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On the Capacity of Channels with 
Unknown Interference 

MANJUNATH V. HEGDE, MEMBER, IEEE, WAYNE E. STARK, MEMBER, IEEE, 
AND DEMOSTHENIS TENEKETZIS, MEMBER, IEEE 

Ahtract -We model the process of communicating in the presence of 
interference, which is unknown or hostile, as a two-person zerwsum game 
with the communicator and the jammer as the players. The objective 
function we consider is the rate of reliable communication. The communi- 
cator’s strategies are encoders and distributions on a set of quantizers. The 
jammer’s strategies are distributions on the noise power subject to certain 
constraints. We consider various conditions on the jammer’s strategy set 
and on the communicator’s knowledge. For the case where the decoder is 
uninformed of the actual quantizer chosen we show that, from the commu- 
nicator’s perspective, the worst-case jamming strategy is a distribution 
concentrated on a finite number of points, thereby converting a functional 
optimization problem into a nonlinear programming problem. Moreover we 
are able to characterize the worst-case distributions by means of necessary 
and sufficient conditions which are easy to verify. For the case where the 
decoder is informed of the actual quantizer chosen we are able to demon- 
strate the existence of saddle-point strategies. The analysip is also seen to 
be valid for a number of situations where the jammer is adaptive. 

I. INTRODUCTION 

HE APPLICABILITY of game-theoretic models in T jamming situations is by now well established [3], [7], 
[18], [19], [21]-[23]. In this paper we formulate fairly 
general models for a number of jamming situations as 
two-person zero-sum games between the communicator 
and the jammer. We allow the jammer the choice of one of 
a set of noise distributions satisfying peak and average 
power constraints. By way of countermeasure the commu- 
nicator is allowed to randomize the input symbols as well 
as randomize the quantizer at the output side. We intend 
the analysis to be applicable to the performance of soft- 
decision decoding for jammed channels. 

Before describing the channel model we will use, we 
provide the motivation for considering the problem. Typi- 
cally, in a spread-spectrum channel the performance in 
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additive white Gaussian noise is identical to the perfor- 
mance of nonspread systems; namely, the bit error proba- 
bility decreases exponentially with the signal-to-noise ra- 
tio. However, when subject to worst-case partial-band or 
pulsed jamming (wherein power is concentrated in time or 
frequency to affect only a fraction of the symbols trans- 
mitted while allowing the remaining to be received “error- 
free”) the bit error probability of a spread-spectrum sys- 
tem decreases only inverse linearly with the signal-to-noise 
ratio. This is a significant degradation, typically on the 
order of 30-40 dB compared to an additive white 
Gaussian noise channel for a bit error probability on the 
order of lop5. 

To remedy this situation, most systems use some form of 
error-correction coding. As has been well-known in the 
communication field, hard-decision decoding requires 
roughly a 2-dB larger signal-to-noise ratio than soft-deci- 
sion decoding for the same error probability. Thus consid- 
erable interest has focused on soft-decision decoding. One 
problem that has been observed is that if a (soft) decoding 
algorithm designed for a nonjammed channel is used for a 
jammed channel, then the performance is extremely poor 
when the jamming strategy is optimized. One method for 
“overcoming” this difficulty is to assume the jamming 
noise has one of two distributions (usually one having zero 
variance called the “off” state and the other called the 
“on” state) and that the decoder knows when the jammer 
is ‘‘on’’ and when the jammer is “off.” Most systems 
analyses do not incorporate jamming strategies that affect 
the reliability of the side information (see, however, [24]). 

Thus there is considerable interest in decoding algo- 
rithms that do not assume side information and do not do 
hard-decision decoding. However, most of these algorithms 
still assume the jammer pulses between one of two levels. 
In this paper we investigate the case of a decoder that 
processes symbols from a finite alphabet (i.e., multilevel 
quantization) and where the only constraints on the jam- 
mer are average and peak power. We formulate the prob- 
lem as a game with two players. The jammer, whose 
strategy set consists of distributions on the power of the 
jamming noise, and the communicator, whose strategy set 
consists of encoders and distributions on the set of quan- 
tizers. The objective function is the rate of reliable commu- 
nication, with the communicator wishing to maximize the 
rate and the jammer seeking to minimize the rate. We first 
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show that this game is equivalent to a game with mutual 
information as the objective function and the communica- 
tor’s strategies replaced by distributions on the input to 
the channel and distributions on the quantizer selected. 
We look for worst-case jamming strategies and investigate 
when the game admits a saddle point. Other work done on 
an information-theoretic modeling of spread-spectrum sys- 
tems subject to jamming can be found in [6], [ l l ] ,  [U],  
[18], [21]-[23]. These papers, however, do not consider 
multilevel jamming and soft-decision decoding, both of 
which are considered in this paper. 

We now describe the basic setup of our problem and 
assumptions. After the model is described we will explain 
how the model applies to a frequency-hopped spread-spec- 
trum communication system. We consider a modulator 
that transmits one out of M symbols. T h s  transmitted 
symbol is denoted by the random variable X.  The received 
signal which has been corrupted by the jammer in some 
fashion is demodulated and quantized into one of L val- 
ues. To forbid the jammer from using knowledge of the 
quantizer in designing his worst-case strategy, we allow 
randomization of the quantizer over some given set of 
quantizers. Clearly, such randomization increases the size 
of the communicator’s strategy set. Thus we view this 
situation as a game with two players: the jammer and the 
communicator. The jammer selects the noise power in the 
channel, and the communicator chooses the encoder, the 
decoder, and the quantizer. The jammer can be thought of 
as modulating a generic noise variable by varying the 
power according to some distribution. The strategy set for 
the jammer is the set of all distributions on the power of 
the jamming noise subject to the given constraints on the 
peak and average power. 

We assume that the jamming strategy, while fixed for a 
whole codeword, is to choose independently the noise 
power in the channel from symbol to symbol. There are 
several reasons for using this model. First, since we are 
examining the performance of very long codes, we will not, 
for example, let the jammer pulse on for a whole codeword 
and then off for a whole codeword or equivalently jam the 
whole frequency band for a whole codeword. Second, a 
strategy that is used in many coded systems is interleaving. 
This, in effect, makes each of the encoders/decoders see a 
memoryless channel. Third, but not of lesser importance, 
since the point of the paper is to examine the multilevel 
jamming strategies and multilevel quantization strategies, 
we do not complicate the problem by including a jammer 
with memory. 

The strategy set for the communicator is the set of 
(block) encoders and decoders and distributions on quan- 
tizers. Let us denote by E a particular choice of encoder, 
decoder, and quantizer distribution, and let X denote the 
input of the channel. Furthermore, let P denote a distribu- 
tion on the input alphabet, G a distribution on the set of 
quantizers, F a distribution on the noise power chosen by 
the jammer, Y a random variable denoting the output of 
the quantizer, and I ( G ,  P; F )  the mutual information, 
I (X, Y ) ,  between X and Y under the choice of F, P ,  and 

G. The payoff we are interested in analyzing is the rate of 
reliable communication ( R  say) in this situation. The 
communicator wants to maximize it, and the jammer wants 
to minimize it. Thus the lower and the upper value of this 
game would be maxE min. R ( E ,  F ) ,  and min, maxE 
R( E ,  F ) ,  respectively. 

Consider the upper value of the game, min. maxE 
R( E , F ) .  From the channel coding theorem [8, theorem 
1.5, p. 1041 we see that for each choice of F, max. 
R ( E ,  F )  is max.,. Z(G, P; F ) ,  and so the upper value of 
the game is min, rnaxG,. Z(G, P ;  F ) .  

Now consider the lower value of the game, maxE min 
R ( E ,  F ) .  From the compound channel coding theorem 
[8, corollary 5.10, p. 1731 we see that this lower value is 
maxp,G min. Z(G, P; F ) .  

As a consequence of these observations, we recognize 
that we may equivalently view the situation as a two-per- 
son zero-sum game with the communicator and jammer as 
players, with the jammer’s strategy set being the set of 
distributions F (subject to some constraint), the communi- 
cator’s strategy set being the set of distributions ( P , G ) ,  
and with the mutual information Z(G, P ;  F )  being the 
payoff or objective function. 

Our basic model can be easily seen to fit a frequency-hop 
communication system in which the modulation uses an 
M-ary signal set, using say D dimensions where D I M  
(see the example in Section 11). The spread-spectrum band- 
width is divided into a large number of frequency slots. 
There are several ways that one can hop the modulated 
signal. One possibility is to have all of the M possible 
signals use the same pseudorandom hopping pattern. In 
this case the particular frequency slot used is independent 
of the data transmitted. Another possibility is to have M 
frequency hopping patterns, one for each data symbol. In 
this case the frequency slot used depends on which of the 
M data symbols is transmitted. The jammer can distribute 
his total power in any fashion over the whole set of 
frequency slots. However, the distribution the jammer 
chooses remains the same for the duration of the code- 
word. In the first type of hopping system the jammer may 
be able to add noise in either all or none of the signal 
dimensions. In the second case the appropriate model is 
for the noise added in each dimension to be independent. 
We will say more about these two cases when the model is 
described mathematically in Section 11. 

We now summarize the results obtained in this paper. 
For the general setup just described we show that the 
worst-case jamming strategy from the communicator’s per- 
spective is to pulse between a finite number of power 
levels. We also consider the case of random quantizing 
strategies where the demodulator output is quantized into 
a finite number of outputs by a randomized quantizer, i.e., 
the quantization thresholds are random. For the case of 
randomized quantizer thresholds we show that the optimal 
randomized quantizer can perform better than the nonran- 
domized quantizer and that from the jammer’s point of 
view the worst-case distribution of the quantizer thresholds 
is concentrated on a finite number of points. 
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The remainder of the paper is organized as follows. In 
Section I1 we define the models we will be considering and 
give examples for which our models apply. In Sections I11 
and IV we derive results concerning the worst-case jam- 
ming strategy and the optimal quantizer strategy for the 
cases where the decoder is uninformed about the actual 
quantizer chosen and informed about the actual quantizer 
chosen, respectively. Finally, in Section V we discuss our 
results and state our conclusions and extensions. 

11. CHANNEL MODELS 

In this section we describe the models we use in the 
subsequent analysis. In all cases we consider a modulator 
that transmits one out of M signals in D dimensions 
(D I M ) .  This transmitted signal is denoted by the ran- 
dom variable X.  The received signal which is corrupted by 
the jammer in some fashion is demodulated and quantized 
into one of L values. The received signal is denoted by the 
random variable Y .  

The general philosophy that we will use is that of game 
theory with the players being the jammer and the commu- 
nicator. The jamming strategies are distributions dF on D 
random variables, Z, ,  Z , ,  , Z,. These random variables 
represent the power of the jammer in each of the signal 
dimensions and are modeled as modulating a generic noise 
variable present in the channel. For example, if D =1 and 
N is a zero-mean unit-variance Gaussian random variable, 
then the jammer’s noise may be of the form Z,N. We note 
here that the distribution of the generic random variable N 
is not important (except for the constraints on the mean 
and variance), and all the results hold for any such random 
variable. The jammer has an average-power constraint and 
a peak-power constraint. More generally, the jammer is 
constrained by 

~ f ~ ~ , , z , , ~ ~ ~ , z , ~ d ~ ( z , , z , , ~ ~ ~ , ~ , )  S K J  (1) 

and 

O I Z J < b , ,  j= l , . . -  ,D ( 2 )  

where b, is the peak-power constraint and f( z,,. . . , z,) is 
some continuous functional of ( z,,. . . , z,). For average 
power constrained channels with no peak constraint we let 
6, become very large. The output of the demodulator is 
quantized into one of L values, say 0,1,.. e, L -1. The 
output of the quantizer, Y,  is also the output of the 
channel for coding. 

Before proceeding, we illustrate this model with an 
example. Consider a frequency-hop communication sys- 
tem. The modulated signal is one of two orthogonal tones, 
i.e., binary frequency shift keying (D = M = 2). X =  0 
corresponds to transmitting a tone in the first and X = 1 to 
transmitting a tone in the second dimension. Before trans- 
mission the modulated signal is hopped over a set of 4 
distinct frequencies. The signal is affected by a jammer 
with constraints on the total power and peak power. The 
jammer may distribute the total available power in any 

manner over the set of q frequency slots (subject to the 
constraints to be mentioned later). Let Wl, , be the (ran- 
dom) amount of jamming power in the ith frequency slot 
and j t h  signal dimension i = 1,. . a ,  q and j = 1,2. The 
actual noise in the ith frequency slot and j t h  dimension is 
N,W,,, where N, is the generic (unit variance) noise ran- 
dom variable in dimension j .  The received signal is the 
sum of the transmitted signal and the jamming signal. The 
frequency dehopper (which is synchronized to the trans- 
mitted hopping pattern) dehops the received signal, i.e., 
selects the appropriate hopping frequency slot for demodu- 
lation. Thus the output of the frequency dehopper is the 
modulated signal plus the jamming noise at the frequency 
slot chosen by the hopping pattern. Since the frequency 
hopper chooses each of the q frequency slots with proba- 
bility l/q, the noise power in dimension j at the input to 
the demodulator is Wl,J with probability l /q  for i =  
1,- . a ,  4 and j = 1,2. Thus Z, = Wl, , with probability l/q. 
In this example f(zl ,  z2 )  = (z:  + z ; ) /2 ,  KJ = 1 ,  and 6 ,  
and b,  are arbitrary constants greater than 1. The demodu- 
lator is a noncoherent matched filter which basically mea- 
sures the energy in each of the D = 2 signal dimensions 
and produces a vector ( R , ,  R , ) .  The conditional probabil- 
ity distribution of R, given ZJ = z, depends on zJ and on 
the distribution of N,. The output of the demodulator is 
quantized by a quantizer from the set Q of possible 
quantizers with, in t h s  example, four outputs. With Y 
denoting the output of the quantizer we write 

( 0 ,  r s 8  

( 3 ,  1 / 8 < r  

where r = R ; / R ?  and 8 is a number between 0 and 1. 
Thus by integrating the conditional distribution of the 
random variables R ,  and R ,  over the regions just defined 
we can determine the conditional probability transition 
matrix [ p ( y l x ,  8, z ) ]  for every z = (z , ,  z,) and 8. The 
interpretation of the quantizer is the following. Y =  0 
represents a transmitted symbol 0 received with high qual- 
ity, whereas Y = 1 represents a transmitted symbol 0 with 
low quality, etc. The quantizer is parameterized by 8 
which is between 0 and 1 (see Viterbi [26]). Examples for 
other types of quantizers and modulators are easy to find. 

The strategies for the communicator are to choose a 
distribution dG(f3) on 0, the random quantization thresh- 
olds and a distribution, d P ( x )  on the input alphabet. We 
will let Q be the parameter space for the quantizers and 
assume Q is some compact subset of R .  For each 
( z,,. . . , z D )  and 8 E Q there is a probability distribution 
on the output of the channel given the input of the 
channel: 

Pr{ Y =  y l x = x , 0 = 8 ,  Z,=z , ,  Z ,  = z 2 ;  . . ,  Z ,  = z D }  

= p ( y I x , 8 , ~ , , z * , . . . , z g ) .  (3) 

The foregoing model describes the input/output relation 
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of the channel for a particular symbol. In addition, we 
model the channel as being memoryless. 

We now introduce some notation. Let 

A 
B 
Q 

= (0,1;.., M-l},  input alphabet, 
= (0,l; . -, L - l}, output alphabet, 
quantizer parameter space (some compact 
subset of R ) ,  

p (  ylx,  8, z )  transition probability from x to y given 
8, z ,  

P y I x (  8, z )  corresponding stochastic matrix, 
p”,,(e’ 2) = [ P ( Y l X ,  8 , Z ) l ?  
= j,p(yIx, 8, z )  W Z ) .  

Z =(Z1;- . ,Z , ) ,  O I Z , I b , ,  

P“I x ( 8) 
We assume that 

1) 
2) 

p ( y ( x ,  8, z )  is continuous in z for all 8, x; 
p ( y J x ,  8, z )  is continuous in 8 for all x, z. 

Let S denote the set of all probability distributions on the 
Bore1 sets of K A  ( Z = ( Z ~ ; ~ ~ , Z ~ ) : ~ I Z ~ I ~ , } .  The mu- 
tual information between X and Y when they are related 
by the stochastic matrix PYIx(G, F )  is 

I ( G ,  p ;  F )  = I( p,lx(G, F ) )  

(4) 
where 

The performance measure we are interested in is the 
largest rate such that nearly error-free communication can 
be achieved, i.e., channel capacity. Another performance 
measure of interest is the channel cut-off rate R ,  (many 
researchers [15] believe thts to be a practical limit to the set 
of rates for which reliable communication is possible). 
Similar results to those in this paper can be derived with 
R ,  as the performance measure (see [13]). We consider two 
different information structures for the communicator: 

I) The decoder is unaware of the actual quantizer chosen 
but only knows the distribution d G ( 8 )  on the set of 
quantizers. The jammer knows only the set of quantizers 
but not the distribution d G ( 8 )  chosen by the communica- 
tor. He is also aware of the fact that the decoder does not 
know the actual quantizer chosen. 

11) The decoder knows the actual quantizer chosen. 
Again, the jammer knows only the set of quantizers. He 
also knows that the decoder is aware of the actual quan- 
tizer chosen. 

Case I is seen to apply to situations where, possibly for 
implementation reasons, the decoding is fixed and not 
altered with the specific quantizer chosen. It may also be 
viewed as worst case in the sense that the decoder’s knowl- 
edge of the specific quantizer and the utilization of such 
knowledge can only improve the communicator’s perfor- 

mance. When there is no randomization of the quantizer, 
i.e., the quantizer is fixed, Cases I and I1 are the same and 
our results for both cases apply. 

Several special jamming strategies are of interest because 
of their correspondence to physical problems. We will 
classify the cases as follows: 

A) arbitrary joint distribution on Z,, Z,; . -, Z,; 

C) one-dimensional jamming, i.e., at most one of the 
random variables Z, # 0; 

D) independent jamming, i.e., Z,, Z,, . . . , Z ,  are inde- 
pendent. 

Case B corresponds to the physical situation where the 
jammer is not able to place different amounts of power in 
different dimensions of the signal space of each slot but 
can place different amounts of power in different fre- 
quency slots. Case C corresponds to the case where only 
one of the dimensions of a slot can be jammed at once. 
Case D corresponds to a frequency-hop communication 
system with independent hopping for the different sym- 
bols. The standard game-theoretic description is given 
next. 

B) Z l = Z , =  ... = Z , = Z ;  

Communicator’s Perspective 

The communicator is interested in the maximum rate at 
which information can be reliably transmitted no matter 
what strategy the jammer employs. The communicator 
designs his system assuming the jammer will somehow find 
out the strategy he is using and then choose the worst 
possible distribution on the power levels. The largest such 
rate is 

max min Z(G, P ;  F )  
G . P  F 

where Z(G, P ;  F )  A Z ( X  Y )  and (dG,  d P )  is chosen by the 
communicator and dF is chosen-by the jammer. That this 
is the maximum rate of reliable transmission is well-known 
since what we are dealing with is a compound channel 
with a finite input alphabet and a finite output alphabet [8, 
pp. 172-1731. 

Jammer’s Perspective 

The jammer is interested in finding the minimum value 
of the rate so that information cannot be reliably transmit- 
ted at any higher rate no matter what strategy the commu- 
nicator employs. The jammer designs his system assuming 
the communicator will somehow find out the strategy he is 
using and then design the optimal communication system. 
The jammer attempts to minimize the rate above which 
reliable communication cannot occur. The smallest such 
rate is 

min max I ( G ,  P ;  F ) .  

That this is the smallest rate the jammer can guarantee is 
obvious because for each F the rate above which reliable 
communication is impossible is max,,, d P  I( G, P;  F ) .  

dF d G . d P  
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In Case I, no simplification of the mutual information 
occurs. However, in Case I1 the appropriate mutual infor- 
mation can be written as an expectation of the mutual 
information for a fixed 8: 

Z(G, P ;  F )  = E G ( Z ( O ,  P ;  F ) )  

where EG refers to taking expectations with respect to dG 
and I ( @ ,  P ;  F )  A Z ( X  YlO).  

In all of our analysis we assume that the jammer and the 
decoder/quantizer have complete information about the 
set of strategies available to each one of these so that no 
secret information is considered. As mentioned previously, 
the performance measure we consider is the largest rate 
such that reliable communication (in the sense of arbitrar- 
ily small error probability) is possible. 

We are now ready to state the results. In brief, our 
results show that when the decoder is informed of the 
quantization rule, then (under a compatibility assumption) 
there is a saddle-point in Cases A and B, i.e., the jammer’s 
rate and the communicator’s rate are equal (Theorem 5). 
However, when the decoder is not informed of the quanti- 
zation rule, then the jammer’s rate and the communicator’s 
rate may differ. The optimal distributions F from the 
communicator’s point of view and the G from the jammer’s 
point of view are finite dimensional (in all the Cases 
A,B,C, and D) (Theorem 1). This converts a functional 
optimization problem into a finite-dimensional nonlinear 
programming problem. 

111. CASE AI: DECODER UNINFORMED 

The communicator has to determine the distributions 
( d G (  e), d P ( x ) )  that maximize the amount of information 
Z(G, P ;  F )  transmitted. The jammer has to find the noise 
distribution dF( z )  to minimize the information received 
by the decoder. Thus the communicator’s goal is to achieve 

max min I ( G ,  P ;  F )  
d c ( e ) , d ~ ( ~ )  d ~ ( ~ )  

whereas the jammer wants to achieve 

min max I ( G , P ; F ) .  
d ~ (  2 ) m e  ), dp( =) 

In this section we show that for any choice of strategy 
by either player there is a simple characterization of the 
optimal reaction strategy of his opponent. 

Theorem 1: a) The jammer can achieve the minimum in 
maxdG(o),dp(x) mind,(,, I ( G ,  P ;  F )  with a distribution con- 
centrated at at most M( L - 1) + 2 points. 

b) The communicator can achieve the maximum in 
mindqz) maxdG(e),dP(x) Z(G, P; F )  with a distribution con- 
centrated at at most M (  L - 1) + 1 points. 

Discussion: Theorem la)  says that the communicator in 
trying to achieve rnax,,(,), d P ! x )  mindqZ) I ( G ,  P ;  F )  has to 
consider only reaction strategies of the jammer that have a 
finite number of points of support, i.e., for each 
(dG(  e), dP( x)) chosen by the communicator the worst-case 
jammer distribution may be assumed to be concentrated at 
a finite number of points and this number is bounded 

uniformly (in (dG(  e), d P ( x ) ) )  by M (  L - 1) + 2. It follows 
that for a fixed quantizer (i.e., no randomization of the 
quantization) the worst-case jammer is one who chooses 
such a finite-dimensional distribution. Similarly, Theorem 
lb)  says that the jammer may, in trying to achieve 
mind,(,, maxdGco,, d p ( x ) Z (  G ,  P ;  F ) ,  consider only finite- 
dimensional reaction strategies on the communicator’s part. 

To prove these results, we use the following facts: 1) the 
convexity and concavity properties of the mutual informa- 
tion function (it is convex in the channel transition matrix 
and concave in the input distribution), 2) the equivalence 
of weak convergence with Levy convergence in our situa- 
tion [13], a fact which we use to show the continuity of our 
objective function in the strategies as well as compactness 
of our strategy sets (this allows us to conclude that there is 
a worst-case jamming strategy and a best-case communica- 
tor strategy), and 3) Dubins’ theorem to demonstrate that 
the optimal reaction strategies are described by distribu- 
tions concentrated on a finite number of points. Dubins’ 
theorem allows the extreme points of certain convex sets to 
be written as finite linear combinations of extreme points 
of larger convex sets. (For an introduction to the use of 
Dubins’ theorem in information theory, see [25]. Some 
results concerning the Levy metric are contained in Ap- 
pendix 111.) 

Proof of Theorem 1: We prove part a) in detail. The 
modifications required to obtain part b) are straightfor- 
ward. We start by first proving two intermediate results, 
Lemmas 1 and 2. 

Lemma 1: Z(G, P ;  F )  is a Levy-continuous functional 
of dF( z )  for any fixed (dG( e), d P ( x ) ) .  

Proof: First we note that for every (&(e), 
d P ( x ) ) ,  Z(Fvl.r) is a convex function of Tylx [S, p. 501, i.e., 

I( flq& + (1 - O&) 5 aZ( T;lx) + (1 - & ) I (  P&), 
O s a l l  

and 

is a continuous function of z (since p ( y l x ,  8, z )  is continu- 
ous in z and p (  y lx ,  8 ,  z )  I 1, this follows from the domi- 
nated convergence theorem). Also 

Hence p ( y l x )  is a Levy-continuous functional of d F ( z ) ,  
and therefore FYI” is a Levy-continuous functional of 
dF( z ) .  

Now I ( G ,  P ;  F )  is a convex function of Tvlx, and hence 
it is continuous in the interior of the finite-dimensional set 
W of all stochastic matrices. (Thus Z(G, P ;  F )  is continu- 
ous at any point FYI, such that at least one row of p,,, is 
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not a one point distribution, i.e., TYlx is not deterministic.) 
Hence Z(G, P ;  F )  is a Levy-continuous function of d F ( z )  
for any fixed (dG( e ) ,  dP( x ) ) .  

Let S A set of all probability distributions on the Bore1 
subsets of K ,  and 

S' A d F ( z )  E S: /f( z )  dF( z )  = K J }  ( 5 )  ( 
be a hyperplane in S. 

in S'. 
Lemma 2: Z(G, P;  F )  achieves its maximum (minimum) 

Proof: We note that S is compact in the Levy topol- 
ogy [13, appendix C]. Also S' is a hyperplane in S which 
is closed (since dF( z) -+ /J( z )  dF( z) is Levy-continuous) 
in the Levy topology. Hence S', being a closed subset of a 
compact set, is itself (Levy) compact. 

Thus Lemma 1 asserts that for fixed ( d G ( 8 ) ,  dP(x)), 
I( G, P;  F )  is a Levy-continuous functional on the compact 
set S'. Hence it achieves its minimum (maximum) at some 
point d ~ * (  z )  E S'. 

The lemmas are now used to complete the proof of 
Theorem 1. From Lemma 2 we know that Z(G, P ; F )  
achieves its minimum in S'. Denote the corresponding 
?",x by 9yTx = [P*(Ylx>lt i.e., 

~ ~ x = / / p ( y l x , ~ , z ) d G ( ~ ) J F * ( z ) .  ( 6 )  
K Q  

Now consider the set 

dF( z ) E S' : / / p ( y J x ,  z ,  8 )  dG ( 8 )  dF( z ) 
K Q  

where B' = (0,l; . e ,  L -2}. The set A is the intersec- 
tion of S with M ( L  -1)+1 hyperplanes viz. S' and the 
M( L - 1) hyperplanes 

Furthermore, S is convex; S is linearly bounded (S being 
compact in a metric space is bounded, and hence its 
intersection with any line is bounded), and S being a 
compact subset of a metric space is closed and any line 1 
in the metric space is closed. Thus S is also linearly closed. 
Hence we have that S is a convex, linearly closed, and 
linearly bounded set. By Dubins' theorem [lo] we can 
conclude that since A is the intersection of S with M( L - 
1)  + 1 hyperplanes, every extreme point of A is a convex 
combination of M( L - 1) + 2 or fewer points of S. 

From our construction of A we know that Z(G, P; F )  is 
constant on A. Hence for fixed (dG(B) ,  d P ( x ) ) ,  Z(G, P;  F )  
assumes its minimum value at an extreme point of A also. 

Hence Z(G, P;  F )  assumes its minimum value at some 
point dF( z )  which is a convex combination of M( L - 1)  + 2 
or fewer extreme points of S. 

Since the extreme points of S are the one-point distribu- 
tions, we can finally assert that for each ( d G ( B ) , d P ( x ) )  
the jammer can achieve the minimum in 

max min I (G,  P ;  F )  
d G ( B ) . d P ( x )  d F ( r )  

with a distribution concentrated at M( L - 1) + 2 points. 
This concludes the proof of a). 

For channels that are symmetric for each 8 and z ,  i.e., 
p ( y l x , ,  z, 8 )  is some permutation of p ( y l x , ,  z ,  e ) ,  we see 
that the set A is actually the intersection of S with 
( L  - 1)  + 1 hyperplanes only and hence part a) of the 
theorem holds with ( L  - 1) + 2 = L + 1 instead of M( L - 
1)+2. For M-ary symmetric channels, i.e., channels with 
M inputs and M outputs and such that for each 8 and z ,  
p (y , lx , ,  Z ,  8 )  = 1 -  6 and p(yilx,,  z ,  8 )  = r / ( M  - I), i # j ,  
the bound on the number of points of support reduces 
to 3. 

For b) we note that the jammer wants to achieve 

min max I ( G , P ; F ) .  
d F ( z )  dG(B),dP(x) 

T h s  may be written as 

min max C ( G ,  F )  
d q r )  d q e )  

where C(G, F )  A maxdP(x)Z(G, P;  F ) .  
We note that, as in Lemma 1, for any fixed 

dF( z ) ,  C( G, F )  is a continuous functional of dG( 8 ) .  (Sim- 
ply note that - C(G, F ) ,  being the maximum of functions 
convex in cYJx, is also convex in T,,,, and proceed as 
before.) Using our hypothesis that p ( y l x ,  8 ,  z )  is continu- 
ous in 8 ,  we can show that mindq,) maxdC(B) C ( G ,  F )  can 
be achieved for any d F ( z )  by the decoder/quantizer with 
a distribution dG(8) that is concentrated at no more than 
M( L - 1) + 1 points. 

Again, for symmetric channels we note that part b) of 
the theorem holds with L instead of M ( L  - 1) + 1. For 
M-ary symmetric channels this number is 2. The number 
of points of support is one less than Case A as we have not 
imposed any constraints on the distributions dG(8) chosen 
by the quantizer. 

A. Necessary and Suflicient Conditions 

We now characterize the aforementioned finite- 
dimensional distributions by means of necessary and suffi- 
cient conditions. We first briefly introduce the appropriate 
definitions and results from optimization theory and then 
specialize them to our cases. 

Let !d be a convex set and f a function from !d into R .  
For some fixed xo, if for all x 

lim (9) 
f ( ( l - a ) x o +  Q I X ) - f f ( X * )  

LO a 

exists, f is said to be weakly differentiable at x o  and the 
foregoing limit is denoted by f,l,(x), the weak derivative at 



116 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 4. JULY 1989 

x,. I f f  is weakly differentiable in Q at x, for all x, in 0, 
f is said to be weakly differentiable in Q .  We now state an 
optimization theorem that follows from [14, p. 1781. 

Optimization Theorem: Let f be a continuous weakly 
differentiable concave map from a compact convex set to 
R .  Let 

C A  sup f ( x ) .  (10) 
X C O  

Then 1) C = max f (x )  = f ( x,) for some x, E 0; 2) a nec- 
essary and sufficient condition for f (xo)  = C is f i 0 ( x )  I 0 
for all x E Q .  

Constrained Optimization Theorem [14, p .  21 71: Let 0 
be a convex subset of a linear vector space and f and g 
concave functionals on 0 to R .  Assume there is an x1 E 0 
such that g(xl) < 0, and let 

C’Z sup f ( x ) .  (11) 
X € Q  

s(x) 5 0 

If C‘ is finite, then there exists a constant h 2 0 such that 

C ’ =  sup [ f (x) -Xg(x) ] .  (12) 
X € O  

Furthermore, if the supremum in the first equation is 
achieved by xo E 0 and g(x,) I 0, it is achieved by x, in 
the second equation and Xg(x,) = 0 [14, p. 2171. 

Now given any d G ( 8 )  and the power constraint we 
define 

U , ( K J , G )  SUP -Z(G, P ;  F )  (13) 
F E S  

h , i  KJ 

where h ,  A lK f ( z )  dF(z) .  To simplify notation, we define 
D :  S + R by D ( F )  = l K f ( z )  d F ( z ) -  K J .  Using the con- 
strained optimization theorem we will infer in Theorem 2 
that a nonnegative constant h = A(G, K J )  exists for D ( F )  
I 0 such that 

U , . ( G , K J ) =  SUP [ - Z ( G , P ; F ) - X D ( F ) ] .  (14) 
FES 

We now formulate necessary and sufficient conditions for 
the characterization of the optimal distributions of Theo- 
rem 1 in the following two theorems. 

Theorem 2: U,(G, K J )  is achieved by a distribution F, 
E S satisfying D( F )  I 0 and a necessary and sufficient 
condition for U,(G, K J )  = - I ( G ,  P ;  F,) is that for some 
constant X 2 0 

/ K [ - i ( z ; G , F o ) - h f ( z ) ]  d F ( z ) ~ - Z ( G , P ; F , ) - X K ,  

for all F E S where 
(15) 

i ( z ;  G ,  F,) A c p ( x ) p ( y l x ,  z )  
x.  y 

Proof: D : S + R is clearly linear, bounded, concave, 
continuous, and weakly differentiable in S with D;,( F2) = 

D( F2) - D( Fl). By choosing Fl as a distribution with unit 
mass appropriately, we can infer that D( Fl) < 0.  Next we 
show that Z(G, P ;  F )  is convex in F: 
I (  G ,  P ;  aF1 + (1 - a ) F 2 )  

= I ( ? ” I X ( G , a F , + ( 1 - a ) F 2 ) )  

1 = I (  /JQP (Ax ,  8 , z )  d G ( 8 )  (adF1 + (1 - a) dF2) 

= Z ( a ? v l x ( G ;  F 1 ) + ( l - a ) F y l x ( G ;  F2)) 

= I( a?;:,, + (1 - a) Fix) 
I az( c;Ix) + (1 - a ) z (  Fix) 

(by the convexity of I (  .) with respect to P v I x )  

= aZ( G ,  p ;  F,) + ( 1  - a) I (  G ,  P ;  F2). (16) 
Then since Q,(G,  K J )  is finite, we can infer from the 
constrained optimization theorem that there exists some 
constant h 2 0 such that U, = supF E [ - I( G, P ;  F )  - 

We now show that Z(G, P ;  F )  is weakly differentiable at 
all F E S. Let L ( a )  = Z(G, P ;  aFl +(1-  a)&). Since 
Z(G, P ;  F )  is convex in F, L ( a )  is convex in a. Therefore, 
( L (  a )  - L(O)) /a  is nondecreasing in a and bounded from 
below and thus lim, , ( L (  a) - L(O))/a exists. Further- 
more, we have the following. 

D (  F )I* 

Lemma 3: 

Z;,(G, P ;  F2)  = / i ( z ;  G ,  F,) d F 2 ( z ) -  I ( G ,  P ;  Fl). 

Proof of Lemma 3: See Appendix I. 

We now have that - I(  G ,  P ;  F )  - X D( F )  is concave, 
continuous, and weakly differentiable in F. Thus by the 
optimization theorem there is a distribution function F, E S 
such that U,( G ,  K J )  = - Z(G, P ;  F,) - X D( F,). The neces- 
sary and sufficient condition becomes 

- ZL0(G, P ;  F ) -  XD’,(F) I 0 for a l lF  ES (17) 
or 

iK[ - i ( z ;  G ,  Fo) - Xf(z)] d F ( z )  

- < - Z(G,  P ;  Fo)-  Ah,. (18) 

If h ,  < K j ,  the power constraint is trivial and the constant 
A is zero, i.e., D (  F,) < 0 but AD( F,) = 0. Thus the neces- 
sary and sufficient condition is established. 

From Theorem 1 we know that it is possible to find F, 
from the set of distributions with a €inite number of points 
of support. Finding such an Fo entails determining the set 
of points of increase as well as the amounts of increase of 
F, at those points. Let E,  denote the set of points of 
increase of F,. We now show the following. 

Theorem 3: Let F, be a probability distribution satisfy- 
ing the power constraint. Then F, acheves U , ( G ,  K J )  if 
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and only if for some A 2 0, mer, i.e. strategies such that 

a) min Z(G, P ;  F )  = max min Z(G, P ;  F )  (23)  
d F ( 2 )  d P ( x ) , d c ( e )  d ~ ( r )  

C1) 
- i ( z ; G , F , )  I - I ( G , P ; F , ) + X ( f ( z ) - K , ) ,  

and for all z E K 

for all z E E,. 

Proof: Sufficiency is clear because if both conditions 
1) and 2) hold, then the conditions of Theorem 2 hold. We 
show necessity. 

Assume that F, is “optimal,” but C1 is not true. Then 
there must exist some z ,  E K such that - i ( z ;  G ,  F,) > 
- Z( G ,  P;  F,) + A( f (  z )  - K,). Let Fl( z )  be a probability 
distribution with a unit increase at such a point zl E K. 
Then 

\J - i (  z ;  G ,  F,) - X f (  z ) ]  dF,( z )  > - Z(G,  P ;  F,) - XK, 

Proof: From Lemmas 1 and 2 we note that a) 
Z(G, P ;  F )  is lower semicontinuous in d F ( z )  for each 
( d G ( 8 ) ,  dP(x)), and b) there exists ( d G ( 8 ) ,  d P ( x ) )  such 
that Z(G, P ;  F )  is lower semicompact in dF(z ) .  Theorem 
4a) now follows from a fundamental existence theorem [2, 
p. 209, th. 11. Theorem 4b) follows in a similar way. 

B. The Remaining Cases 

Case BZ: With F ( z )  now recognized as a one-dimen- 
sional distribution, Theorems 1 and 2 are easily seen to be 
true. 

(19) 

which contradicts Theorem 2. Hence C1 must be true. 
Now assume that F, is “optimal,” but C2 is not true. 

Then since C1 is true, - i ( z ;  G ,  F,) < - I ( G ,  P;  Fo)+ 
X ( f ( z ) -  K,) for all x in E’, where E’ is some subset of 

Case CZ: We redefine S as follows: S = U:, L,, where 
L, is the space of product distributions such that 

P r ( Z , 2 0 )  2 0  

Pr(Z,=O) = I ,  j + i .  

E,  with positive measure, i.e., 

jEdFo( z ) = c > 0.  

Because dF,(z) = 1 - c and on E,  - E’ 

i ( z ; G , F o )  = Z ( G , P ; F , ) + X ( f ( z ) - K , )  

and 

we have 

- I (  G , P ;  F, ) - X KJ < - I (  G , P ; F, ) - X KJ 

i.e., a contradiction. Hence C2 must be true. 

By our previous arguments each L, is Levy compact, and 
hence so is S. Now the proofs of Theorem 1 and Theorem 

Case DI: We perform the analysis by fixing D - 1 of 
the D distributions dF1; . e ,  dF,. By minor modifications 
in the proof of Lemma 1 we see that Z ( X ,  Y )  is a Levy 
continuous functional of dr;](z) for each i. Defining S and 
S’ similarly, except that now both are spaces of distribu- 
tions of dc (z , )  instead of dF(z ) ,  we see that for each 
(dG( e) ,  d P ( x ) )  the jammer can achieve the minimum in 

(20) 2 follow as before. 

(21) 

max min I ( G ,  P; F )  
( d G (  8 ) .  d f  ( x ) )  dF( Z) = dFl( z,), d e (  2 2 ) .  . . . , dFD( z D )  

(25)  

with a distribution dr;] concentrated at no more than 
M (  L - 1) + 2 points. 

Since i is arbitrary, we can assert that the jammer can 
achieve the minimum in (16) with distributions dF,, i = 

1; -, D, each of whch is concentrated at no more than 
M( L - 1) + 2 points. Part b) of Theorem 1 and Theorem 2 
are easily seen to be true as stated. (22) 

IV. CASE AII: DECODER INFORMED 
Theorems 1 and 3 reduce the calculation of the distribu- 

tions describing the reaction strategies to finite-dimensional 
nonlinear programming problems. They can be used to 
simplify the search for conservative strategies which are 
optimal for either player. In Theorem 4 we assert the 
existence of conservative strategies for each player. 

We have an arbitrary joint distribution on Z,; . e ,  Z,. 
The jammer chooses d F ( z )  and knows that the decoder 
knows 8. The communicator chooses d G ( 8 )  and, further, 
the decoder knows 8 .  

In this case we make a “compatibility” assumption, that 
is, for every 8 and d F ( z )  the capacity-achieving input 

Theorem 4: For the game described in Case AI, there 
exists a conservative strategy (dG( e), d p ( x ) )  for the com- 
municator and a conservative strategy d F ( z )  for the jam- 

distribution d P ( x )  remains the same. 
While “compatibility” certainly restricts our model ap- 

plicability, we show by example that it is often a worst-case 
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assumption. For instance, we know 191 that if M = L and 
if the jammer’s strategy set is restricted so that for each 
distribution d F ( z )  and quantizer 8, Pr (errorlx} I z for 
every x, then the saddle-point strategy for the jammer is to 
choose a distribution such that 

and 

and the saddle-point strategy for the communicator is to 
choose a uniform distribution on the input alphabet. In 
our model this corresponds to choosing the canonical noise 
variables so that p (  ylx, 8 )  is a symmetric channel for each 
8. Such symmetry (and thereby “compatibility”) is ob- 
tained in a number of other situations as a saddle-point 
strategy. Under certain conditions, when we have convex 
constraints in the M noise variables affecting the M inputs 
of the channel which are invariant under any permutation 
of the M variables (i.e., a “symmetric” constraint), then 
the choice of a uniform distribution on the input and the 
choice of a symmetric channel are saddle-point strategies 
for the communicator and the jammer, respectively (see 
Appendix 11). To describe one more example, if we have M 
inputs and M outputs, 

Yi = ni ,  i = l , . . - , M , i #  j 

y,=A+n, ,  i = j  

where the n ,  are N(O,u,),  i = l , . . . ,  M independent ran- 
dom variables with the constraint CKlui  = c, then from 
arguments similar to those in Appendix I1 it can be seen 
that the saddle-point strategy is to choose ui = c / M  and a 
uniform distribution on the input. 

Utilization of the “compatibility” assumption allows us 
to write the problem for the communicator and jammer as 

min max E,( c( e ,  F ) )  
d F ( r )  d G ( 8 )  

and 
max min E , ( c ( e , F ) )  
dC(8)  dF((r) 

where C(8, F )  = maxd,(,) Z(8; F )  and I ( 8 ;  F )  = 

In this section we prove the existence of a saddle-point. 

Theorem 5: There exists a pair of distributions 

~ ( x ,  rle). 

The main result is stated in the following theorem. 

(dG*( e ) ,  dF*( z ) )  such that 

E , ( c ( e ,  F * ) )  I EG.(c(e,  F*))  I E,,(c(e, F ) )  

is clearly convex and compact. The set of all dG’s is also 
convex and compact. 

We note that for any fixed dF( z ) ,  C(8, F )  is a continu- 
ous function of 8: 

P ( Y l x , f l )  = / p ( Y l x , 8 , z )  K d F ( z )  

is by our earlier arguments a continuous function of 8. 
Hence !,,,(e) is a continuous function of 8. Also C(8, F )  
= C(Pylx(8)) ,  and we know that C(PyI,(8)) is convex in 
Py,,( 8 ) .  Therefore, for every 8 E Q such that Pyl,(8) is not 
deterministic, C( P,,,,( 8)) is a continuous function of 
Pyl,( 8). Hence for fixed dF(z) ,  C( 8, F )  = C( Py,,( 8 ) )  is a 
continuous function of 8 and so 

E G ( C ( f i ,  F ) )  = / C(8, F )  dG(6’) ( 2 6 )  
Q 

is a Levy continuous functional of dG(8) .  
Since EG(C(8, F ) )  is linear in dG(8) ,  it is also a con- 

cave function of dG(8) .  Next we note that C(8, F )  is 
convex in d F ( z )  for each 8 since C(8, F )  = C(!,,,(O)>. 
Hence 

c ( e , a F 1 + ( i - a ) F 2 )  

I &(e ,  F’) + (1 - .)c( 8 ,  F ~ )  o I a 11. 

Taking expectations with respect to G, 

C ( 8 , a F ’ + ( l - a ) F 2 ) d G ( 8 )  /e 
I / ~ a c ( e , F l ) + ( i - a ) c ( e , F 2 ) ) d c ( e ) .  

Therefore, 

E,( c( e,& + (1 - a ) ~ 2 ) )  

I a E G ( c ( e ,  F ~ ) )  +(I - a)E,(c(e, F ~ ) ) .  

Consequently, E,( C(8, F ) )  is a convex function in dF( z ) .  
Also E,(C(8, F ) )  is Levy continuous in dF(z) .  To 

prove this, it suffices to show that for any sequence F, 
converging to F in the Levy metric 

E G ( c ( e ,  F n ) )  F ) ) *  
Since convergence in the Levy metric is in our case 

equivalent to weak convergence [ 1 3 ,  appendix C], it suf- 
fices to show this for Fn S F. However, 

l imE,(C(k F,)) 

= lim P I  IQ C( 8 ,  F,) dG 

for all feasible dG(8) ,  dF(z) ,  i.e., (dG*(8) ,  dF*(z))  is a 
saddle-point for the game case AII. 

(by the dominated convergence theorem) 

= iQC( 8 ,  F )  dG 
Proof: The set of all feasible dF ’s, i.e., 

{ d F ( z ) : / f ( z ) d F ( z )  K I K , ) ,  O I Z i I b i  
(since C( 8 ,  F ) is Levy continuous in F ) 

= EG(C(8 ,  F ) )  
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which proves Levy continuity in dF(z) .  From these prop- 
erties of the objective function and the convexity and 
compactness of the feasible strategy sets we recognize that 
the hypotheses of the Sion minimax theorem of game 
theory are satisfied [2, theorem 7, p. 2181. This concludes 
the proof of Theorem 3. 

We note that these saddle-point distributions need not 
have finite support. However, in this case we have an 
equilibrium, and with no further knowledge of each other’s 
choice of strategy, the jammer and the quantizer should be 
content utilizing dG*( 8) and dF*( z) .  

Using the optimization theorem and the constrained 
optimization theorem, we can derive necessary and suffi- 
cient conditions at these saddle points. Given any d G ( 8 )  
and the power constraint, we define 

U,( K,, G )  4 SUP - E,( C( 8 ,  F ) )  (27) 
F E S  

h F s  KJ 

and given any d F ( z )  we define 
- 
V, (F)  A sup E,(C(@, F ) )  (28) 

G G 9  

where 9 is the space of distributions on Q. Then we have 
the following. 

Theorem 6: The saddle-point strategies dF*, dG* satisfy 
the following inequalities: 

EG.( /( - I( z ;  8 ,  F*)-  A f ( z ) )  d F ( z ) )  

I E ~ * (  - c(e, F*))  - AK,  (29) 
for some A 2 0, for all F where 

t x z ;  8, F )  ii c P ( X ) P ( Y l X ,  z ,  6) 
x .  v 

J P ( Y l X ?  Z J )  d F ( 4  

C X P ( X ) J P ( Y l X ,  Z A  d F ( 4  
. log 

Also 

E G ( C ( 8 ,  F*))  I EG*(C(O, F*) )  (30) 
for all G. 

Proof: For any F, denote by DGo(EG(C(8, F ) ) )  the 
weak derivative of EG(C(8,  F ) )  at Go, and for any G 
denote by D,,,(E,(C(O, F ) ) )  the weak derivative of 
EG(C(8, F ) )  at F,. Using Lemma 3 and the dominated 
convergence theorem, we have 

&,@c(- C(87F2))  

= E G  - i ( z ; 8 , F 1 ) d F 2  + E G ( C ( 8 , F l ) )  (31) ( 1  
for any F,, F2. 

Also 

D,I(E,2(c(8? 0) = E G 2 ( C ( 6  a- EG1(C(8, F ) ) .  

Now letting F, = F*,G,=G* in (32) and using the 
constrained optimization theorem and the optimization 
theorem and the properties of EG( C( 8, F ) )  as in Theorem 
2, we have that a necessary and sufficient condition for F* 
to achieve U,( K,, G*) is 

E..( - J ( i ( z ; B ,  P ) - A f ( z ) ) d F ( z ) )  

IE,*(-C(B, F * ) ) - A K ,  (33) 

for some A 2 0, for all F. 
Letting F, = F*, G, = G* in the second equation gives us 

similarly that a necessary and sufficient condition to 
achieve E,( F*) is 

for all G. Since at a saddle-point R(K,,G*) and F.(F*) 
are simultaneously achleved, the theorem follows. 

EG(C(@,  F*)) 5 EG*(C(@,  F*))  (34) 

A .  The Remaining Cases 

Case BII: Theorem 3 holds with F ( z )  as a one-dimen- 
sional distribution. 

Case CII: Although S is compact, it is not convex and 
so we cannot demonstrate that there is a saddle-point 
strategy. 

Case DII: Again, we have that E,(C(B, F ) )  is a Levy- 
continuous functional of d G ( 8 )  and is concave in dG(8) .  
Also EG(C(8, F ) )  is Levy continuous in (dF1(z); . ., 
dFD(z)).  However, EG(C(8, F,; . ., FD)) is not convex in 
(F,; . e ,  FD). Hence we cannot assert the existence of a 
saddle point in this case. 

B. Fixed Quantizer 

Before concluding this section we also point out that if 
we did not have randomized quantization, then without 
“compatibility” the game would have a saddle point where 
the jammer’s saddle-point distribution need be concen- 
trated at at most M (  L - 1) + 2 points. We summarize this 
in Theorem 7. 

Theorem 7: For any quantizer 8, there exists a pair of 

I (  8, P, F*) I I (  8, P*,  F*) s I( 8, P * ,  F )  ( 3 5 )  
for all feasible dP, dF. Moreover, dF*( z )  can be chosen to 
be concentrated at at most M (  L - 1) + 2 points, and nec- 
essary and sufficient conditions for dF*(z)  and dP*(x )  
are that for some A,, A, 2 0, 

- i ( z ; 8 ,  F * ) I - I ( ~ , P * , F * ) + A , ( ~ ( ~ ) - K , )  (36) 

distributions dP*(x) ,  dF*( z )  such that 

for all z E K and 

- i (  z ;  8, F*) = - I (  8, P*,  F*) + A,(  f( z )  - K , )  (37) 
for all z E E,, where i ( . ;  a ,  - )  is as defined in Theorem 2 
with G concentrated on 8. Also 

i x ( e ,  P*, F*) = A ,  (38)  
for all x 3 P * ( x )  > 0 and 

(32) I x ( 8 ,  P*, F*) I A, (39) 



780 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 4, JULY 1989 

for all x 3 P*(x)  = 0, where exists an N such that for all n > N 

Proof: From the proof of Theorem 5 we know that all 
we need to show is that Z(8, P ,  F )  is (Levy) continuous in 
dP(x). We show this by considering any sequence dP,(x) 
3 dP(x)  and showing Z(8, P,,, F )  -, Z(8, P ,  F ) .  Since x 
belongs to the finite set A ,  weak convergence is equivalent 
to convergence in any finite-dimensional metric. 

Now 

lZ(8,  P,,, F )  - I ( e ,  P ,  F )  I 

X 

X 

where 

X 

Again, since A is finite, we can say that for all 6 > 0 there 

for all x E A 

X 

(42) 
By the continuity of the log function we can say that for 
all z > 0 there exists a 6 > 0 such that 

I x  I 
The second term in (41) can also clearly be made I z for 
sufficiently large n. Thus the continuity of I(8, P ,  F )  with 
respect to P is confirmed, and the first part of the theorem 
follows. The bound on the number of points of support of 
dF* follows from Theorem la). The necessary and suffi- 
cient conditions are derived as before from Theorem 3 and 
well-known results on channel capacity [13, p. 911. 

V. CONCLUSION 

We have constructed fairly general channel models which 
are capable of representing a number of jamming situa- 
tions. The jammers we have considered have all been 
nonadaptive, and by using results from the compound 
channel, we were able to give operational significance to 
our minimax performance measures, i.e., we asserted the 
existence of encoders and decoders that can perform at 
arbitrarily low probabilities of error at rates close to our 
performance measures. Our analysis is clearly also applica- 
ble to many restrictions on the jammer's strategy set other 
than the ones we have considered. 

In the case where the decoder is uninformed (Case I) we 
have shown that the worst-case jammer strategy (as well as 
best communicator strategy) need only be one of the class 
of distributions with finite support. We have a bound on 
the number of these points of support in terms of the sizes 
of the input and the output alphabet. Thus we have 
reduced the computation of the worst-case jamming strate- 
gies to a finite-dimensional nonlinear programming prob- 
lem. Moreover we can characterize these distributions by 
necessary and sufficient conditions that are fairly easy to 
test. 

In cases where the decoder is informed, we reduce the 
communicator's strategy set (either by using the "compati- 
bility" assumption or by fixing a quantizer). In such in- 
stances, when we have convexity with respect to the jam- 
mer's strategy (as in cases AI1 and BII), we were able to 
demonstrate the existence of a saddle-point strategy. For 
the case of nonrandomized quantization we were further 
able to characterize these saddle-point strategies. 
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We reiterate that all the above presupposes nonadaptive 
jamming. The compound channel model which we use 

ate in this case. We can allow for more sophisticated 

strategies are allowed to depend on the previous (and 
present) channel inputs. The appropriate channel model to 
use then is that of the arbitrarily “star” varying channel 
( A * V C )  [8, p. 2331. This model generalizes the arbitrarily 
varying channel (AVC) and includes it as a special case. It 
is known that the rn-capacity (i.e., capacity with maximum 

the same as that of the corresponding AVC [8, p. 2321. 
This capacity is known for the case of binary output 
alphabet (and finite input alphabet) an4 equals 
rnax,,(,) min E 7 I (  X, Y )  where X and Y are the input 
and the output, respectively, W is_any channel chosen 

ProoJ It follows that 

indirectly by our choice of objective function is appropri- 

jammers if we incorporate the cases where the jammer’s 

F 2 )  = 

. [ ( 1 -  a )  dF, + cud41 dG( 8 ) )  

.log 

X 

- P ( x ) (  J J p ( r l x , z , e )  ~ F , ~ G ( O )  
probability of error over all the codewords) of the A*VC is x. y 

. log 

from the set of channels W ,  and @ is the row-convex 
closure of W [8]. In our case the jammer’s strategy set is 
already row-convex closed and hence the appropriate pro- 
grams would be a) for the communicator 

Denoting j P ( Y l x ,  z , e )  &(e) by P ( Y l x ,  z ) ,  

I;,(G; F , )  = lim - C P ( X ) / P ( Y I X ,  z ) [ ( l -  a )  d ~ ,  + ad41 
0 x . y  

J P ( Y l x d ( l - ~ )  4 +ad41 

‘I max min I ( G ,  F ) ,  
( dG( 0 ). dP( .x )) dF( z ) 

. loe and b) for the jammer 

min max Z(G, F )  
d ~ ( - )  ( d c ( e ) , w x ) )  

which is the same objective function as the one we have 
used. Similarly, in the case where the decoder is informed 
we would obtain the same objective functions. Thus all the 
results derived in the previous chapter for the case of 
mutual information can be extended to the case of the 
A*VC channel with binary output. This model may be 
viewed as a worst-case representation of adaptive jam- 
ming. Unfortunately, the rn-capacity of the A VC is as yet 
unknown for output sizes greater than 2. On the other 
hand, the a-capacity of the AVC (i.e., the capacity with 
average probability of error) is known to be either 0 or else 
maxdP(,, min E 9 I (  X Y )  where @ is the convex closure 
of the set W to which W belongs [8, p. 2141. (In [9] a 
necessary and sufficient computable condition is given for 
determining if the capacity is positive.) Since in our model 
the set of channels is convex as well as row-convex, the 
a-capacity is known to be greater than 0 if and only if the 
m-capacity is greater than 0 [l]. Thus with average proba- 
bility of error, whenever the jammer’s strategy set is such 
that he cannot force the capacity to be 0, then all the 
results of the preceding chapter extend to the case of the 
A*VC channel. 

APPENDIX I 
Lemma 3: We have 

where 

= a  + h(say) 
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By choosing a sequence a,, $0 and using weak convergence of 
(1 - a,,)dF, + a,,d& to dF, 

a = J i ( z ; G , F , ) d F - - I ( C ;  F,) 

1 a )  dF, + ad&] 

where 

After some algebraic manipulation it can be shown that b ---* 0 as 
aJO. 

APPENDIX I1 

Here we consider a communication game with two players, 
player A who chooses an input distribution r on the M-ary input 
alphabet, and player B who chooses the M x L transition proba- 
bility matrix. Let X and Y denote the input and output random 
variables, respectively, and let n, denote the distribution of the 
random variable associated with the conditional density p (  ylx,). 
Let the set of all feasible i i ’ s  ( = ( n , ;  . ., n M ) )  be compact. The 
channel p ( y l x )  is a function of ii( = ( n , ;  . ., n M ) ) .  Assume that 
function is linear and that for a choice of n, = n, i = 1,. . . , M the 
channel chosen is symmetric. Let I ( r ,  i i )  2 I (  X; Y )  when A’s 
choice is r and B’s choice is si. Let n,;  . ., n M  be constrained by 
f , ( n , ; . . , n , ) I c , , i = l ; . . , c ,  where f, is a convex symmetric 
function of n , ;  . ., n M ,  i.e., f, is invariant under any permutation 
of n,; . ., n M .  Then a saddle-point strategy exists for both play- 
ers. For player A it is to choose a uniform distribution on the 

input. For player B it is to choose all the components of ii equal; 
that is, there exists ii* with all its components equal such that 

I (  r ,  E* )  5 I (  r*,  ii*) I I (  r*,  E )  

where r* corresponds to the uniform input distribution. 

Proof: Step 1: I ( r ,  E* )  I I (r* ,  E*). This follows from the 
fact that the mutual information between the input and the 
output of a symmetric channel is maximized by the uniform 
distribution. 

Step 2: I (  r*, E * )  I I ( r* ,  i i) .  Since I (  X, Y )  is a convex function 
of p(y lx ) ,  which is linear in i i ,  I ( r ,  i i )  is convex in si. Moreover, 
given the form of the constraints, the set of feasible i i ’ s  is a 
convex set. 

Now for any E > 0, let inf I (r* ,  2 )  + E be achieved at some 
ii, # ii*. Then we show I (r* ,  i i*) I I ( r * ,  SI), proving that the 
minimum is also achieved at E*. The use of a uniform distribu- 
tion on the input and the symmetry of the constraints implies 
that for any permutation of ii,(ii,” say) we have a new channel 
p*(y lx)  which involves just a relabeling of the inputs of the 
original channel. The mutual information I ( r * , i i l )  is equal to 
I( r*, E,“). Now consider all the M !  permutations of ii, = si,“: a E T 
(not all the permutations are distinct, but this does not matter). 
Take the convex combination l / M ! X a E  = ii, (say). Every 
component of si, is equal to l / M ! X ~ n , , .  Also from the convex- 
ity of I ( r * ,  i i )  w.r.t. ii we know that 

Therefore, 
I (  r* ,  i i , )  I I (  r*,  El) 

and hence inf I (  r*, i i )  + E is achieved at ii, too. The result follows 
from the observation that I ( r * ,  i i )  is concave in r.  

APPENDIX I11 

We append here a collection of results (without proof) on the 
Levy metric and topology which are utilized in various parts of 
the paper. The proofs may all be found in [13, appendices 
A, B, Cl. 

Definition: I :  The Levy metric on the space of all D-dimen- 
sional distributions of K is defined as 
d( F ,  G) = inf { h :  F( x, - h ,  x2 - h ;  . ., xD - h )  - h 

I G(x, ;  .., X ” )  

- < F( X ,  + h’; . ., X” + h )  + h ,  
for d l  ( x1 ,. . . , x D ) }  

where F and G are any D-dimensional distributions on K and 
(x,, .  . . , x ” )  E K ” .  It is easy to verify that d( F, G) satisfies the 
three properties of a metric: 

1) d(F,G)>Oand =O,ifandonlyif F = C ;  

3) d( F, H )  5 d( F, C )  + d ( G ,  H )  for any D-dimensional dis- 
tributions F,G,  and H. 

Definition: 2: A sequence of distribution functions F;, on RD 
is said to converge weakly to F if and only if for any bounded 
continuous function f( X) defined on R” (where X is ( x,, . . . , x”)) 

2) ( F , G )  = 4 G ,  F); 

This kind of convergence is written 6,s F. 
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Theorem: With F and F,, F2, . . . denoting distribution func- 
= (XI, X2;  . ., X,) such that t ,  I 

-+ F at every point X which is a continuity point of the 

tions of the random vector 
X, I U,, the following are equivalent: 

1) 
distribution F( X); 

2 )  44, ,  F )  -+ 0; 
3) 4, F. 

This theorem demonstrates the equivalence (in our situation) 
of weak convergence with Levy convergence, i.e., convergence in 
the Levy metric. We utilize this in showing the continuity of our 
objective functions in the strategies as well as in showing the 
compactness of our strategy sets. 

Theorem: The set S of distribution functions of random vari- 
ables x = ( X I  ,. . ., x,) such that 0 I X, I b, is compact in the 
space of distribution functions on x. 

This theorem demonstrates the compactness of our two strat- 
egy sets, allowing us to infer that there is a worst-case jamming 
strategy and a best-case communicator strategy. 
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