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Abstract: Certainty equivalence control with forcing has been 
shown to be optimal for several stochastic adaptive control 
problems with the average cost per unit time criterion. Re- 
cently researchers have started looking at stochastic adaptive 
control problems with a view to minimizing the rate of increase 
of the learning loss. This criterion is stronger than the average 
cost per unit time criterion. Certainty equivalence control with 
forcing does not usually suffice for the learning loss criterion 
and one has to develop fairly complicated schemes in order to 
achieve optimality. The objective of this paper is to see how 
well one might be able to do with a certainty-equivalence-con- 
trol-with-forcing type of scheme. In particular we construct a 
class of such schemes whose learning loss is O((log n) 1+8) for 
8 > 0, whereas optimal schemes typically have a O(log n) 
learning loss. 

Keywords: Stochastic adaptive control; certainty equivalence 
control with forcing; learning loss; multi-armed bandits; 
Markov chains. 

1. Introduction 

Stochastic adaptive control problems can 
roughly be described as follows: There is a sto- 
chastic dynamic system whose evolution over time 
can be influenced by (causally) choosing certain 
control variables at each time. This choice has to 
be made so as to optimize the system behaviour 
with respect to some cost criterion. The exact 
dynamics of the system or the probabilities 
governing them are unknown, but are known to 
belong to some large parametric family. Therefore, 
the choice of the control variables over time can- 
not be based on the knowledge of the exact system 

model (parameter). A common sense approach to 
stochastic adaptive optimization problems is the 
so-called certainty equivalence control (cf. [8,9]). At 
each stage, the unknown system parameter is 
estimated, and assuming that one knows how to 
control the system if the true parameter were 
known, one chooses a control action as if the 
estimated parameter is the true one. A major 
drawback of the above mentioned approach is 
that it sometimes leads to the closed-loop identi- 
fication problem, i.e., one mistakenly gets locked 
on to a false parameter. This happens when there 
is a conflict between learning and control. One 
way to deal with the closed-loop identification 
problem is to use forcing controls regularly at 
some well spread out times which are determined 
a priori. Forcing controls are control actions that 
are different from those of the certainty equiv- 
alence control; the forcing control probes the sys- 
tem and forces one to get out of false locks. The 
certainty equivalence control with forcing strategy is 
optimal when one is dealing with stochastic adap- 
tive optimization problems with the average-cost- 
per-unit-time criterion. Such a strategy was first 
proposed by Robbins [12] in the context of multi- 
armed bandit problems, and was later used in the 
context of more general stochastic adaptive con- 
trol problems; see [8, Chapter 12; 9] and refer- 
ences therein for a detailed description of stochas- 
tic adaptive control with the average-cost-per- 
unit-time criterion. 

Recently researchers have attempted to mini- 
mize the precise rate of increase of the learning 
loss, or regret, or loss, i.e., the additional cost one 
incurs over time because of the inbuilt learning 
task in stochastic adaptive control problems. (Note 
that optimality with respect to the average-cost- 
per-unit-time criterion requires the learning loss to 
be just o(n).) Such a criterion was first used for 
the multi-armed bandit problem by Lai and Rob- 
bins [10,11]. Subsequently, Anantharam, Varaiya 
and Walrand [5,6], and Agrawal, Hegde and 
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Teneketzis [1,2] addressed various extensions of 
the Lai and Robbins formulations of the multi- 
armed bandit problem. More recently Agrawal, 
Teneketzis, and Anantharam [3,4] have studied 
more general stochastic adaptive optimization 
problems such as the adaptive control of i.i.d. 
processes and the adaptive control of Markov 
chains with a view to minimizing the rate of 
increase of the learning loss. 

The general approach taken in [1-6,10,11] pro- 
ceeds in the following steps: First the learning loss 
is interpreted in terms of some notion of experi- 
mentation. Then, a lower bound on the asymptotic 
rate of increase of the learning loss and the un- 
derlying idea of experimentation is developed. 
Afterwards, an adaptive control scheme is de- 
veloped by the following on-line procedure: Situa- 
tions in which there is no conflict between learn- 
ing and control, and ones in which there is, are 
differentiated. When there is a conflict between 
learning and control, the amount of information 
available and the amount of information required 
to resolve this conflict is quantified precisely. This 
is done by using upper confidence bounds in the 
multi-armed bandit problems, and likelihood ratios 
and time-varying thresholds in the controlled i.i.d. 
process and controlled Markov chain problems. 
The use of upper confidence bounds and likeli- 
hood ratios determine the appropriate times for 
experimention. Finally, an upper bound on the 
learning loss for the constructed adaptive control 
scheme is obtained; this upper bound equals the 
lower bound developed earlier, thereby establish- 
ing asymptotic efficiency of the constructed adap- 
tive control scheme. 

It is clear from the developments in [1-6,10,11] 
that in order for an adaptive control scheme to 
achieve the best possible performance it must de- 
termine its times for experimentation (or forcing) 
on-line and not a priori. Moreover, the schemes 
constructed in [1-6,10,11] are not only very com- 
plicated on that account, but also very sensitive to 
the parameter spaces they are designed for. This 
motivates us to go back and look at a simple 
strategy like certainty equivalence control with 
forcing and see how well we can do with it. In the 
studies so far [1-6,10,11] the optimal rate of ex- 
perimentation has been at most O(log n), thus it 
seems reasonable to believe that if the rate of 
experimentation or forcing in the certainty 
equivalence control with forcing scheme is fixed a 

priori to be slightly greater than O(log n), then we 
should be able to achieve a performance which is 
close to the optimal. This conjecture is the main 
focus of this paper. In particular, we construct a 
class of such schemes for the multi-armed bandit 
problem in Section 2 and for the adaptive control 
of Markov chains in Section 3. 

2. The multi-armed bandit problem 

Consider the following problem: There are p > 
2 arms. Successive plays of arm j ,  j = 1, 2 . . . . .  p, 
yield i,i.d, rewards with a common distribution 
function F( . ;  j ,  0) where F( . ;  -, -) is a known 
function and 0 is an unknown parameter  that 
belongs to a known parameter  space O. Assume 
that 

flxlF(dx; j, 0 ) < ~  

for all j = l ,  2 . . . . .  p,  and 0 ~ O .  An adaptive 
allocation rule q, consists of a sequence of 
{1, . . . ,  p }-valued random variables { ~n }n~l, indi- 
cating which arm has been selected for play at 
stage n on the basis of all the past actions and 
past observations. That  is, q,, is a function of only 
the past actions qh . . . .  , q~n-i and the past rewards 
X 1 . . . . .  Xn_ 1. Let 

L .= F. x, (2.1) 
i = l  

be the sum of rewards collected upto stage n. The 
problem is to find an adaptive allocation scheme 

which maximizes, in some sense, EoJ ~ as n ~ oc. 
It is easy to show using Wald's Lemrna (cf [11]) 

that 

P 

EoJ ~ = Y'~ •( j ,  O)EoT , ( j ) ,  (2.2) 
j = l  

where 

n 

T , ( j )  := Y' l { f f , = j }  (2.3) 
i=1 

is the number  of times arm j was used upto stage 
n, and 

t t ( j ,  O) :=  f F(dx; j ,  O) (2.4) 
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is the mean reward from arm j under the parame- 
ter 0. Let j*(O) denote the best arm, i.e., 

Ix(j*(O), O)>_#(j, O) fora l l  j = a  . . . . .  p.  

(2.5) 

Clearly, if the true parameter 0 were known, then 
the optimal strategy would be to always use the 
arm j*(O), in which case 

EoJ . = n#( j*(O) ,  0). (2.6) 

In the absence of the knowledge of 0 it is desira- 
ble to approach this performance as closely as 
possible. For  this purpose define the regret (or 
learning loss) as 

R°(O) := n~( j*(O) ,  O) - EoJ. 
P 

= E 0 , ( j * ( o ) ,  
j = l  

(2.7) 
The objective is to design adaptive allocation 
schemes for which the regret increases slowly. 

2.1. The adaptive allocation scheme 

In this section we construct a class of certainty 
equivalence control with forcing type adaptive al- 
location schemes and subsequently we upper- 

b ~ bound its regret. Let ( ~)i=1 be a positive integer 
valued sequence to be specified later. Define the 
related sequence { a i )~=o as follows: 

a 0 .'= 0, (2.8a) 
i i 

ai :=  E (b~ +p) = Y'. b k + ip, i > 1. (2.8b) 
k = l  k = l  

At times ai+ j (1 < j < p ,  i>O), use (force) arm 
j.  Let ~ be the estimate for j*(O) based on the 
observations made at times ak + j  (1 < j  < p ,  0 < 
k < i). Use arm j7 from time ai_l  + p  + 1 to the 
time a~, i.e. for b~ times. Thus, 

~ = j ,  for n = a, + j ,  1 < j  < p ,  i > 0, (2.9a) 

q,~=~, for a~_l + p +  l < n < a  i, i> l. (2.9b) 

For the scheme constructed above we can up- 
perbound the expected number of times we use 
any arm as follows: For any time n > 1 let g(n) 
be the smallest integer such that ag(n ) >_ n. Then, 
for any arm j ,  

g(n) 

EaT,,(j)<_g(n)+ Y'~ Po(jT=j)b,. (2.10) 
i = 1  

Consequently, for any inferior arm j ~ j * (0), 

g(n) 

E o T , ( j )  < g(n) + Y~ Po(fi--kj*(O))b,. (2.11) 
i = 1  

Notice that so far we haven't specified the rules ^ 
for choosing Ji, i > 0, as well as the sequence 
{b,}i~ 1 which determines the forcing instants. 
These can now be determined as follows: To 
choose j,, i > 0, first compute the sample mean, 

~ j i _  ~ 1 i - 1  
7 y" Xa*+J' (2.12) 

k = 0  

for each arm j ,  based on the rewards collected 
from that arm during the time instants forcing is ^ 
used. Then, choose Ji, i > 0, to be the arm with the 
largest sample mean, i.e., 

S j ] i  ~-- Sji for all j = 1 . . . .  , p. (2.13) 

Let {bi)~°=l be given by 

b i := [exp(?/(l+8))], for any 8 > 0, (2.14) 

where [x] denotes the largest integer that is smaller 
than or equal to x. Then for the above scheme we 
have the following result: 

Theorem 2.1. Assume that 

f e x p ( t x ) F ( d x ;  j ,  O) < 

for all t ~ R, j = 1, 2 . . . .  , p, and 0 ~ O. Then, for 
the above scheme, for any inferior arm j ~ j * (0), 

E0r.(j) _< O((log n) l+ ' )  (2.15) 

Consequently, 

Rn( 0 ) _~< O((log n )1 +6). (2.16) 

Proof. From the above assumption on F(.  : -, .) it 
follows (cf. [7], Theorem I1.4.1) from the theory of 
large deviations that 

P 0 ( ~ , ~  ( ~ ( j ,  0 ) - r ,  # ( J ,  0) + e ) )  

< A ( j ,  O, e) e x p ( - a ( j ,  0, e)i), (2.17) 

for all e > 0 ,  j = l , . . . , p ,  0 ~ O ,  for some 
A(j ,  O, e)>O, a(j ,  O, e ) > 0 .  
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Choose e such that # ( j  * (0), O) - a >/~ ( j ,  O) 
+ e for all j ~:j*(O). Then it follows that 

Po( ~--/:j*( O)) 

<- Po(~i ~ (/~(J, 0) - e, / t ( j ,  0) + e) 

for some j )  

P 

< ~ A( j ,  O, e) e x p ( - a ( j ,  O, e)i)  
j = l  

<A(O, e ) e x p ( - a ( 0 ,  e)i) (2.18) 

for some A( O, e) > O, ct( O, e) > O. 
Thus, 

g(n) 

Y'~ Po(.£*j*(O))b~ 
i = 1  

g(n) 

< Y'~ A(O, e) e x p ( - a ( 0 ,  e)i)[exp(il/(i+~))] 
i=1  

< ~., A(O, e) e x p ( - a ( 0 ,  e)i) exp(i '/(1+")) 
i = 1  

= K(O) (say) < oo. (2.19) 

Now, by definition, g(n) is the smallest integer 
such that 

g(n) 

ag(n)= E b i + g ( n ) p > n "  
i = 1  

Thus, 

g(n)-I 

E 
i=1  

b , + ( g ( n ) - l ) p < n .  

So for n > al, 

bg(n)- I "( Fl 

e x p ( ( g ( n ) -  1) 1/(1+~,) < n 

=~ (g(n)  - 1) ' / ( '+ ' )  < log n 

= g ( n )  < (log n)  1+8 + 1. 

Note that for 1 < n < al, 

g(n) = 1 < (log n) 1+8 + 1. 

(2.20) 

Thus, for n > 1, 

g(n) < (log n) 1+8 + 1. 

By (2.11), (2.19) and (2.20), 

Eorn(j) <_ O((log n) l+~) ,  

and consequently by (2.7), 

R,(O) <_ O((log n)l+~). [] 

Thus we have constructed a class of adaptive 
allocation schemes, such that for any given 3 > 0 
we have a scheme whose regret is O((log n)l+8). 
In the next section we extend these results to the 
more general setting of controlled Markov chains. 

3. Adaptive control of Markov chains 

Consider a stochastic system described by a 
controlled Markov chain on the state space W, 
with control set q/, transition probability matrix 

P ( u , O ) : = ( P ( x ,  y; u ,O) lx ,  y ~ X  } (3.1) 

and initial probability mass function 

p(O).'= { p ( x ;  0 ) I x ~ X } .  (3.2) 

The parameter 0 is unknown, but belongs to a 
known set O. Assume that X and q/ are finite. 
Furthermore, assume that for every stationary 
control law g: X ~  ~/, 

P g ( O ) : = ( P ( x , y ; g ( x ) , O ) l x ,  y ~ X  } (3.3) 

is irreducible and aperiodic for all 0 ~ O. Let 

7rg(0) := (rr~(x;  0 ) I x ~ X }  (3.4) 

be the stationary distribution corresponding to 
Pg(O). Let r ( X  i, U,) represent the one-step reward 
at time i, where r :  X ×  q / ~ ,  and define 

n--1 

J , :=  Y'~ r (X, ,  U,), (3.5) 
i = 0  

the total reward at time n, as the sum of one-step 
rewards up to time n. 

Our objective is to find an adaptive control 
scheme "~ which maximizes, in some sense, EoJ . 
as n--, ~ .  

As a result of a ' translation scheme' developed 
in [4], we can approximately express EoJ,, in terms 
of the expected number of times each of the 
stationary control laws g is used up to time n, and 
the expected one-step reward /~g(0) under the 
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invariant distribution corresponding to each sta- 
tionary control law g as follows: 

I EoJ~- E t~(O)Eo Tg < k ' ,  (3.6) 
g~C~ 

where k'  is independent of n, 

#g(o) := ]~ ~rg(x; O)r(x,  g ( x ) ) ,  (3.7) 

and f¢ is the set of stationary control laws. Let 

g*(O) := arg max( t tg (O)) .  
g ~ f ¢  

Thus, if we knew the true parameter  the control 
scheme g~ = g*(O) gives the optimal reward (upto 
a constant) for all n, and for this scheme 

- I K' .  EoJ. 

In the absence of the knowledge of the true 
parameter  it is desirable to approach this perfor- 
mance as closely as possible. For this purpose 
define the loss associated with an adaptive control 
scheme , / b y  

L , (  O ) := nl~g*t°)( O ) - EoJ ..  (3.8) 

By (3.6) it follows that 

L,, (0)  - s s~ff, o (~¢_~,,/s,g',O,(8) - p,s(O))EoT d 

< const. (3.9) 

Maximizing E0J  . is thus equivalent to minimizing 
the loss. More precisely we want to minimize the 
rate at which the loss increases with n (e.g. finite, 
logarithmic, linear etc.). In view of (3.9) the above 
problem is reduced to one of minimizing the rate 
at which E0T g increases for g ~ ~¢, g ~ g*(O). 

3.1. The adaptive control scheme 

In this section we construct a class of certainty 
equivalence control with forcing type adaptive con- 
trol schemes and subsequently we upperbound its 
loss. Let x 0 ~ Y" be an arbitrary but fixed state. 
Define the ( ~ = o ( X 0 ,  U 0, X 1 . . . . .  Xn_l, U,_I, 
X~)}-stopping times z0, "q . . . .  by 

. rm:=in f (n>~ , ,_ l lX ,=xo) ,  m >  l,  

and *0 = 0. The control scheme we construct choo- 
ses a stationary control law G i at times ~'i, i > 0, 
adaptively on the basis of all the past observations 
and past actions, and uses this control law till 
T~+ 1 - 1 respectively. That  is, over each recurrence 
interval marked by the state x 0 we use the same 
control law which is chosen adaptively at the 
beginning of the corresponding block. With this in 
mind we now describe how the choice of control 
laws is made at the beginning of each block. From 
now on we shall refer to the actual time as time 
and the reccurrence points as instances. Initially, 
i.e. at n = %  = 0, choose a fixed but arbitrary 
control law Go and use it till time ~'1- 1. By 
thinking of stationary control laws as arms and the 
decision instances as the actual time in the multi- 
armed bandit problem, we can construct an adaptive 
control scheme along the same lines as the one for 
the multi-armed bandit problem. For the sake of 
notational convenience let f¢= (1 . . . . .  p } and let 
j*(O) correspond to g*(O). Let (bi)~= a be a 
positive integer valued sequence to be specified 
later. Define the related sequence { a~ }~=0 as fol- 
lows: 

a 0 .'= 0, (3.10a) 

i i 

a i:= Y] ( b ~ + p ) =  E bk +ip, i>_l .  (3.10b) 
k = l  k = l  

At ins tances  a i + j  (1 < j  < p ,  i > 0), use (force) 
arm j .  Let j~ be estimate for j * ( 6 )  based on the 
observations made at the recurrence intervals im- 
mediately following the instances a k + j  (1 < j  < 
p,  0 < k < i). Use arm ~ from instance ai_ 1 + p  

+ 1 to the instance ai, i.e., for b i instances. Thus, 

G , , - - j ,  for m = a i +j,  1 <j  <p,  i >_ O, (3.11a) 

Gm=fi, for ai_l + p +  l < m < a i ,  i> l. 
(3.11b) 

For the scheme constructed above we can up- 
perbound the expected number  of times we use 
any arm as follows: For  any time n let m be the 
largest integer such that ~',, < n and let g(m) be 
the smallest integer such that ag(m) > m. Note  that 
m + 1 is a stopping time of { r, ) ~  0. Then, for any 
arm j ,  

Tn(J) < ~ l(G1 =J)(~' t+l  -- ~',). 
/ = 0  
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Thus, 

Eor,(j  ) < E 0 ~ 1(at  = j ) ( r t + l  - rt) 
/ = 1  

• 1 ( / <  m + 1) + E0% 

= E Eo[Eo[I(Gt=j)I(I<m+ 1) 
l ~ 1  

• ("rl+l-rt)lo~,]] +Eo'rl 

= E Eo[I(Gt=j) I ( I<m+ 1) 
1 ~ 1  

"Eo[(r ,+l-r , ) l~, , l l+Eor,  

= E Eo[ l (G,=j ) l ( l<m+ 1)2g0Jx0] 
1 ~ 1  

+ Eor I 
m 

=~O{xoEo Y'. I(G, = j )  + Eor 1 (3.12) 
1 = 1  

where 

,.~OJxo = E~[inf( n > II X. = Xo) I Xo = Xo], 

(3.13) 

is the expected reccurrence time of the state x 0 
under the control law j. Let us now examine the 
term E7'=ll(Gt = j ) .  Clearly, by the construction of 
the scheme (Eq. (3.11)), it follows that 

m 

~, l ( G t = j ) < g ( m ) +  ~ l ( f  =j)bi. 
/ = 1  i = 1  

Thus, 

E0 ~ I ( G t - j )  
l =1  

< E0g(m) + ~ Pa(.£=j)bi. (3.14) 
i = 1  

Consequently, for any inferior arm j ~j*(O), 

E0 1(6, =j) 
l = 1  

<Eog(m)+ ~Po(.£4~j*(O))b,. (3.15) 
i = l  

Notice that as for the multi-armed bandit prob- 
lem, so far we haven't specified the rules for 
choosing ~, i > 0, as well as the sequence { b i ) ~o= 1 

which determines the forcing instances. These can 
now be determined as follows: To choose j~, i >_ 0, 
first compute the sample mean, 

i - - 1  "r".~*J+ I -- 1 

E E r(X,, j(Xt) ) 
k=O l=%k +1 

('1i = i-1 , (3.16) 

E - 
k = O  

for each arm j,  based on the rewards collected 
from that arm during the time forcing is used. 
Then choose £, i > 0 ,  to be the arm with the 
largest sample mean, i.e., 

~',i > ~i for all j = 1 . . . . .  p. (3.17) 

Let {b,)i~=l be given by 

b,:= [exp(il/(l+8))],  for any 8 > 0. (3.18) 

Then, for the above scheme we have the following 
result: 

Theorem 3.1. For the above scheme, for any infe- 
rior arm j 4= j * ( O ), 

EoT,(j) < O((log n) ~ +~). (3.19) 

Consequently, 

L,(O)  < O((log n) '  +a). (3.20) 

Proof. It follows from the theory or large devia- 
tions (cf. [7], Problem IX.6.12) that 

Po(~j.i~(~.tJ(o)-,F., /.LJ(O) -~- e)) 

<A(j ,  O, e) e x p ( - a ( j ,  0, e)i), (3.21) 

for all e > 0 ,  j = l  . . . . .  p, 0 ~ O ,  for some 
A(j, O, e) > O, a(j, O, e ) > 0 .  

Choose e such that ttJ*(°)(O) - e > t~J(O) + 
for all j ~ j *  (0). Then it follows that 

P ~ ( i * j *  (0) )  

< Po(~iq~ (IzJ(O) -~ ,  IzJ(O) + e) for some j )  

P 

< ~_, A( j ,  O, e) e x p ( - a ( j ,  0, e) i)  
j = l  

<A(O, E) e x p ( - a ( 0 ,  e)i)  (3.22) 

for some A( O, e) > O, a( O, e) > O. 
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Thus, 

n 

~_, Po( fk'-/:j*(O))bi 
i=1  

<_ ~ A(O, e) exp(-a(0, r)i)[exp(il/'l+8))] 
i=1  

< ~ A(O, e) e x p ( - a ( 0 ,  e) i )  exp(i  1/(1+8)) 
i=1  

= K(O)  (say) < oo. (3.23) 

Now, by definition, g ( m )  is the smallest integer 
such that 

g(m) 

ag(m) = ~_, bi + g ( m ) p  > m. 
i=1  

Hence, 

g ( m ) -  1 

y" b i + ( g ( m ) - l ) p < m .  
i = l  

So for m > a 1, 

b g ( m ) - I  < m 

e x p ( ( g ( m ) -  1) 1 /0+ ' ' )  < m 

( g ( m )  - 1) 1/0+8~ < log m 

g ( m )  < (log rn) 1+8 + 1 

1+8 
< (log n + 1. (3.24) 

Note that for 1 < m < a 1, 

g ( m )  = 1 < (log rn) 1+8 + 1 < (log n) 1+8 + 1. 

Thus, for n > 1, 

g ( m )  <_ (log n )  1+8 q- 1. 

By (3.12), (3.15), (3.23) and (3.24), 

EoTn( j )  _< O((log n)1+8), 

and consequently by (3.9), 

L , ( O ) < O ( ( l o g n ) a + a ) .  [] 

Thus we have constructed a class of adaptive 
control schemes, such that for any given 8 > 0 we 
have a scheme whose loss is O((log n)1+8). 

4. Conclusions 

We have constructed a certainty-equivalence- 
control-with-forcing type scheme which has the 
following features: (i) it is very simple; (ii) it 
achieves a performance that can be arbitrarily 
close to that of asymptotically efficient control 
schemes; and (iii) it can be used to analyze prob- 
lems for which it is very difficult to determine 
asymptotically efficient control schemes (e.g. the 
adaptive control problem of Section 3). 

There is one significant difference between the 
proposed scheme and the certainty-equivalence- 
with-forcing type schemes that have appeared so 
far in the literature (e.g. [8,9] and references 
therein). In the scheme proposed in this paper, the 
certainty-equivalence-control is based on the 
estimate of the optimal control law, whereas in all 
other schemes the certainty-equivalence-control is 
based on the estimate of the true parameter, that 
is, on the result of identification. Thus, in the 
scheme proposed in this paper, attention is en- 
tirely focused on the control part  of the adaptive 
optimization problem. 
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