (xg' ,  . . . ,xgd):xg' E 
X}. Let R' = (X )" be the space of all Xd sequences (i.e., 
sequences of the pe Xo, XI ...). Give (XCd)m the product a- 

X O ,  XI,  . . . are measurable. There is a unique probability @; on 
field 5' = a((X Jy ) O 0 ) ,  namely, the smallest a-field such that 
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(0, 5’) such that for all n and all XO, X I ,  . . . ,Xn in ‘ X d  , and 

@;{Xi = x i  fo r i  = 0 , 1 , . . . , n }  
d n - I  

= p;cf(x0)) JJ n pg’(xgl, x ; i 1 ;  e )  (2.14) 
j=1 i=O 

where f: ‘Xd -+ ‘X U {A}, A is an arbitrary element used to aug- 
ment the state space ‘X for the purposes of analysis, and f is de- 
fined as follows. For each x E ‘X left cyclically shift {x’  . . ..!’} 
to {x’  , . . . ,xk  } such that X I  = x .  Consider $j’ from Section 
11-B) constructed as before, on the ordering { x  , . . . , xk  }. Let 
h :  ‘X + ‘ X d  such that if g’ E So, then h J ( x )  = x i .  Clearly, 
h is one-to-one, but not onto. Let h[%] be the range of h, 
and h-’: h [ X ]  -+ ‘X be the inverse of h on its range (h-I is 
well-defined as h is one-to-one). Finally, let f IhIx1 = h-’ and 
f(x) = AVx E ‘Xd - h[‘X],  and p i  1% = p(0)  [defined by (2.2)] 
and pL(A) = 0. 

Now on this probability space that we have constructed (note 
that there is no dependence on the adaptive control scheme y 
so far) we can define the random process X: , q , Xy , U:, . . . 
by using the equivalent adaptive control scheme y ’ developed 
in Theorem 2.1. To start off let X: := f(X0). Now given 
X: , q,. . . ,X; choose adaptively gn such that, := gn(X;) 
and Xi+l := X g n  +, where Tg,” is the number of times the con- 
trol law g ,  was used up to time n (in X O ,  U0, . . . ,Xn) ,  and 
Xgn +1 is the component of Xpn +1 correspondin to g ,  . It can 
be &asdy verified that the randoh process X;, d,  XI, q, . ’ . 
constructed above has the same distribution [in (a’, 5,  e)] as 
the one given by (a, 5, q). Note that for XO 3 f(X0) = A the 
process is undefined, but that is not important as 6; {XO:  f(X0) = 
A} =O. 

Using (W,  5’, 6’;) and y’ we can now express EoJ, in terms 
of the expected number of times each stationary control law g is 
used up to time n and the expected one-step reward under the 
invariant distribution corresponding to each g .  

O1 ( 

n-1 

TE = l(g; = g ) .  (2.16) 
i =O 

Note that, in the extended probability space (a’, 5’, @;), 
is a stopping time w.r.t. the increasing family of a-algebras 
{ ( V g / ~ s  S&)VSi}whereSi =a (XE,Xf  ; . . , X i ) a n d 5 k  = 

g’#g 

Vn 3:. 
To express EoNg(x, TE) in terms of the invariant distribution 

under g and EoTE we use the following result. 
Lemma 2.1: Let XO, X 1 , .  . . be Markovian with finite state 

space X, transition matrix 6, irreducible and aperiodic, and sta- 
tionary distribution r. Let 5 ,  denote the a-algebra generated by 
Xo, X I , .  . . , X, . Let 5 be another a-algebra and A an event such 

. Fur- that A E 5o v $ and {Xo = x }  n A = 

thermore, let $ be independent of 5 ,  conditioned on the event 
A .  Let 7 be a stopping time of (5  VS,} such that E[71A] < CO. 

Let 
7-1 

N ( x ,  7 )  = l(X; = x ) .  
i =O 

Then, for some fixed constant K, independent of A ,  x ,  and r ,  

IE[N(x, 7)IAl - T(x)E[TIAI~ I K .  (2.17) 

Proof: Follows from [l 1 ,  Lemma 2.11. 
Notice that V gt eS %gob and 5% are independent conditioned on 

the event A ,  = {XO = x}, x E E d .  Moreover, Ax E V,ES 5; C 

(( V g‘ES @L) V $j) and 

g’ #g 

g’#g 

{xo = x } ;  {xo = x} c {x; = x } .  

4 otherwise 

D. Analysis of the Reward Criterion 
In this section we show, by analysis of the reward criterion, 

that we can express E i J ,  and thus Ll;(e) in terms of the expected 
number of times each stationary control law g is used up to time n 
and the expected one-step reward under the invariant distribution 
corresponding to each g .  

{x; = x }  n {xo = x} = 

Therefore, by Lemma 2.1 it follows that 

IEo[Ng(x, Ti)IAxl - r g @ ;  8)Eo[T:IAxlI I K Consider 

i =O 

n-I 

n-I 

where 

n-I 
= l ( X ;  = x ,  g; = g )  

i =O 

for some fixed constant K independent of x, x ,  and n. 
Thus, 

IEo[Ng(x, T i ) ]  - r g ( x ,  O)Ee[T;]I 5 K .  (2.18) 

From (2 .19,  (2.16), and (2.18) it follows that 

IEo J n  - p g  (6)EJE I I K’ (2.19) 

where K‘ is independent of n and p g ( 0 )  is as defined by (2.7). 
Let g’(0) = argmax E6 (@(e)), and for simplicity assume that 
it is unique for each t fc  8. Thus, if we knew the true parameter, 
the control scheme g ,  = g’(0) gives the optimal reward (up to a 
constant) for all n, and for this scheme 

(2.20) 

By (2.8), (2.19), and (2.20) it follows that the loss L,(@ asso- 
ciated with any adaptive control scheme y satisfies 

g ES 

I E ~ J ,  - npg*@)(O)j I K’.  

IL,,(e) - ( p g * ( e ) ( e )  - pg(0))E,J~ 1 I const. (2.21) 
g ES 

g#g * (8) 

Consequently, the loss can be expressed in terms of the expected 
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number of times each stationary control law g is used up to time n 
and the expected one-step reward under the invariant distribution 
corresponding to each g .  In view of (2.21), our roblem is re- 
duced to one of minimizing the rate at which EeT, increases for 
g E 6, g # g*(f3), within the class of uniformly good control 
schemes. 

III. A LOWER BOUND ON THE Loss 
In this section we obtain a lower bound on the loss L,(O) for 

certain values of the parameter 8 E 0. Before we present the 
bound we introduce the necessary concepts. Let 

B .  

& ( g )  := (pg*@) (0 )  - pg(0 ) )  and 

(3.1) 

Thus, B(0) is the set of bad parameter values associated with 0,  
namely those parameter values 8’ for which the matrix of tran- 
sition probabilities is the same under 0 and 8’ when the optimal 
control law for 8 ,  g*(Q is used, bkt such that the optimal control 
law for e’, g*(O’) is different from g*(O).  The point is that if the 
true parameter were 8’ and we were led to believe it was 0,  we 
would end up trapped into believing g*(Q is the optimal station- 
ary control law to use unless we experiment. (20 should be thought 
of as a set of averaging vectors over 60. Note that Zg(t9, e’) is 
just the expectation with respect to the invariant measure of Pg(0) 
of the Kulback-Leibler numbers between the individual rows of 
Pg(e )  and Pg(er )  thought of as probability distributions on ‘X. 

The lower bound on the loss is now presented in the form of 
Theorem 3.1 below. 

Theorem 3.1: Let 8 E 0 be such that B(0) is nonempty. Then 
for any uniformly good control scheme 4,  under the parameter 

Consequently, 

9# 

Proof: The proof can be easily obtained from that of [8, 
Theorem 3.11 by substituting g for U and 60 for U 0  and by 
invoking the ergodic theorem instead of the strong law of large 
numbers. The main point to keep in mind is the interpretation of 

the quantity on the right-hand side of (3.3). It is the minimum, 
over all averaging vectors associated with 8 ,  of the maximum per 
unit information cost over all bad parameter values associated 
with 8. 0 

Note that we do not have a lower bound for those values of 
t9 for which B(0) is empty. In view of this observation and the 
above lower bound we call a scheme “asymptotically efficient” 
if 

Y 

60 

if B(8) is nonempty 

L,(B) < cm if B(0)  is empty. (3.4) 

IV. THE CONTROL SCHEME 
In this section we describe an asymptotically efficient adaptive 

control scheme. The control scheme presented here has an intu- 
itively appealing structure as it clearly specifies the conditions 
under which there is either only identification, or only control, 
or identification and control, and treats optimally the conflict be- 
tween learning and control. In fact, it will be seen that, roughly, 
experimentation will be done using the optimal averaging vector 
on the right-hand side of (3.3) to get out of the identification traps 
of bad parameter values. 

A .  Preliminaries 

of probability measures on X2. 
Let M(2) be the unit simplex in Riel2 identified with the space 

Let 

&x, y )  := a g ( ~ ;  e)pg(x, JJ; e) ;  X ,  y E E. (4.1) 
Then v i  := { v ~ ( x , y ) : x , y  E ‘X} E M2). Since 0 and 6 
are finite v f  take on only a finite number of points in 
Therefore, it is possible to find an E > 0 such that for all values 
of v i  we can identify E-neighborhoods (“e-nbd of vi”) of the 
type 

(4.2) 
which are disjoint for distinct values of v:. 

Also define 
s(e) := {e l  E 0 : Pg*(@)(e1) = Pg*@‘)(e) and g * ( e / )  = g * ( e ) } .  

(4.3) 
This is the set of parameters for which the optimal control laws 
are the same as that for 0,  and the transition probabilities under 
the optimal control law are also identical. Let 

g(s(e)) := { g  : Pg(e/)  # pqe) ,  e’ E s(e)). (4.4) 
Recall from Section 111 that 

B(O)  := {e’ E 0 :  pg*@)(e/) = pg*@) and g * ( e i )  # g*(e))  I 

(4.5) 
This is the set of parameters for which the optimal control laws 
are better than the optimal control law for 8 ,  and the transition 
probabilities under the optimal control law for 8 are identical. 

Let 
a(e) = { a v )  : g E ss (4.6) 

achieve the minimum in the lower bound for the loss in (3.3), 
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where se = - {g*(O)}. Let 

3;,,, = E; [inf { n  2 1 IXn = xo}lXo = xol (4.7) 

be the expected recurrence time of the state xo under the control 
law g. On the basis of these, define 

B. Description of the Control Scheme 
Let xo E X be an arbitrary but fixed state. Define the {Sl = 

a(X0, Uo, X I ,  . . . , X,- l ,  U, -1  , X f  )} stopping times 7 0 ,  T~ , . . . 
byTm:=inf{t > T ~ - I ~ X ,  = x o } , m 2 1 , a n d ~ 0 = i n f { t ~ X ~  = 
XO}. The control scheme $* we construct chooses a stationary 
control law at times 0, 70, 71, . . . adaptively on the basis of all 
the past observations and past actions, and use this control law 
until 70 - 1, 71 - 1, 72 - 1, . . . , respectively. That is, over each re- 
currence interval marked by the state x~ we use the same control 
law which is chosen adaptively at the beginning of that block. 
With this in mind we now describe how the choice of control 
laws is made at the beginning of each block. From now on we 
shall refer to the actual time as time and the recurrence points 
as instances. Initially, i.e., at t = 0, choose a fixed but arbi- 
trary control law go and use it until time 70 - 1. Then to start 
off, use each of the control laws g E s once each. From then 
at each recurrence point, compute the empirical pair measure 
pg : = { pg,(x, y)I x, y E X} E corresponding to each g E 
2” as 

I n - I  

where n is the actual time. 
Define the following conditions. 
Cl(8): p: E enbd (vi) Vg E s and B(0) is empty. 
C2(8): p i  E E-nbd (ve ) Vg E 6 and B(0) is nonempty. 
C3: There does not exist 0 E 0 such that p; E enbd (vi) Vg E 

(Note that C3 = (UeEe (Cl(0) UC2(8)))‘.) Proceed as follows. 
1) If Cl(8) is satisfied for some 8 E 0, then use g*(8). 
2) If C2(8) is satisfied for some 0 E 0, then do the following. 

Maintain a count of the number of instances condition C2(@ is 
satisfied. Of these, for the first instance choose among those con- 
trol laws g E s~ randomly with probabilities p g ( 0 ) .  Refer to this 
process as “randomization.” For those instances when the count 
is even (call this situation C2(8)a) use g’(0). For other instances 
when the count is odd (call this situation C2(8)b) compute the 
likelihood ratio 

6. 

ofOversusB(B), whereX~,g~,X; , . . , ,g ; . , - , ,X; . ,  is these-  
quence of pairs of control laws used and states”observed up to time 
n when “randomization” is done with P(0). If A,, > Kn+l (say 
C2(8)bl), where K ,  = n (log n)P for some fixed p > 1, then use 
g*(8). If A,, 5 K,+1 (say C2(O)b2), then do the following. Main- 
tain a count of the number of instances this condition (C2(O)b2) 
is satisfied. If this count is a perfect square (say C2(8)b2a), then 
use round robin among g E s ( S ( 0 ) ) .  If this count is not a perfect 
square (say C2(8)b2b), then do “randomization” using P(@. 

3) If C3 is satisfied, then use round-robin among g E S. 

C .  Upper Bound on the Loss 
In this section we derive an upper bound on the loss associated 

with the adaptive control scheme $* constructed in Section IV- 

B. The bound is given by the main Theorem 4.2. Lemmas 4.1, 
4.2, 4.3, and Theorem 4.1 are needed for the proof of the main 
theorem. 

Lemma 4.1: Let X O ,  X I , .  . . be Markovian with finite state 
space X, transition matrix P, invariant distribution ?r and initial 
distribution p. Let M(’) be the unit simplex on RIx? identified 
with the space of probability measures on X2, and let K c M(2) ,  
closed, such that ?rP K. Let pn := {pn(x, y)lx, y E X }  where 

i) P(p, E K) < AE-““ for all n 2 1 for some positive con- 
stants A. a. 
Let N := l(p, E K). Then 

ii) EN < CO. 
Let L :=sup {n 2 1 Ipn E K}. Then 

See [14, Problem IX.6.121. 

iii)EL < CO. 
Proof: Part i) follows from the theory of large deviations. 

00 

EN = C P ( p n  E K )  
fl=l 
00 

I E A e - “ ”  

< CO which proves ii). 
fl=l 

00 

E L = E C 1 ( 3 i > n , p ;  E K )  
fl=l 

n = l  i=n 

n = l  i=n 

< 00 which proves iii). 0 

Lemma 4.2: Let S, = X1 + . . .  + Xd where XI, XZ,... 
are i.i.d., EX1 > 0 and let N = 1(S, 5 0), L = 
E,”=, l(inff2,, S ,  I 0). Then the following are equivalent: 

a) EM1 I 2 W 1  I 0)) < 00; 

b) EN < CO; 
c) E L  < CO. 
Proof: See Hogan [ 151. 

Lemma 4.3: Let X1, Xz, . . . be i.i.d. Let f be a real valued 
Bore1 function such that 0 < gf(X1) < CO, i E I, finite. Let 
Si, =f’(Xl)+f’(Xz)..;+f’(~~),~a l(inft2,S: I 
A), and LA = maxiEl Lk.  If E(lf’(Xl)121cf‘(Xl) I 0)) < 00 
for all i E I, then 

Proof: For E > 0, and for any fixed i E I 

(4.11) 

where 

. (4.12) 

Consider the i.i.d. r.v.’s 
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We have Let BL = (Bk, g k ) .  Since the same control law is used over the 
entire block, and the choice of the specific law for each block 
is made by independent randomizations at the beginning of the 
block, it can be easily shown that {Bk} are i.i.d. 

Let 

Then 

< 0O. 

Then, by Lemma 4.2 it follows that EL’ < 00. 

Therefore, 

Now, 

SS 

By letting E + 0 we get the desired result. 
Theorem 4.1: Let 8 E 8 be such that B(8) is nonempty. Then 

Proof: Let X ; ,  X i ,  . . ’ be the sequence of observed states 
51)  when “randomization” is used with a(@. Let X* = Ut>1‘XC‘, 

with the Bore1 u-algebra of the discrete topology, i.e., ail sub- 
sets are measurable. The process {Xt},20 allows us to define 
X *-valued random variables B 1 , B2, . . . called blocks as follows. 
Define the {s t}  stopping times 7 k ,  k 1 1 by 

7k = inf { t  > 7k-1 IX; = x;, = x 0 }  

4 
I C p g ( e )  pg(Bk; e’p0 = xo) -, e2 

Se Bk Ex* 
4 

as x(log x)’ 5 ,2 on o 5 x 5 1, 
c 

4 - _ -  ez  < C O *  
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Thus, by Lemma 4.3 we have the desired result i). since the choice of g’s is only made at the stopping times 7;. So 
To prove ii) note that 

W 

E8T; L EO l ( g ,  = g)(7i+l - Ti)1(7i < n )  + E870 {&(e)  > K ~ + ~  for some 1 L i I n >  
i =O 

M i - - l  pg: (x;, x ; + ~  ; e )  
- { O/::O)g Pg : ( x;, x;,, ; e’) = C E g [ E g [ l ( g ,  =g)1(7;  < n)(7;+1 - T ; ) l ~ 7 , ] ]  +E870 - 

i =O 

M > Kn+l  for some 1 I i 5 n } 
= i =O 

= g)1(7i < n)Eo[(T;+i - T ; ) ( 5 7 , ] ]  +E870 

W pg; (xi, x;+~ ; e )  
= Eg[l(g,  = g)1(7i < n)3i ,x , l  +E070 {!I P ~ : ( x ; ,  e’) i = o  

= 3 ~ , , o E ~  1(g7! =g)+E87i. 
i : r l  <n 

Let us now examine the term l(Gi = g ) ,  where Gi  = 

> Kn+l  for some 1 i 5 n 

for any 8’ E B(O), and 

i:r, <n 

is an 5; martingale under 0’ with mean 1 .  

[13, p. 2431). 0 = 1 +  1(Gi = g )  
Thus, the result follows by the submartingale inequality (see 

Theorem 4.2: Under the proposed adaptive control scheme i>d:7, <n 
+*, for g # g*(@ 

f = 1 +  1{G; = g ,  c ’) is 
i > d : r , < n  

satisfied at stage i for some 8’ E O} 

EgT: < 00 
Consequently, 

+ 1 { ~ i  = g ,  c2(e’) is if B(8) is nonempty, 

if B(0) is empty. (4.17) 
i>d:r ,  <n 

satisfied at stage i for some 8’ E O} 

+ 1{G; = g ,  C3 is satisfied at stage i} 
i>d:7, <n 

= 1 +Term 1 + Term 2 + Term 3 (say) (4.19) 

SS 

Se 

if B(0) is nonempty, 

if B(0) is empty 

where Cl(e’), C2(8’), and C3 are defined in Section IV-B and d 
is the cardinality of the set 6 of stationary controls. Let us now 
examine each term separately. Defining Cg by (4.18) 

where a(@ = ( a g ( 8 ) :  g E 60) is defined by (4.6). 

UO, XI,  . . . ,Xf-l, U, - I ,  X , ) ) }  stopping times TO, 71,. . . by 
7m := inf { t  > Tm-I IXt = X o }  With 70 = inf {nlxn = X o } .  

Cg := sup { p i  ee-nbd (vi)} (4.20) 
Proof: As in Section IV-B define the (S,(=u(Xo, Tf 21 

and noting that E8Cg < CO by Lemma 4.1 ii), we get Term 
Then 7, < CO a.s. Then for any n 2 0 ,  any g E 60, we have 3 I CgES D, thus, 

n-I  

EO Term 3 I X E O C g  < 00 (4.21) 
E ES 

and Term 1 5 Cg, thus, 

E8 Term 1 E8Cg < 00. (4.22) 
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Term 2 = 1 {Gi = g ,  C2(0’) is satisfied at stage i for 
i >d:r, <n 

some 0’ E 0 such that vi,*(”) # vi“”)} 

+ 1{G; = g, C2(0’) is satisfied at stage i for 
i > d : r , < n  

some 0’ E 0 such that 0 E B(0’) )  

+ 1{G; = g ,  C2(0’) is satisfied at stage i for 
i >d:7, <n  

some 0’ E 0 such that 8 E S ( 0 ’ ) )  

+ 1{G; = g ,  C2(0) is satisfied at stage i }  

= Term 2a + Term 2b + Term 2c + Term 2d (say). 
i?d:r ,<n 

(4.23) 
Next we upperbound each of the Terms 2a-2d separately. 
Term 2a 

= c  c 
O‘:B(B’) is not empty andi?d:r~<n 

g*ia’i +,;*(a‘] 
a’ 

. 1{G; = g, C2(0’) is satisfied at stage i }  

i c  
O’:B(B’) is not empty and 

” E  * ( 8 ’ )  +gg * ( 8 ’ )  
8‘ 

I . 1 + 1{G; = g*(0’), C2(0’) is satisfied at stage i }  
i >d:r, < n  

(4.24) 

[ 
5 (d=g“o” + 1). 

B’:B(B’) is not empty and 
” E  * ( a ’ )  ,ygg*(8‘i 

9 ‘  

The first of the inequalities of (4.24) holds because under 
C2(0’), g*(0’) is chosen on all the even instances, therefore, on 
at least as many instances as any other control minus one. The 
second of the inequalities of (4.24) holds because the sum on the 
left-hand side counts a subset of the times when g*(0’) is used 
and pn(g*(O’)) enbd ( Y ~ * ( ~ ’ ) )  where 0 is the true parameter. 

By Lemma 4.1 ii) it foflows that 

EB Term 2a I (1 + EoCg*(”)) < 00. (4.25) 
O’:B(6”) is empty and 

g* (aOfygg* (a0  
a’ 

Term 2b 

5 1 {C2(8’) is satisfied at stage i} 
o‘:0tB(of) i>d:r ,  <n  

1 5 E 2 [ 1 + 1{C2(0’)b is satisfied at stage i }  
e’.o EB(B’) i>d:r ,  <n 

= E 2 [ 1 + l{C2(0’)bl is satisfied at stage i }  
0’:o € E @ ’ )  i>d:r ,  <n  

I + l{C2(0’)b2 is satisfied at stage i }  
i>d:r ,  <n 

r 

I 
i>d:r ,  <n 1 

+ 1{C2(8’)b2 is satisfied at stage i} 

5 C 2 [ 1 +Cl{X,(S’) > K; for some j 5 i - 1) 

i ?d:r, <n 

03 

0’:o EB(B’) i =d 

+ 1{C2(0’)b2 is satisfied at stage i }  . 

(4.26) 
The first of the inequalities of (4.26) results by removing the con- 
dition G; = g .  The second one results by observing that the total 
number of time instants that C2(0’) is satisfied is upperbounded 
by twice the odd instants that C2(0’) holds, and by noting that the 
first time we randomize and the other odd times we call C2(0’)b. 
The third inequality results because {C2(0’)b2 is satisfied at stage 
i }  implies {AT,(O’) > K r , + I } .  

Consider now the term C i 2 d : , , < n  1{C2(0’)b2 is 
satisfied at stage i } .  

l{C2(8’)b2 is satisfied at stage i }  
i L d : r ,  < n  

= l{C2(0’)b2a is satisfied at stage i} 
i_>d:r ,<n 

+ 1{C2(8‘)b2b is satisfied at stage i }  
i>d:r ,  <n 

5 1 + 2 1 {C2(8’)b2b is satisfied at stage i }  
i>d:r ,<n 

= 1 + 2  l{C2(0’)b2b is satisfied at stage i ;  

of the number of instances that C2(0’)b2b has 

been satisfied so far, the fraction of instances 

that g’ is chosen E (&(e’) - E ,  pg’(6’ )  + E ) }  

+ 2 l{C2(0’)b2b is satisfied at stage i ;  

of the number of instances that C2(0’)b2b has been 

satisfied so far, the fraction of instances that g’ 

is chosen e (&(e’) - E ,  @(e’) + E ) }  

i > d : r , < n  

i>d:r ,  <n 

m 

i 1 + 2 2  l{pi(g‘) E-nbd (vi’) 
j = l  

for some i > ( p g ’ ( 0 ’ )  - c ) j }  
03 

+ 2 1 {Of j the fraction of instances g’ 
j = l  

is chosen (pg’(O’) - E ,  pg’(O’) + E ) }  (4.27) 

where g‘ E 301 is such that vi‘ # vi,‘. 
The first of the inequalities of (4.27) results by observing 

that the number of instances when condition C2(8’)b2a is  sat- 
isfied (i.e., the count of the number of instances C2(8’)b2 is 
satisfied is a perfect square) is upperbounded by the number of 
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instances when condition C2(B’)b2b is satisfied plus one. Con- 
sider now changing the index of summation to the instances 
when randomization is done. Then the condition C2(O’)b2b, 
along with the cyndition that,the fraction of instances that g’ 
is chosen E ( f i g  f0’) - E ,  P g  (e’) + E) at stage i, imply that 
pi(g’)  @ E-nbd (vi ) for some i > (&(e’) - ~ ) j .  By extending 
the summation to the infinity together with the above observation 
establishes the last of the inequalities of (4.27). 

Thus, by Lemma 4.1 i) and (4.16) it follows that 

Eo Term 2b 5 2 
O‘:OEB(O’) i =d 

1 
M M I 

5 11 + 1{G; =g ,  
O’:OES(O’) i>d:Ti<n 

1 

J x C2(B’)b2 is satisfied at stage i} 

r 1 
5 

11 + 
l{C2(8’)b2 is satisfied at stage i} 

o’:eES(@‘) i>d:TI<<n 

r 00 1 
F 1 + I 2  +E l{p,(g’) @ enbd (vi’)}(2j + 1)12 

O‘:OES(O’) j = l  

(4.29) 

where g’ E s(S(0’ ) )  is such that vi‘ # vi,‘ and #s(S(e’)) = 1 .  
The first inequaliy yf (4.29) results by noting that since 

8 E S(O’), g # g*(8 ) - g*(@ can be chosen only when con- 
dition C2(8’)b2 is satisfied, or at the first instance when C2(0’) 
is true. The second inequality results by removing the require- 
ment G; = g. The third inequality results by upperbounding the 
number of instances condition C2(B’)b2 is satisfied. This can be 
achieved as follows. First restrict attention to those instances that 
are perfect squares and the control g’ is us+. At these instances 
since C2(0’) is satisfied p&’) E E-nbd (vi, ), thus, by the choice 
of g’ E s(S(e’)),  pn(g’) E-nbd ( v i  )). Consider the sum of the 
intervals between the above instances. (Note that the length of the 
jth interval is upperbounded by [U + 1)’ - j 2 ] l z  = (2 j  + l)I’.) 
Then the number of instances condition C2(8’)b2 is satisfied can- 
not exceed this sum. Finally, the inequality results by changing 
the summation index to all the times when g‘ is used and uqper- 
bounding the interval following the time p,(g’) E-nbd (vi ) by 
(2 j  + l)12. Again, by using Lemma 4.1 i) we get 

(4.30) 

Eo Term 2c 5 1 + 1’ + Ae-” . (2j  + 1)l’ < m. 1 oc, 

O‘:OES(O‘) [ j = 1  

Now if B(6) is empty, then 
Term 2d = 0. (4.3 1) 

Otherwise, 

Term 2d = l{Gi = g, C2(@ is satisfied at Stage i} 
i>d:T,<n 

5 1 + 1{Gi = g, C2(B)b2 is satisfied at stage i} 

l{Gi = g, C2(B)b2a is satisfied at stage i} 

i>d:r ,<n 

= 1 + 
i > d : q  <n 

+ 1{G; = g ,  C2(8)b2b is satisfied at stage i} 
i>d:n <n 

5 2 + 1{G; = g ,  C2(13)b2b is satisfied at stage i} 
i > d : ~ ~  <n 

l{C2(0)b2b is satisfied at stage i} . 

(4.32) 

The first of the inequalities of (4.32) is obtained by noting 
g # g*(@ can be chosen only at the first instance when C2(0) is 
satisfied (in which case randomization is done) or when C2(O)b2 
is satisfied. The last of the inequalities of (4.32) results because 
the number of instances condition C2(O)b2a is satisfied is upper- 
bounded by one plus the square root of the number of instances 
C2(8)b2b is satisfied. 

To upperbound Eo Term 2d we use (4.32), Jensen’s inequal- 
ity, and the following fact. At each instance i when condition 
C2(O)b2b is satisfied, the choice of the control action G; E So is 
made by an independent randomization P(0). Then, 

+ (  i>_d:T,<n 1 

EO Term 2d 

5 2 + PO {C2(O)b2b is satisfied at stage i} . f ig (@ 
i>d:r,<n 

) Po {C2(8)b2b is satisfied at stage i} + (  i>d:s, <n 

5 2  +Pg(Wo[sup (1 5 i 5 n l W )  <Kn+1)1 

+(Eotsup (1 F i I nlh(e) 5 ~ n + 1 } 1 ) ~ ” .  (4.33) 

Using (4.15) we get 

lim supE8 Term 2dAog n 
n-+m 

Combining (4.19), (4.21)-(4.23), (4.25), (4.28), (4.30), 
(4.31), and (4.34) we get (4.17). Equation (4.18) follows eas- 

0 ily from (4.17) and (2.21). 
In view of Theorems 3.1 and 4.2, the adaptive control scheme 

6” that we constructed in Section IV-B is asymptotically efficient, 
i.e.. 

U 

Se 

.if B(0) is nonempty 
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IV. CONCLUSIONS 
In this paper we considered the problem of adaptive control of 

Markov chains. The optimality criterion used, namely minimizing 
the rate at which the loss increases is stronger than the average- 
reward-per-unit-time criterion. Multiarmed bandit problems with 
‘‘loss’’ as the optimality criterion is one class of stochastic adap- 
tive control problems that has previously been analyzed. There- 
fore, one way to proceed with our problem is to relate it to the 
multiarmed bandit problem, like it was done in [8] for the con- 
trolled i.i.d. process problem. The “translation scheme” and the 
“extended probability space” are crucial in allowing us to view 
the adaptive control of Markov chains as a multiarmed bandit 
problem. The stationary control laws correspond to the “arms,” 
and the sequence of states observed when any particular stationary 
control law is used are Markovian. The formulation then resem- 
bles that of the multiarmed bandit problem in [ 11, part 111. One 
very important difference between our problem and that of [ 1 11 is 
that the parametrization of the “arms” in our problem is not in- 
dependent. This difference is reflected in the lower bound on the 
loss we obtain in Section 111, and also needs to be kept in mind 
when designing an optimal scheme like the one of Section IV. 
The control scheme presented in Section IV has an intuitively 
appealing structure as it clearly specifies the conditions under 
which there is either only identification, or only control, or iden- 
tification and control, and treats optimally the conflict between 
learning and control. 
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