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Abstract—Sequential problems in decentralized detection are
considered. One or more peripheral sensors can make repeated
noisy observations of a binary hypothesis on the state of the
environment. At each time, a peripheral sensor has to decide
whether to stop and send a final binary message to a coordinating
sensor/fusion center or to continue taking measurements. Every
time a peripheral sensor postpones its final message to the
coordinating sensor, it incurs a penalty. The coordinating sensor’s
operation is explored under two different scenarios. In the
first scenario, the coordinating sensor waits to receive the final
message from each of the peripheral sensors and then starts
taking measurements of its own. Every time the coordinating
sensor takes a measurement, it incurs a penalty/measurement
cost. The coordinating sensor is then faced with a stopping
problem on whether to stop and declare a decision on the
hypothesis or to continue taking measurements. In the second
scenario, the coordinating sensor starts taking measurements
from the beginning, without waiting for the final messages from
the peripheral sensors. It is then faced with a different stopping
problem. At any time, the coordinating sensor has to decide
whether to stop and declare a decision on the hypothesis or to
continue to take more measurements and wait for the peripheral
sensors to send their final message. Parametric characterization
of optimal policies for the peripheral and the coordinating sensors
are obtained under both scenarios. A sequential methodology for
finding the optimal policies is presented.

I. INTRODUCTION

Decentralized detection problems are motivated by appli-
cations in large scale decentralized systems such as sensor
networks and surveillance networks. In such networks, sensors
receive different information about the environment but share
a common objective, for example to detect the presence of
a target in a surveillance area or to detect the occurrence
of a fault in a power system. Sensors may be allowed to
communicate but they are constrained to exchange only a
limited amount of information because of energy constraints,
communication constraints, data storage and data processing
constraints etc.

Decentralized detection problems may be static or sequen-
tial. In static problems, sensors make a fixed number of
observations about a hypothesis on the state of the environment
which is modeled as a random variable H . Sensors may
transmit a single message (a quantized version of their obser-
vations) to a fusion center which makes a final decision on H .
Such problems have been extensively studied since their initial
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formulation in [1] (See the surveys in [2], [3] and references
therein). In most such formulations, it has been shown that
person-by-person optimal decision rules (as defined in [4])
for a binary hypothesis detection problem are characterized
by thresholds on the likelihood ratio (or equivalently on the
posterior belief on the hypothesis). Under certain conditions
such as large number of identical sensors, it has been shown
that it is optimal to use identical quantization rules at all
sensors ([5], [6]). A related information-theoretic formulation
with constraints on communication from a sensor to a fusion
center appears in [7].

In sequential problems, the number of observations taken
by the sensors is not fixed a priori. Two distinct scenarios
have been considered for sequential problems. In one scenario,
at each time instant local/peripheral sensors send a message
about their observations to a fusion center/coordinator. At each
time instant, the fusion center decides whether to receive more
messages (and incur more measurement costs) or to stop and
declare a decision on the hypothesis. Thus the fusion center is
faced with an optimal stopping problem whereas the peripheral
sensors are faced with a quantization problem. The case where
peripheral sensors can only use their current observation and
possibly all past transmissions of all sensors to decide what
message to send to the fusion center has been studied in [8].
Asymptotic results where the cost of taking a measurement
approaches zero or the probability of making a wrong decision
approaches zero have been found in the case when sensors
remember their past observations as well ([9], [10]).

A second scenario for sequential detection problems may
be motivated by situations where continuous communication
with a fusion center is too costly. For example, remote wireless
sensors with low energy budget may not be capable of continu-
ous communication with a fusion center. In this scenario, each
sensor locally decides when to stop taking more measurements
and only sends a final message to a fusion center. Each
sensor incurs an operational cost proportional to the number
of measurements it takes and/or a penalty for delaying its final
decision. Thus, in this scenario, each local/peripheral sensor
is faced with an optimal stopping problem. Several possible
cases can be considered in this scenario depending on what
the fusion center is allowed to do:

Case I: The fusion center waits to receive the final messages
from all sensors and then combines them according to a
fixed rule (say a majority rule) to produce a final decision
on the hypothesis. A version of this problem (called the
decentralized Wald problem) was formulated in [11] and it
was shown that at each time instant, optimal policies for
the peripheral sensors are described by two thresholds on
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their posterior beliefs. The computation of these thresholds
requires solution of two coupled sets of dynamic programming
equations. Similar results were obtained in a continuous time
setting in [12].

Case II: After receiving the final messages from all the
sensors, the fusion center has the option to make observations
of its own. It is possible that the fusion center has some
uncertainty about the hypothesis after receiving all sensor
messages possibly because of conflicting messages from dif-
ferent sensors. In such a situation, the fusion center may
choose to make its own observations. The fusion center then
has a stopping problem - it has to decide when to stop
taking observations and what final decision to make. Like the
sensors, the fusion center also incurs a penalty for delaying
its final decision. A cost depending on the final decision on
the hypothesis and the true value of the hypothesis is incurred
in the end.

Case III: In a sensor network, the role of fusion center
may be performed by one of the sensors itself. In this case,
the fusion center (that is, the coordinating sensor) is making
observations of its own from the beginning and receiving final
messages from other sensors. Like the peripheral sensors, the
coordinating sensor has a stopping problem. At any time,
the coordinating sensor uses its own observations and the
messages it has received so far to make a decision on whether
to stop and declare a final decision on the hypothesis or
continue to take more observations and wait for messages from
other sensors that have not yet sent a final message. As in Case
II, each sensor (peripheral sensors and the coordinating sensor)
incurs a penalty for delaying its final message/decision, and a
cost depending on the coordinating sensor’s final decision on
the hypothesis and the true value of the hypothesis is incurred
in the end.

The problems formulated in this paper are motivated by the
scenarios in Cases II and III above. We first consider a simple
two sensor (a peripheral and a coordinating sensor) version of
the problems in Case II and Case III and obtain a parametric
characterization of optimal policies. We prove that at each

time instant, an optimal policy of the peripheral sensor is
characterized by at most 4 thresholds on its posterior belief on
the hypothesis; an optimal policy of the coordinating sensor is
characterized by 2 thresholds (on its own posterior belief) that
depend on the messages received from the peripheral sensor.
This characterization differs from the classical two threshold
characterization found in the centralized and the decentralized
Wald problems ([13], [11]). A fundamental feature of our
problems in contrast to the problems in Case I is that peripheral
sensors convey information to the coordinating sensor not
only by the choice of the final message but also through
the time at which this message is sent. Thus, at times when
the peripheral sensor chooses not to send a decision, it still
conveys information to the fusion center who observes that
the final message was not sent at this time. This feature is
the main conceptual reason for the difference between our
parametric characterizations and the classical two-threshold
characterization.

Our parametric characterization significantly reduces the
complexity of finding optimal strategies. Instead of optimizing
over the space of policies (which are functions from observa-
tions to actions), the optimization can be restricted to space
of thresholds. The computation of globally optimal thresholds
is still a difficult problem. We present a sequential methodol-
ogy that decomposes the overall optimization problem into
several smaller problems that may be solved to determine
the optimal thresholds at each time instant. We then extend
our results to the general problems with multiple peripheral
sensors described in Cases II and III. We show that qualitative
properties of the optimal policies of the peripheral sensors
and the coordinating sensor are the same as in the two-sensor
problem.

We also extend our parametric characterizations to infinite
horizon problems. We show by an example that the expected
stationarity of optimal policies in infinite horizon problems
with stationary observation statistics does not hold in our
decentralized framework.

The rest of the paper is organized as follows. In Sec-
tion II, we formulate two versions of our problem with two
observers/sensors (corresponding to Cases II and III). We
obtain qualitative results on the nature of optimal policies
for the two sensors in Sections III and IV. We present a
sequential methodology for computing optimal policies in
Section V. In Section VI, we extend our qualitative results
to infinite horizon analogues of our problem. A generalization
to more than binary communication alphabet is presented in
Section VII. We extend our results to multiple sensor (more
than 2) problems in section VIII. Finally, we conclude in
Section IX.

Notation: Throughout this paper, X1:t refers to the sequence
X1, X2, .., Xt. Subscripts are used as time index and the
superscripts are used as the index of the sensor. We use capital
letters to denote random variable and the corresponding lower
case letters for their realizations. P (·) denotes probability of
an event and E(·) denotes expectation of a random variable;
for a collection of decision functions Γ, PΓ(·) and EΓ(·) are
used to indicate that the probability/expectation are defined for
the fixed choice of Γ.
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Fig. 2. Decentralized Detection with two observers

II. PROBLEM FORMULATION

A. The Model

Consider a binary hypothesis problem where the true hy-
pothesis is modeled as a random variable H taking values 0
or 1 with known prior probabilities:

P (H = 0) = p0; P (H = 1) = 1− p0

Consider two observers: Observer 1 (O1) and Observer 2 (O2).
We assume that each observer can make noisy observations
of the true hypothesis. Conditioned on the hypothesis H , the
following statements are assumed to be true:
1. The observation of the ith observer at time t, (Y it ) (tak-
ing values in the set Yi), either has a discrete distribution
(P it (.|H)) or admits a probability density function (f it (.|H)).
2. Observations of the ith observer at different time instants
are conditionally independent given H .
3. The observation sequences at the two observers are condi-
tionally independent given H .
Observer 1 observes the measurement process Y 1

t , t = 1, 2, ....
At any time t, after having observed the sequence of obser-
vations Y 1

1:t, observer 1 can decide either to stop and send a
binary message 0 or 1 to observer 2 or to postpone its decision
and get another measurement. Each time observer 1 postpones
its decision, a cost of c1 is incurred. (The cost c1 incorporates
the additional cost of taking a new measurement, the energy
cost of staying on for another time step and/or a penalty for
delaying the decision.) Note that observer 1 transmits only a
single final binary message (0 or 1) to observer 2.

The decision of observer 1 at time t is based on the entire
sequence of observations till that time, in other words, observer
1 has perfect recall. Thus, we have that

Z1
t = γ1

t (Y 1
1:t), (1)

where Z1
t is observer 1’s message at time t to observer 2 and

γ1
t is the decision-function used by O1 at time t. Z1

t belongs
to the set {0, 1, b}, where we use b for blank message, that
is, no transmission. The sequence of functions γ1

t , t = 1, 2, ...,
constitutes the policy of observer 1. Let τ1 be the stopping

time when observer sends a final message to observer 2, that
is,

τ1 = min{t : Z1
t ∈ {0, 1}} (2)

We allow two possibilities for the operation of observer 2.
Case A: In this case, observer 2 does not take any mea-
surements until it receives the final message from O1. After
receiving observer 1’s final message, observer 2 can decide
either to stop and declare a decision on the hypothesis or to
start taking measurements on its own. After observer 2 has
made k measurements (k = 1, 2, ...), it can decide to stop
and declare a final decision on the hypothesis or take a new
measurement. Each time observer 2 decides to take another
measurement it incurs a cost c2. Whenever observer 2 makes
a final decision U ∈ {0, 1} on the hypothesis, it incurs a cost
J(U,H). As in the case of observer 1, we assume observer 2
has perfect recall. Let U2

k ∈ {0, 1, N} be the decision made by
observer 2 after receiving τ1 messages (Z1

1:τ1) from observer
1 and subsequently making k observations (Y 2

1:k) of its own,
(where we use N for a null decision, that is, a decision to
continue taking measurements). Thus,

U2
k = γ2

k(Y 2
1:k, Z

1
1:τ1), (3)

for k = 0, 1, 2, . . .. (Note that after τ1, the time index k
starts from 0 for O2 where k = 0 means that O2 makes a
final decision without making any measurements of its own).
The message sequence Z1

1:τ1 is a sequence of τ1 − 1 blank
messages followed by Z1

τ1 = 0 or 1. The sequence of decision-
functions γ2

k, k = 0, 1, 2, ... constitutes the policy of observer
2. We define τ2 to be the number of measurements taken
by observer 2 before announcing its final decision on the
hypothesis, that is,

τ2 = min{k : U2
k ∈ {0, 1}} (4)

Case B: In this case, O2 starts taking measurements at time
t = 1 without waiting for O1 to send a final message. At time
t = 1, 2, . . . , we have the following time-ordering of the two
observers’ observations and decisions:

t + 1t

Y 2
t

U2
t

Y 1
t

Z1
t

Y 1
t+1

Fig. 3. Time ordering in Case B (Problem P2)

Thus, observer 2’s decision at time t can be described as:

U2
t = γ2

t (Y 2
1:t, Z

1
1:t) (5)

where U2
t ∈ {0, 1, N}. This decision is a function of the

observations made at O2 (Y 2
1:t) and the messages received from

O1 (Z1
1:t). The message sequence Z1

1:t could be a sequence of t
blank messages received from O1 or k blanks (k < t) followed
by a 0 or 1. Let τ2 be the stopping time when observer 2
announces its final decision on the hypothesis, that is,

τ2 = min{t : U2
t ∈ {0, 1}} (6)

Note that we allow O2 to declare a final decision without
getting the final message from O1. Also, O1 does not know
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whether O2 has stopped or not, that is, there is no feedback
from O2 to O1. As in Case A, a penalty of c2 is incurred every
time O2 decides to postpone its final decision and a terminal
cost of J(U,H) is incurred when O2 makes its final decision
U ∈ {0, 1}.

In both the cases above, we assume that the cost parameters
c1, c2 are finite positive numbers and J(U,H) is non-negative
and bounded by a finite constant L for all U and H . Moreover,
we assume that cost of an error in the final decision is more
than cost of a correct decision, that is, J(0, 1) > J(1, 1) and
J(1, 0) > J(0, 0). We can now formulate an optimization
problem for each of the two cases above.

1) Problem P1: We consider a finite horizon T 1 for ob-
server 1. That is, if the observer 1 has not sent its final message
till time t = T 1 − 1, it must do so at time T 1. In other
words, we require that τ1 ≤ T 1. Similarly for observer 2
described in Case A above, we require that it can at most
take T 2 measurements before declaring its final decision, that
is, τ2 ≤ T 2. The optimization problem is to select policies
Γ1 = (γ1

1 , γ
1
2 , ..., γ

1
T 1) and Γ2 = (γ2

0 , γ
2
1 , γ

2
2 , ..., γ

2
T 2) to

minimize

EΓ1,Γ2{c1τ1 + c2τ2 + J(U2
τ2 , H)} (7)

where τ1, τ2 and U2
k , k = 0, 1, . . . are defined by equations

(2), (3) and (4) above.
2) Problem P2: As in Problem P1, we have a finite horizon

T 1 for O1, that is, τ1 ≤ T 1 and a finite horizon T 2(≥ T 1) for
O2. O2’s operation is as described in Case B above. The op-
timization problem is to select policies Γ1 = (γ1

1 , γ
1
2 , ..., γ

1
T 1)

and Γ2 = (γ2
1 , γ

2
2 , ..., γ

2
T 2) to minimize

EΓ1,Γ2{c1τ1 + c2τ2 + J(U2
τ2 , H)} (8)

where τ1, τ2 and U2
t , t = 1, 2, . . . are defined by equations

(2), (5) and (6) above.

B. Features of the Problem

In both the problems formulated above, the two observers
share a common system objective given by equations (7) or
(8). The two observers, however, make decisions based on
different information. Thus, Problems P1 and P2 are team
problems. Moreover, since the actions of observer 1 influence
the information available to observer 2, these are dynamic team
problems [14]. Dynamic team problems are known to be hard
as they usually involve non-convex functional optimization
over the space of policies of the decision-makers. Finding
structural results for these problems is an important step
toward reducing the complexity of these problems. In the next
two sections, we establish qualitative properties of the optimal
policies of the two observers.

III. QUALITATIVE PROPERTIES OF OPTIMAL POLICIES FOR
OBSERVER O1

A. Information state for O1

Consider Problem P2 first. We first derive an information
state for O1. For that purpose, we define:

π1
t := P (H = 0|Y 1

1:t) (9)

The probability π1
t is observer 1’s belief on the hypothesis

based on its sequence of observations till time t. (For t = 0,
we have π1

0 = p0). The following result provides a character-
ization of O1’s optimal policy.

Theorem 1: For Problem P2, with an arbitrary but fixed
policy Γ2 of O2, there is an optimal policy for O1 of the
form:

Z1
t = γ1

t (π1
t ) (10)

for t = 1, 2, ..., T 1. In particular, if globally optimal policies
Γ1,∗,Γ2,∗ exist, then Γ1,∗ can be assumed to be of the from
in (10) without loss of optimality. Moreover, for a fixed Γ2,
the optimal policy of O1 can be determined by selecting
the minimizing option at each step of the following dynamic
program:

VT 1(π) := min{
EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

T 1 = π, Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0],

EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

T 1 = π, Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 1]} (11)

and for k = (T 1 − 1), ..., 2, 1,

Vk(π) := min{
EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

k = π, Z1
1:k−1 = b1:k−1, Z

1
k = 0],

EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

k = π, Z1
1:k−1 = b1:k−1, Z

1
k = 1],

c1 + EΓ2

[Vk+1(π1
k+1)|π1

k = π, Z1
1:k = b1:k]} (12)

where the superscript Γ2 in the expectation denotes that the
expectation is defined for a fixed choice of Γ2. (Z1

1:k = b1:k

denotes a sequence of k blank messages.)
Proof: See Appendix A.

The result of Theorem 1 can be intuitively explained as
follows. At any time t, if the observer 1 has not already
sent its final message, it has to choose between three choices
of action - send 0, 1 or b. In order to evaluate the expected
cost of sending a 0 or 1, O1 needs a belief on the state of
the environment, that is, a belief on H and a belief on the
information available to O2. Since O1 has not yet sent a final
message, the information at O2 consists of Z1

1:t−1 = b1:t−1,
the decision of O1 at time t (Z1

t ) and the observations that
O2 has made or may make in the future. Thus O1 needs to
form a belief on Y 2

1:T 2 , since the rest of O2’s information it
already knows. Now because of conditional independence of
observations at the two observers, it is sufficient to form a
belief on H to know the probabilities of Y 2

1:T 2 . Similarly, to
evaluate the cost of sending a b, O1 needs to form a belief
on O2’s information and what information O1 may obtain
by future measurements - Y 1

t+1:T 1 . Once again, conditional
independence of the observations made at different times given
H implies a belief on H is sufficient to evaluate the cost of
this action as well. These arguments indicate that the decisions
at O1 should be made based only on its belief on H , that is,
π1
t .
Corollary: Theorem 1 holds for O1 in Problem P1 also.
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Proof: This result can be obtained by following the steps
in Appendix A without any modifications.

An intuitive explanation of this result is as follows: In the
proof of Theorem 1, we fixed Γ2 to any arbitrary choice. In
particular, consider any policy of O2 that waits till it gets a
final decision from O1. After it receives the final message from
O1 at time τ1, it uses only observations made after τ1 to make
a decision. This class of policies is essentially the policies
available to O2 in problem P1. Since the optimal structure of
O1’s policy as given in (10) holds for any choice of Γ2, it also
holds for all possible policies of O2 in problem P1.

B. Classical Two-Threshold Rules Are Not Optimal

In the sequential detection problem with a single observer
[13], it is well known that an optimal policy is a function of
the observer’s belief πt and is described by two thresholds at
each time t. That is the decision at time t, Zt is given as:

Zt =

 1 if πt ≤ αt
N if αt < πt < βt
0 if πt ≥ βt

where N denotes a decision to continue taking measurements
and αt ≤ βt are real numbers in [0, 1]. A similar two-
threshold structure of optimal policies was also established
for the decentralized Wald problem in [11]. We will show by
means of two counterexamples that such a structure is not
necessarily optimal for observer 1 in Problem P1. Example 2
is similar to an example demonstrating the sub-optimality of
threshold rules in a related decentralized sequential detection
problem that appeared in [15].

Example 1
Consider the following instance of Problem P1. We have

equal priors on H , that is P (H = 0) = P (H = 1) = 1/2. O1
has a time horizon of T 1 = 2. Its observation space is Y1 =
{1, 2, 3}. The observations at time t = 1 have the following
conditional probabilities:

Observation P (·|H = 0) P (·|H = 1)
1 0 (1− p)
2 p p
3 (1− p) 0

and at time t = 2 have the following conditional probabili-
ties:

Observation P (·|H = 0) P (·|H = 1)
1 0 (1− q)
2 q q
3 (1− q) 0

where p, q ∈ [0, 1]. Observe that O1’s belief on the event
{H = 0} (that is, π1

t ), only takes 3 possible values - 0, 1
and 1/2 after any number of measurements. O1 has to send a
final message - 0 or 1 - to O2 by time T 1 = 2. If O1 delays
sending its final message to time t = 2, an additional cost c1

is incurred. After receiving a message from O1, observer 2
can either declare a decision on the hypothesis or take at most
1 more measurement of its own, that is, we have T 2 = 1. The
measurements of O2 are assumed to be noiseless, so when
O2 takes a measurement it knows exactly the value of H .

However, the measurement comes at a cost of c2. We assume
that J(U,H) = 0 if U = H , and that the cost of a mistake
(U 6= H), is sufficiently high so that unless O2 is certain
from O1’s messages what the true hypothesis is, it will prefer
taking a measurement at a cost c2 rather than making a guess.
At p = 0.6, c2 > 3c1, it can be easily verified that the best
threshold rule for observer 1 is described as follows:

Z1
1 =

 1 if π1
1 = 0

b if π1
1 = 1/2

0 if π1
1 = 1

and
Z1

2 =

{
1 if π1

1 = 0
0 if π1

1 > 0

If observer 2 receives 0 or 1 at time t = 1, it declares
the received message as the final decision on the hypothesis,
otherwise it waits for a final message from O1. At t = 2, if O2
receives 1, it declares 1 as the final decision, otherwise it takes
a measurement. Then the expected cost of this policy is given
as: c1 +pc1 +p(1+q)c2/2 (since, after the observation at time
t = 1, the system incurs additional cost c1 with probability p
and a cost c2 with probability p/2 + pq/2).

Now consider the following non-threshold policy for ob-
server 1,

Z1
1 =

 1 if π1
1 = 0

0 if π1
1 = 1/2

b if π1
1 = 1

(13)

and
Z1

2 =

{
1 if π1

1 = 0
0 if π1

1 > 0
(14)

Unlike a classical two-threshold rule, the above rule requires
O1 to send a blank symbol at time 1 even though O1 is certain
that true H is 0. If observer 2 receives 0 at time t = 1, it
takes a measurement and incurs a cost c2. If O2 receives a 1
at t = 1, it declares 1 as the final decision. If O2 receives a
b at time t = 1, it waits for the final message at t = 2 and
then declares the received message as its final decision on the
hypothesis. Then the expected cost of this policy is given as:
c1 + pc2 + (1 − p)c1/2 (since, after the observation at time
t = 1, the system incurs a cost c2 with probability p and a
cost c1 with probability (1− p)/2). It is now easily seen that
at p = 0.6 and c2 > 3c1, if we choose q > 1 − 4c1

3c2 , the
non-threshold policy outperforms the best threshold policy.

Discussion of the Example: 1. While the observation model
of observer 1 in the above example is non-stationary, the sub-
optimality of the classical two-threshold rules is not an artifact
of the non-stationarity of the observation model. The above
example holds for p = 0.6, and any choice of c1, c2, q such that
c2 > 3c1 and q > 1− 4c1

3c2 . In particular, if we choose c1 = 1,
c2 = 3.2, a stationary observation model where q = p = 0.6
will give the same conclusion.

2. The principle behind a threshold rule is to stop and send
a message if O1 is certain, otherwise postpone the decision
and take another measurement. The additional cost of delay
is justified by the likelihood of getting a good measurement
in the next time instant. In our example, if O1 gets the
observations 1 or 3 at t = 1 and is able to convey to O2
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that it is certain about the true hypothesis and what this
hypothesis is, then it prevents O2 from taking a measurement
thus saving a cost c2. The threshold rule achieves this objective
by sending 0 for observation 3 and 1 for observation 1.
However, in the case when O1 gets measurement 2, it decides
to wait for the next observation. By choosing q sufficiently
high, the likelihood of getting a good measurement at t = 2
can be made very low. In this case, the cost of delaying a
decision (c1) begins outweighing the expected payoff from a
new measurement. The non-threshold rule essentially tries to
correct this drawback. If at time t = 1, O1 gets measurement
2, it stops and sends 0 to O2. At O2, this is interpreted as
a message to go and take measurement of its own. Note that
the non-threshold rule still ensures that whenever O1 is certain
about H , it is able to send enough information to O2 to prevent
it from taking a measurement.

Example 2
Consider the same problem as in Example 1 but with O1’s

observations at t = 1 now given by the following conditional
probabilities.

Observation P (·|H = 0) P (·|H = 1)
1 0 (1− p)
2 p/3 2p/3
3 2p/3 p/3
4 (1− p) 0

O1’s observations at time t = 2 are just noise and give
no new information. The rest of the model is same as in
Example 1. Note that the observations are indexed in order
of the posterior belief π1

1 they generate, that is, P (H =
0|Observation1) < P (H = 0|Observation2) and so on.
If O1 postpones its final message to time t = 2, it has to
pay an additional cost of c1. Observer 2 can make a noiseless
measurement at a cost of c2. As in Example 1, Observer 2’s
cost of making a wrong decision is chosen sufficiently high
so that unless it is certain from O1’s message what the true
hypothesis is, O2 will prefer taking a measurement at a cost
c2 than making a guess. It can be shown that for equal priors
(p0 = 1/2), c2 > 2c1 and 1/2 < p < 1, a non-threshold
rule for O1 (given below) performs better than any threshold
policy.
• At t = 1, send 0 if observation 2 occurs and 1 if

observation 3 occurs. Send a blank otherwise.
• At t = 2, send 1 if π1

2 is less than 1/2 and 0 otherwise.
The corresponding policy for O2 is as follows:
• At t = 1, if a 0 or 1 is received, take a measurement,

otherwise wait till t = 2.
• At t = 2, declare the receive symbol as the final decision.

The cost of the above choice of policies is: c1+pc2+(1−p)c1.

C. Parametric Characterization of Optimal Policies

An important advantage of the threshold rules in the case
of the centralized or the decentralized Wald problem is that it
modifies the problem of finding the globally optimal policies
from a sequential functional optimization problem to a sequen-
tial parametric optimization problem. Even though we have
established that a classical two-threshold rule does not hold

for our problem, it is still possible to get a finite parametric
characterization of an optimal policy for observer 1. Such a
parametric characterization provides significant computational
advantage in finding optimal policies, for example by reducing
the search space for an optimal policy.

In Theorem 1, we have established that for an arbitrarily
fixed choice of O2’s policy, the optimal policy for O1 can
be determined by backward induction using the functions
Vk(π), k = T 1, ..., 2, 1. We will call Vk the value function
at time k. We have the following lemma.

Lemma 1: In problem P1 or P2, with a fixed (but arbitrary)
choice of Γ2, the value function at T 1 can be expressed as:

VT 1(π) := min{L0
T 1(π), L1

T 1(π)} (15)

where L0
T 1(·) and L1

T 1(·) are affine functions of π that depend
on the choice of O2’s policy Γ2. Also, the value function at
time k < T 1 can be expressed as:

Vk(π) := min{L0
k(π), L1

k(π), Gk(π)} (16)

where L0
k(·) and L1

k(·) are affine functions of π and Gk(·) is a
concave function of π. The functions L0

k(·), L1
k(·) and Gk(·)

depend on the choice of Γ2.
Proof: See Appendix B.

Theorem 2: In Problem P1 or P2, for any fixed policy Γ2 of
O2, an optimal policy for O1 can be characterized by at most
4 thresholds. In particular, without any loss in performance,
one can assume O1’s policy to be of the following form:

Z1
T 1 =

{
1 if π1

T 1 ≤ αT 1

0 if π1
T 1 > αT 1

where 0 ≤ αT 1 ≤ 1 and for k = 1, 2, .., T 1 − 1,

Z1
k =


b if π1

k < αk
1 if αk ≤ π1

k ≤ βk
b if βk < π1

k < δk
0 if δk ≤ π1

k ≤ θk
b if π1

k > θk

where 0 ≤ αk ≤ βk ≤ δk ≤ θk ≤ 1.
Proof: Theorem 2 is an immediate consequence of

Lemma 1, since taking minimum of straight lines and concave
functions can partition the interval [0, 1] into at most five re-
gions. The thresholds above essentially signify the boundaries
of these regions. For a given Γ2, it is possible that at some
time instant k, the optimal policy for O1 partitions the belief
interval [0, 1] as {b, 0, b, 1, b} instead of {b, 1, b, 0, b}. In this
case, it is easily seen that simply interchanging the roles of 0
and 1 in O1’s policy and in Γ2 at time k would result in the
threshold structure of the theorem without loss of performance.

It is of course possible that in specific cases, some of these
five regions are absent which would correspond to some of the
above thresholds having the same value. For example, in the
non-threshold rule given in the Example 1 earlier, the rule at
t = 1 corresponds to having α = 0 and β = δ which results
in a 3-interval partition of [0, 1] corresponding the rule given
there.
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IV. QUALITATIVE PROPERTIES FOR OBSERVER O2

A. Problem P1

Consider a fixed policy Γ1 = (γ1
1 , γ

1
2 , ..., γ

1
T 1) for O1. Then,

after O1 sends its final message, we can define the following
probability for O2:

π2
0 := PΓ1

(H = 0|Z1
1:τ1)

This is O2’s belief on the true hypothesis after having observed
the messages from O1 (that is a sequence of τ1 − 1 blanks
and a final Z1

τ1 ∈ {0, 1}). Now, the optimization problem
for O2 is the classical centralized Wald problem [13] with the
prior probability given by π2

0 . It is well-known that the optimal
policy for the Wald problem is a rule of the form:

U2
k =

 1 if π2
k ≤ w1

k

N if w1
k < π2

k < w2
k

0 if π2
k ≥ w2

k

where π2
k is the belief on hypothesis after k observations,

π2
k := PΓ1

(H = 0|Z1
1:τ1 , Y 2

1:k)

=
P (Y 2

1:k|H = 0).π2
0

P (Y 2
1:k|H = 0).π2

0 + P (Y 2
1:k|H = 1).(1− π2

0)
,

and w1
k ≤ w2

k, for k = 0, 1, 2, .., T 2 − 1 and w1
T 2 = w2

T 2 are
the optimal thresholds for the Wald problem with horizon T 2.

B. Information State in Problem P2

Consider a fixed policy Γ1 = (γ1
1 , γ

1
2 , ..., γ

1
T 1) for O1.

Define the following probability for O2:

π2
t := PΓ1

(H = 0|Y 2
1:t, Z

1
1:t)

π2
t is observer 2’s belief on the hypothesis based on its

observations till time t and the messages received from O1
till time t (where the messages from O1 could be all blanks
or some blanks terminated by a 0 or 1). For t = 0, we have
π2

0 = p0.
The following theorem shows that π2

t and Z1
1:t together form

an information state for O2.
Theorem 3: In Problem P2, with an arbitrary but fixed

policy Γ1 of O1, there is an optimal policy for O2 of the
form:

U2
t = γ2

t (Z1
1:t, π

2
t ) (17)

for t = 1, 2, ..., T 2. Moreover, this optimal policy can be
determined by the following dynamic program:

ṼT 2(z1
1:T 1 , π) := min{EΓ1

[J(0, H)|π2
T 2 = π],

EΓ1

[J(1, H)|π2
T 2 = π]} (18)

and for k = (T 1 − 1), ..., 1,

Ṽk(z1
1:k, π) := min{

EΓ1

[J(0, H)|π2
k = π],

EΓ1

[J(1, H)|π2
k = π],

c2 + EΓ1

[Ṽk+1(Z1
1:k+1, π

2
k+1)|π2

k = π, Z1
1:k = z1

1:k]} (19)

Proof: See Appendix C.

Observe that in the last term of (19), which corresponds to
the cost of postponing the final decision at time k, we have π2

k

as well as all messages from O1 in the conditioning variables.
It is because of this term that we need the entire sequence of
messages as a part of the information state. To intuitively see
why these messages are needed in the conditioning, note that
the cost of continuing depends on future messages from O1.
In order to form a belief on future messages, O2 needs a belief
on the hypothesis, a belief on future observations of O1 and
(since O1 has perfect recall) a belief on all observations of
O1 so far. Clearly, the messages received till time k provide
information about the observations of O1 till time k and are
therefore included in the information state.

We can now prove the following lemma about the value
functions Ṽk.

Lemma 2: The value function at T 2 can be expressed as:

ṼT 2(z1
1:T 1 , π) := min{l0(π), l1(π)} (20)

where l0 and l1 are affine functions of π that are independent
of the choice of O1’s policy Γ1. Also, the value function at
time k can be expressed as:

Ṽk(z1
1:k, π) := min{l0(π), l1(π), Gk(z1

1:k, π)} (21)

where, for each realization z1
1:k of messages from O1, Gk is

a concave function of π that depends on the choice of O1’s
policy, Γ1.

Proof: See Appendix D.
Theorem 4: For a fixed policy Γ1 of O1, an optimal policy

of O2 is of the form:

U2
T 2 =

{
1 if π2

T 2 ≤ αT 2

0 if π2
T 2 > αT 2

U2
k =

 1 if π2
k ≤ αk(Z1

1:k)
N if αk(Z1

1:k) < π1
k < βk(Z1

1:k)
0 if π1

k ≥ βk(Z1
1:k)

where 0 ≤ αk(Z1
1:k) ≤ βk(Z1

1:k) ≤ 1 are thresholds that
depend on sequence of messages received from O1 (Z1

1:k).
Proof: At any time k, if π2

k = 0, then it is optimal to stop
and declare the hypothesis to be 1 since cost of continuing
will be at least c2 + J(1, 1) which is more than J(1, 1) - the
cost of immediately stopping and declaring U2

k = 1. Similarly,
at π2

k = 1, it is optimal to stop and declare U2
k = 0. These

observations along with the fact that the value functions Ṽk are
minimum of affine and concave functions for each realization
of the messages received imply the result of the theorem.

Thus, according to Theorem 4, the thresholds to be used at
time k by O2 depend on the sequence of messages received
from O1 until time k. This kind of parametric characterization
may not appear very appealing since for each time k one may
have to know a number of possible thresholds - one for each
possible realization of messages z1

1:k. We will now argue that
there is in fact a simple representation of the thresholds. Note
that after time τ1, when O1 sends a final message, O2 is
faced with a classical Wald problem with an available time-
horizon of T 2 − τ1. Now suppose that the classical Wald
thresholds are available for a time horizon of length T 2 -
lets call these (w1

0, w
2
0), (w1

1, w
2
1), (w1

2, w
2
2), ..., wT 2 . Then the
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Wald thresholds for a problem with time horizon T 2− τ1 are
simply (w1

τ1 , w2
τ1), (w1

τ1+1, w
2
τ1+1), (w1

τ1+2, w
2
τ1+2), ..., wT 2 .

Thus, once O2 hears a final message from O1, it starts using
the classical Wald thresholds from that time onwards. In other
words, O2 operation is described by the following simple
algorithm:
• From time k = 1 onwards, the optimal policy is to use a

threshold rule given by 2 numbers αk(b1:k) and βk(b1:k),
until O1 sends its final message Z1

k ∈ {0, 1}. (As before,
b1:k stands for sequence of k blank messages.)

• If O1 sends the final message at time k, start using Wald
thresholds: (w1

k, w
2
k), ..., wT 2 .

Thus O2’s optimal policy is completely characterized
by just two tables of thresholds: [(α1(b1:1), β1(b1:1)),
(α2(b1:2), β2(b1:2)), ..., (αT 1(b1:T 1), βT 1(b1:T 1))] and the
Wald thresholds [(w1

0, w
2
0), (w1

1, w
2
1), (w1

2, w
2
2), ..., wT 2 ] .

V. OPTIMAL POLICIES

In the previous sections, we identified qualitative properties
of the optimal policies for the two observers. Moreover, if the
policy Γ2 (Γ1) of O2 (O1) has been chosen already, Theorem 1
(Theorem 3) provides a dynamic programming solution to find
an optimal policy Γ̃1 of O1 (Γ̃2 of O2) for the given choice of
Γ2 (Γ1). An iterative application of such an approach may be
used to identify person-by-person optimal pair of strategies.
However, finding globally optimal or near optimal strategies
for such dynamic team problems remains a challenging task
since it involves non-convex functional optimization [14]. In
this section, we will give a sequential decomposition of the
global optimization problem. Such a decomposition provides
a systematic methodology to find globally optimal or near-
optimal policies for the two observers.

A. Sequential Decomposition for Problem P1

In Problem P1, observer 2 waits to receive a final message
from observer 1 before it starts taking its measurements. After
receiving the final message, observer 2 is faced with the
centralized sequential detection problem studied by Wald. For
the Wald problem, the thresholds characterizing the optimal
policy and the cost of the optimal policy are known. For a
Wald problem with horizon T and a starting belief π on the
event {H = 0}, the cost of using the optimal Wald thresholds
is a function of the belief π which we will denote by KT (π).
Since the Wald thresholds for observer 2 are known (or can be
calculated as in [13]), the designer’s task in problem P1 is to
find the best set of thresholds to be used by observer 1. Finding
the best thresholds for all times t = 1 to T 1 is a formidable
optimization problem. Firstly, the system objective (equation
(7)) is a complicated function of the thresholds selected for
observer 1. Moreover, the objective must be optimized over the
space of sequences of thresholds to be used from time t = 1
to T 1. Below, we show that the optimization problem can in
principle be solved in a sequential manner. In the resulting
sequential decomposition, at each step the optimization is
over the set of thresholds to be used at a single time instant
instead of the space of sequences of thresholds from time 1 to
T 1. Though the original optimization problem is decomposed

into several “simpler” optimization problems, each of these
remain difficult nonetheless. We believe that the decomposed
problems may be more amenable to approximation techniques.

We first define the following:
Definition 1: Define ξ1 = P (H,π1

1) and for t = 2, ..., T 1

and a given choice of observer 1’s decision functions from
time instant 1 to t − 1, that is, (Γ1

t−1 = (γ1
1 , γ

1
2 , ..., γ

1
t−1)),

define

ξt := PΓ1
t−1(H,π1

t |Z1
1:t−1 = b1:t−1)

For t = 1, 2, ..., T 1 and for a given choice of functions (Γ1
t =

(γ1
1 , γ

1
2 , ..., γ

1
t )), define

ηt[z
1
t ] := PΓ1

t (H,π1
t |Z1

1:t−1 = b1:t−1, Z
1
t = z1

t )

where z1
t ∈ {0, 1, b}.

Lemma 3: Consider any policy γ1
t , t = 1, 2, ..., T 1 for ob-

server 1 that is characterized by 4 thresholds (α1
t , β

1
t , δ

1
t , θ

1
t ),

for t = 1, 2, ..., T 1 − 1 and a threshold α1
T 1 at time T 1 (as in

Theorem 2). Then,
i) There exist transformations Q1

t for t = 1, 2, ..., T 1 such
that

ηt[z
1
t ] = Q1

t (ξt, γ
1
t , z

1
t )

for z1
t ∈ {0, 1, b}, and

ii) There exist transformations Q2
t , t = 1, 2, ..., T 1 − 1 such

that
ξt+1 = Q2

t (ηt[b])

Proof: We first prove the second part of the lemma. By
definition,

ξt+1(h, π1) = PΓ1
t (H = h, π1

t+1 = π1|Z1
1:t = b1:t)

= PΓ1
t (H = h, Tt(π

1
t , Y

1
t+1) = π1|Z1

1:t = b1:t) (22)

where we used the fact that O1’s belief at time t + 1 is a
function of its belief at time t and the observation at time
t+ 1, that is, π1

t+1 = Tt(π
1
t , Y

1
t+1) (see Appendix A, equation

(48)). The right hand side of (22) can further be written as:

=

∫
y,π′

[1Tt(π′,y)=π1

.PΓ1
t (H = h, π1

t = π′, Y 1
t+1 = y|Z1

1:t = b1:t)]

where we use
∫
y,π′

as a shorthand for
∫
y∈Y1,
π′∈[0,1]

. The above

integral can be written as:

=

∫
y,π′

[1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h)

.PΓ1
t (H = h, π1

t = π′|Z1
1:t = b1:t)]

=

∫
y,π′

[1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).ηt[b](h, π

′)] (23)

The above integral is a function of ηt[b] and known observation
statistics. Thus ξt+1 = Q2

t (ηt[b]), where Q2
t is given by the

expression in (23).
For the first part of the lemma, consider

ηt[b] = PΓ1
t (H = h, π1

t = π1|Z1
1:t = b1:t)

=
PΓ1

t (H = h, π1
t = π1, Z1

t = b|Z1
1:t−1 = b1:t−1)

PΓ1
t (Z1

t = b|Z1
1:t−1 = b1:t−1)

(24)
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Under the 4-threshold rule for observer 1, Z1
t = b if π1

t ∈ Ct,
where Ct := [0, α1

t ) ∪ (β1
t , δ

1
t ) ∪ (θ1

t , 1]. Therefore, the above
probability can be written as:

=
1π1∈Ct .P

Γ1
t (H = h, π1

t = π1|Z1
1:t−1 = b1:t−1)

PΓ1
t (π1

t ∈ Ct|Z1
1:t−1 = b1:t−1)

=
1π1∈Ct .ξt(h, π

1)∑1
h=0

∫
π′
1π′∈Ctξt(h, π

′)
(25)

The above equation is a function of ξt and the thresholds
selected by γ1

t . Similar analysis holds for ηt[0] and ηt[1]. This
concludes the proof of the lemma.

We can now present a sequential decomposition of problem
P1.

Theorem 5: For t = 1, 2, ..., T 1 − 1, there exist functions
Rt(ξt, α1

t , β
1
t , δ

1
t , θ

1
t ) and R∗t (ξt) where

R∗t (ξt) = inf
α1

t ,β
1
t ,δ

1
t ,θ

1
t

Rt(ξt, α1
t , β

1
t , δ

1
t , θ

1
t )

and for t = T 1, there exist functions RT 1(ξT 1 , α1
T 1) and

R∗T 1(ξT 1) where

R∗T 1(ξT 1) = inf
α1

T1

RT 1(ξT 1 , α1
T 1)

such that the optimal thresholds can be evaluated from these
functions as follows:

1) Note that ξ1 := P (H,π1
1) is fixed a priori and does not

depend on any design choice. The optimal thresholds at
t = 1 for O1 are given by optimizing parameters in the
definition of R∗1(ξ1).

2) Once O1’s thresholds at t = 1 are fixed, η1[b] and hence
ξ2 are fixed by lemma 3. The optimal thresholds for O1
at time t = 2 are given by optimizing parameters in the
definition of R∗2(ξ2).

3) Continuing sequentially, ξt is fixed by the choice of past
thresholds, and the optimal thresholds for O1 at time t
are given by optimizing parameters in the definition of
R∗t (ξt).

Proof: We will prove the result by backward induction.
Consider first the final horizon for O1: T 1. Assume that a
designer has already specified functions γ1

1 , γ
1
2 , ..., γ

1
T 1−1 for

O1. The designer has to select a function to be used by O1
at time T 1 in case the final message has not been already
sent (that is, Z1

T 1−1 = b1:T 1−1). By Theorem 2, this function
is characterized by a single threshold α1

T 1 . For any choice
of α1

T 1 , the future cost for the designer is KT 2

(π2
0), where

KT 2

(·) is the cost of using optimal Wald thresholds with a
time-horizon T 2 and π2

0 is O2’s belief on {H = 0} after
receiving Z1

1:T 1 . The expected future cost for the designer can

therefore be expressed as:

E{c2τ2 + J(Uτ2 , H)|Z1
1:T 1−1 = b1:T 1−1}

= E{KT 2

(π2
0)|Z1

1:T 1−1 = b1:T 1−1}
= KT 2

(P (H = 0|Z1
T 1 = 0, Z1

1:T 1−1 = b1:T 1−1))

· P (Z1
T 1 = 0|Z1

1:T 1−1 = b1:T 1−1)

+KT 2

(P (H = 0|Z1
T 1 = 1, Z1

1:T 1−1 = b1:T 1−1))

· P (Z1
T 1 = 1|Z1

1:T 1−1 = b1:T 1−1)

= KT 2

(P (H = 0|Z1
T 1 = 0, Z1

1:T 1−1 = b1:T 1−1))

· P (π1
T 1 > α1

T 1 |Z1
1:T 1−1 = b1:T 1−1)

+KT 2

(P (H = 0|Z1
T 1 = 1, Z1

1:T 1−1 = b1:T 1−1))

· P (π1
T 1 ≤ α1

T 1 |Z1
1:T 1−1 = b1:T 1−1)

=: LT 1(ηT 1 [0], ηT 1 [1], ξT 1 , α1
T 1) (26)

where we used the fact that the probabilities in the arguments
of KT 2

(·) are marginals of ηT 1 [0] ηT 1 [1] respectively and the
probabilities multiplying the functions KT 2

are marginals of
ξT 1 . Using Lemma 3, we can write (26) as

LT 1(Q1
T 1(ξ1

T 1 , 0, α1
T 1), Q1

T 1(ξ1
T 1 , 1, α1

T 1), ξT 1 , α1
T 1)

=: RT 1(ξT 1 , α1
T 1)

Thus, for a fixed choice of functions γ1
1 , γ

1
2 , ..., γ

1
T 1−1 used

till time T 1 − 1, the designer’s future cost at T 1, if the final
message was not sent before T 1, is a function of ξT 1 (that
is induced by the choice of the past decision functions) and
the threshold α1

T 1 it selects at time T 1. To find the best
choice of threshold, the designer has to select α1

T 1 to minimize
RT 1(ξT 1 , α1

T 1). Define

R∗T 1(ξT 1) = inf
α1

T1

R(ξT 1 , α1
T 1)

For a given ξT 1 , the function R∗T 1 describes the optimal future
cost for the designer and the optimizing α1

T 1 gives the best
threshold.

Now assume that R∗t+1(ξt+1) describes the designer’s op-
timal future cost from time t + 1. At time t, if the past
decision functions γ1

1 , γ
1
2 , ..., γ

1
t−1 have been specified already,

the designer’s task is to select thresholds α1
t , β

1
t , δ

1
t , θ

1
t to be

used by O1 at time t. For a given choice of these thresholds,
the future cost for the designer is KT 2

(π2
0) if O1 sends a final

message at t. If a blank message is sent at t, the designer will
use the best threshold at the next time t + 1 and the future
cost will be c1 +R∗t+1(ξt+1). The expected future cost for the
designer is therefore given as:

E{c1(τ1 − t) + c2τ2 + J(Uτ2 , H)|Z1
1:t−1 = b1:t−1}

= KT 2

(P (H = 0|Z1
t = 0, Z1

1:t−1 = b1:t−1))

· P (Z1
t = 0|Z1

1:t−1 = b1:t−1)

+KT 2

(P (H = 0|Z1
t = 1, Z1

1:t−1 = b1:t−1))

· P (Z1
t = 1|Z1

1:t−1 = b1:t−1)

+ [c1 +R∗t+1(ξt+1)] · P (Z1
t = b|Z1

1:t−1 = b1:t−1)
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= KT 2

(P (H = 0|Z1
t = 0, Z1

1:t−1 = b1:t−1))

· P (δ1
t < π1

t < θ1
t |Z1

1:t−1 = b1:t−1)

KT 2

(P (H = 0|Z1
t = 1, Z1

1:t−1 = b))

· P (α1
t < π1

t < β1
t |Z1

1:t−1 = b1:t−1)

+ [c1 +R∗t+1(Q2
t (ηt[b]))] · P (π1

t ∈ Ct|Z1
1:t−1 = b1:t−1)

=: Lt(ηt[0], ηt[1], ηt[b], ξt, α
1
t , β

1
t , δ

1
t , θ

1
t ) (27)

where we used the fact that the probabilities in the arguments
of KT 2

(·) are marginals of ηt[0] ηt[1] respectively and the
probabilities multiplying the functions KT 2

and Rt+1 are
marginals of ξt. (Recall that Ct := [0, α1

t )∪ (β1
t , δ

1
t )∪ (θ1

t , 1]).
Using Lemma 3, we can write (27) as a function of ξt (that is
induced by the choice of past functions used till time t − 1)
and the thresholds selected at time t:

Rt(ξt, α1
t , β

1
t , δ

1
t , θ

1
t ) (28)

To find the best choice of threshold, the designer has to select
(α1
t , β

1
t , δ

1
t , θ

1
t ) to minimize Rt(ξt, α1

t , β
1
t , δ

1
t , θ

1
t ). Define

R∗t (ξt) = inf
α1

t ,β
1
t ,

δ1
t ,θ

1
t

Rt(ξt, α1
t , β

1
t , δ

1
t , θ

1
t ) (29)

For a given ξt, the function R∗t describes the optimal future
cost for the designer and the optimizing thresholds are the best
thresholds. The above analysis can be inductively repeated for
all time instants.

The optimal thresholds can therefore be evaluated as fol-
lows: At t = 1, ξ1 is fixed a priori, therefore one can use
R∗1 to find the best thresholds at time t = 1. Once these are
selected, ξ2 can be found using Lemma 3 and one can use R∗2
to find the best thresholds at time t = 2 and so on.

Discussion: The problem of choosing the optimal thresholds
for observer 1 can be viewed as a sequential problem for
the designer as follows: At each time t, the designer must
specify the thresholds to be used by observer 1 in case the
final message has not already been sent. In other words, at
each time t, one can think that the designer is aware of the
messages sent from O1 to O2 until t−1 and in case these were
only blanks, the designer must choose the thresholds to be used
by O1 at time t. Thus, the designer is faced with a sequential
optimization problem with a fixed temporal ordering of its
decisions. Observe also that the designer has perfect recall: it
knows all messages sent till time t. The designer, therefore,
has a sequential problem with a classical information structure
[16]. The proof of Theorem 5 essentially describes the dy-
namic program for the designer’s problem. The belief ξt serves
as the designer’s information state and the functions R∗t (ξt) are
essentially the value functions of the dynamic program. This
approach of introducing a designer with access to the common
information between observers (that is, the information known
to both observers: the messages from O1 to O2 in Problem P1)
so as to convert a decentralized problem to one with classical
information structure is illustrated and fully explained in [17,
Section IV] for a communication problem. We refer the reader
to that paper for a detailed exposition of this approach.

In Problem P1, until the time τ1, the information available
to O2 consists only of the messages sent from O1. This

is the same information that the designer uses to select
the thresholds. Thus O2 can be thought of as playing the
role of the designer in the proof of Theorem 5. The fact
that the problem of choosing the thresholds can be viewed
from O2’s perspective is crucial in determining the nature
of the information state for this problem. The form of our
information state and the approach of viewing the problem
from O2’s perspective imitates the information state and the
philosophy adopted in [18] for a real-time point-to-point
communication problem with noiseless feedback, where the
problem of choosing the encoding functions can be viewed
from the decoder’s perspective.

B. Sequential Decomposition for Problem P2
In this section, we present a sequential decomposition

similar to Theorem 5 for Problem P2. In Problem P2, both
observers start taking measurements at time t = 1. Moreover,
O2 is allowed to stop before receiving the final message from
O1 (see the time-ordering in Fig.2 for t=1,2,...). In Problem P2,
the messages sent from O1 to O2 are still common information
among the two observers. The problem of choosing the optimal
thresholds for the two observers can still be viewed as a
sequential problem from the perspective of a designer who at
any time t knows the common information. At each time t, the
designer must specify the thresholds to be used by observer 1
in case the final message has not already been sent. It also has
to specify -for each realization of messages from O1- the set
of thresholds to be used at O2. In other words, at each time
t, one can think that the designer knows the messages sent
from O1 to O2 and the designer must choose the thresholds
to be used by O1 and O2 at time t. The designer’s problem
can therefore be viewed as a sequential optimization problem
with classical information structure.

Unlike Problem P1, O2’s information no longer coincides
with the designer’s information of all previous messages from
O1, since O2 has its own observations as well. The fact
that the designer’s problem can no longer be viewed from
O2’s perspective implies that the information state found for
Problem P1 no longer works for this problem. The main
challenge now is to find a suitable information state sufficient
for performance evaluation for the designer’s problem. We
present such an information state and the resulting dynamic
program below.

As mentioned earlier, once observer 1 has sent its final
message to observer 2, the optimization problem for observer
2 becomes the well known centralized sequential detection
problem studied by Wald. The thresholds characterizing the
optimal policy and the cost of the optimal policy are known.
For a Wald problem with horizon T and a starting belief π
on the event {H = 0}, the cost of using the optimal Wald
thresholds is a function of the belief π which we denote
by KT (π). The designer’s task is to select the sequence of
thresholds to be used by observer 1 and the sequence of
thresholds to be used by observer 2 until the final message has
been sent from O1 to O2. After O1’s final message has been
sent, O2’s thresholds are known to be the Wald thresholds with
appropriate time-horizon. We will now present a sequential
decomposition for the designer.
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Recall that we defined observer 2’s belief on H as follows:

π2
t := PΓ1

(H = 0|Y 2
1:t, Z

1
1:t)

π2
t evolves in time as O2 gets more measurements and

messages. Once O2 has announced its final decision, its belief
on H does not change with time (since O2 is no longer making
measurements or listening to messages from O1). We begin
with the following definition and lemma.

Definition 2: For t = 1, 2, ..., T 1 and a given choice of
observer 1 and observer 2’s strategies from time instant 1
to t − 1, (that is, Γ1

t−1 = (γ1
1 , γ

1
2 , ..., γ

1
t−1) and Γ2

t−1 =
(γ2

1 , γ
2
2 , ..., γ

2
t−1)), define

Dt := 1τ2≥t

ψt := PΓ1
t−1,Γ

2
t−1(H,π1

t , π
2
t−1, Dt|Z1

1:t−1 = b1:t−1)

where τ2 is the stopping time of O2 as defined in (6). For
t = 1, 2, ..., T 1− 1 and for a given choice of strategies (Γ1

t =
(γ1

1 , γ
1
2 , ..., γ

1
t )) and (Γ2

t−1 = (γ2
1 , γ

2
2 , ..., γ

2
t−1)), define

φt[z
1
t ] := PΓ1

t ,Γ
2
t−1(H,π1

t , π
2
t , Dt|Z1

1:t−1 = b1:t−1, Z
1
t = z1

t )

where z1
t ∈ {0, 1, b}.

Lemma 4: Consider any policy γ1
t , t = 1, 2, ..., T 1 for ob-

server 1 that is characterized by 4 thresholds (α1
t , β

1
t , δ

1
t , θ

1
t ),

for t = 1, 2, ..., T 1 − 1 and a threshold α1
T 1 at time T 1

(Theorem 2), and a policy γ2
t , t = 1, 2, ..., T 2 which is

characterized by thresholds (α2
t , β

2
t ), t = 1, 2, ..., T 1 − 1 to

be used if O1 has not sent a final message and the Wald
thresholds (w1

t , w
2
t ), t = 1, 2, ...., T 2 to be used if the final

message from O1 has been received. Then, we have:
i) There exist transformations Q1

t for t = 1, 2, ..., T 1 such
that

φt[z
1
t ] = Q1

t (ψt, γ
1
t , z

1
t )

for z1
t ∈ {0, 1, b}, and

ii) There exist transformations Q2
t , t = 1, 2, ..., T 1 − 1 such

that
ψt+1 = Q2

t (φt[b], γ
2
t )

Proof: See Appendix E.
We can now present a sequential decomposition of problem

P2.
Theorem 6: For t = 1, 2, ..., T 1 − 1, there exist functions

Ft(ψt, α1
t , β

1
t , δ

1
t , θ

1
t ) and F∗t (ψt) and Gt(φt[b], α2

t , β
2
t ) and

G∗t (φt[b]) where

F∗t (ψt) = inf
α1

t ,β
1
t ,δ

1
t ,θ

1
t

Ft(ψt, α1
t , β

1
t , δ

1
t , θ

1
t )

G∗t (φt[b]) = inf
α2

t ,β
2
t

Gt(φt[b], α2
t , β

2
t )

and for t = T 1, there exist functions F(ψT 1 , α1
T 1) and

F∗T 1(ψT 1) where

F∗T 1(ψT 1) = inf
α1

T1

F(ψT 1 , α1
T 1)

such that the optimal thresholds can be evaluated from these
functions as follows:

1) Note that ψ1 is fixed a priori and does not depend on
any design choice. The optimal thresholds at t = 1 for
O1 are given by optimizing parameters in the definition
of F∗1 (ψ1).

2) Once O1’s thresholds are fixed, φ1[b] is fixed by Lemma
4. The optimizing thresholds to be used by O2 if a
blank message was received are given by optimizing
parameters in the definition of G∗1 (φ1[b]). In case a 0 or
1 was received from O1, the optimal thresholds for O2
from this time onwards are the Wald thresholds for a
finite horizon T 2 − 1.

3) Continuing sequentially, ψt is fixed by the choice of past
thresholds and the optimal thresholds for O1 at time t
are given by optimizing parameters in the definition of
F∗t (ψt). Once O1’s thresholds are fixed, φt[b] is fixed by
lemma 4. The optimizing thresholds to be used by O2 if
a blank message was received are given by optimizing
parameters in the definition of G∗t (φt[b]). In case a 0 or
1 was receiver from O1, the optimal thresholds for O2
from this time onwards are the Wald thresholds for a
finite horizon T 2 − t.
Proof: See Appendix F.

As in Theorem 5, the sequential decomposition in Theorem
6 is a dynamic programing result for the designer’s sequential
problem of choosing the thresholds for O1 and O2. At time
t, ψt is the designer’s information state just before selecting
the four thresholds to be used at O1 to decide its message Z1

t ,
whereas φt is designer’s information state just before selecting
the thresholds to be used by O2 to decide U2

t . (See Fig. 2).
The actual form of the functions Ft and Gt is obtained by
backward induction in Appendix F.

VI. INFINITE HORIZON PROBLEM

In this section we analyze infinite horizon analogues of
problems P1 and P2. We first focus on Problem P2.

A. Problem P2 with Infinite Horizon
Consider the model of Problem P2 as described in Section

II. We assume that the observation model is stationary, that
is, the conditional probability of an observation given H ,
(P it (·|H)) does not change with time. We also remove the
restriction on the boundedness of the stopping times, that is,
τ1 and τ2 need not be bounded. The optimization problem is
to select policies Γ1 = (γ1

1 , γ
1
2 , ...) and Γ2 = (γ2

1 , γ
2
2 , ...) to

minimize

EΓ1,Γ2{c1τ1 + c2τ2 + J(U2
τ2 , H)} (30)

where τ1, τ2 and U2
t are defined by equations (2), (5) and (6).

We assume that the cost parameters c1, c2 are finite positive
numbers and that J(U2, H) is non-negative and bounded by
a constant L for all U2 and H .
Remark: We can restrict attention to policies for which E{τ1}
and E{τ2} are finite, since otherwise the expected cost would
be infinite. Thus, we have that τ1 and τ2 are almost surely
finite. However, the stopping times may not necessarily be
bounded even under optimal policies.
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1) Qualitative Properties for Observer 2: Consider any
fixed policy Γ1 for Observer 1. We will provide structural
results on optimal policies for Observer 2 that hold for any
choice of Γ1. Consider the case when observer 2 has not
stopped before time t. Consider a realization (y2

1:t, z
1
1:t) of the

information available to O2 at time t and let π̄2
t = PΓ1

(H =
0|y2

1:t, z
1
1:t) be the realization of O2’s belief on H . Let A∞

be the set of all policies available to O2 at time t after having
observed y2

1:t, z
1
1:t, and let AT 2

be the subset of policies in
A∞ for which the stopping time τ2 is less than or equal to
a finite horizon T 2, (t ≤ T 2 < ∞). Then, from the analysis
for the finite-horizon problem P2, we know that there exist
value-functions Ṽ T

2

t (z1
1:t, π̄

2
t ) such that

Ṽ T
2

t (z1
1:t, π̄

2
t )

= inf
Γ2∈AT2

EΓ1

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t] (31)

This value-function is the optimal finite horizon cost for
observer 2 with horizon T 2.
We define the following function:

Ṽ∞t (z1
1:t, y

2
1:t)

= inf
Γ2∈A∞

EΓ1

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t] (32)

Lemma 5: i) The value functions Ṽ T
2

t (z1
1:t, π̄

2
t ) are non-

increasing in T 2 and bounded below by 0, hence the limit
limT 2→∞ Ṽ T

2

t (z1
1:t, π̄

2
t ) exists.

ii) Moreover,

Ṽ∞t (z1
1:t, y

2
1:t) = lim

T 2→∞
Ṽ T

2

t (z1
1:t, π̄

2
t )

Proof: See Appendix G.
We can now prove the following theorem:

Theorem 7: For a fixed policy Γ1 for O1, an optimal policy
for O2 is of the form:

U2
t =

 1 if π2
t ≤ αt(Z1

1:t)
N if αt(Z1

1:t) < π1
t < βt(Z

1
1:t)

0 if π1
t ≥ βt(Z1

1:t)

where 0 ≤ αt(Z1
1:t) ≤ βt(Z1

1:t) ≤ 1 are thresholds that depend
on the sequence of messages received from O1 (Z1

1:t).
Proof: Consider a realization y2

1:t, z
1
1:t of O2’s obser-

vations and messages from O1. Let π̄2
t be the realization

of O2’s belief, where π̄2
t = PΓ1

(H = 0|z1
1:t, y

2
1:t). Since

Ṽ∞t (z1
1:t, y

2
1:t) = limT 2→∞ Ṽ T

2

t (z1
1:t, π̄

2
t ), it follows that V∞t

is a function only of z1
1:t and π̄2

t . Since O2 at time t has only
3 possible choices, we must have:

Ṽ∞t (z1
1:t, π̄

2
t ) := min{

EΓ1

[J(0, H)|π̄2
t ],

EΓ1

[J(1, H)|π̄2
t ],

c2 + EΓ1

[Ṽ∞t+1(Z1
1:t+1, π

2
t+1)|π̄2

t , z
1
1:t]} (33)

From Lemma 2, we know that the first two terms are affine
in π̄2

t . From Lemma 5, we know that Ṽ∞t+1 is the limit of a
sequence of finite-horizon value functions. Now, for a fixed
z1

1:t+1, the finite horizon value functions are concave in π2
t+1

(from Lemma 2), therefore, for a fixed z1
1:t+1, the limit Ṽ∞t+1

is concave in π2
t+1 as well. Using the concavity of Ṽ∞t+1 and

following the arguments in the proof of Lemma 2, we can
show that the third term in equation (33) is concave in π̄2

t for
a fixed z1

1:t. Thus, for a given realization of z1
1:t, the infinite

horizon value function is minimum of two affine and one
concave function. Moreover, it is optimal for O2 to stop if
π̄2
t = 0 or 1. Therefore, the optimal policy for O2 must be of

the form:

U2
t =

 1 if π2
t ≤ αt(Z1

1:t)
N if αt(Z1

1:t) < π1
t < βt(Z

1
1:t)

0 if π1
t ≥ βt(Z1

1:t)

As in the finite horizon problem, once observer 1 has sent
the final message to observer 2, observer 2 is faced with the
classical centralized Wald problem. With an infinite horizon,
the optimal Wald policies are characterized by stationary
thresholds (say, (w1, w2)) that do not change with time [13].
Thus, in the infinite horizon version of Problem P2, observer
2’s operation can be described by the following algorithm:
• From time k = 1 onwards, the optimal policy is to use a

threshold rule given by 2 numbers αk(b1:k) and βk(b1:k),
until O1 sends its final message Z1

k ∈ {0, 1}.
• From the time O1 sends a final message, start using the

stationary Wald thresholds (w1, w2).
2) Qualitative Properties for Observer 1: Consider a fixed

policy Γ2 for O2 which belongs to the set of finite horizon
policies AT 2

with horizon T 2. We will show that given such
a policy for O2, Observer 1’s infinite horizon optimal policy
is characterized by 4 thresholds on its posterior belief. We
will employ arguments similar to those used in the previous
section.

Consider the case when observer 1 has not stopped be-
fore time t. Consider a realization (y1

1:t) of the information
available to O1 at time t and let π̄1

t = P (H = 0|y1
1:t) be

the realization of O1’s belief on H . Let B∞ be the set of
all policies available to O2 at time t after having observed
y1

1:t, and let BT 1

be the subset of policies in B∞ for which
the stopping time τ1 is less than or equal to a finite horizon
T 1, (t ≤ T 1 < ∞). Then, from the analysis for the finite-
horizon problem P2, we know that there exist value-functions
V T

1

t (π̄1
t ) such that

V T
1

t (π̄1
t )

= inf
Γ1∈BT1

EΓ2

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y1

1:t] (34)

where π̄1
t = P (H = 0|y1

1:t).
We define the following function:

V∞t (y1
1:t)

= inf
Γ1∈B∞

EΓ2

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y1

1:t] (35)

Lemma 6: i) For a fixed finite-horizon policy of O2,
the value functions V T

1

t (π̄1
t ) for O1 are non-increasing

in T 1 and bounded below by 0, hence the limit
limT 1→∞ V T

1

t (π̄1
t ) exists.

ii) Moreover,

V∞t (y1
1:t) = lim

T 1→∞
V T

1

t (π̄1
t )
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Proof: See Appendix H.
We can now state the following theorem:

Theorem 8: For a fixed finite-horizon policy Γ2 for O2, an
optimal policy for O1 is of the form:

Z1
t =


b if π1

t < αt
1 if αt ≤ π1

t ≤ βt
b if βt < π1

t < δt
0 if δt ≤ π1

t ≤ θt
b if π1

t > θt

where 0 ≤ αt ≤ βt ≤ δt ≤ θt ≤ 1.
Proof: Because of the above Lemma, we conclude that

V∞t (y1
1:t) depends only on the realization π̄1

t of the belief
(π̄1
t = P (H = 0|y1

1:t)). It is, moreover, a concave function
of π̄1

t . The result of the theorem follows by using arguments
similar to those in the proof of Lemma 1.

Theorem 9: There exist globally ε-optimal policies G1, G2

for observers 1 and 2 respectively, such that, G1 is character-
ized by 4 time-varying thresholds.

Proof: Consider any ε/2-optimal pair of policies Γ1,Γ2.
Then, by arguments used in Lemma 5, we know that there exist
a finite horizon policy Γ2

T 2 such that the pair Γ1,Γ2
T 2 is at most

ε/2 worse than Γ1,Γ2. Since Γ2
T 2 is a finite horizon policy,

by theorem 8, we conclude that O1 can use a 4-threshold rule
without losing any performance with respect to the policies
Γ1,Γ2

T 2 . Thus, we have an ε optimal pair of policies where
O1’s policy is characterized by 4 time-varying thresholds.

B. Problem P1 with Infinite Horizon

The above analysis for infinite horizon version of Problem
P2 can be easily specialized to the case of Problem P1. In
particular, observer 2’s problem is now the classical Wald
problem with infinite horizon; thus its optimal policy is charac-
terized by two stationary thresholds. Moreover, the arguments
of Lemma 6 and Theorems 8 and 9 can be repeated without
any modification to obtain the same qualitative properties for
observer 1 in Problem P1.

C. Sub-optimality of Time-invariant Policies of O1

In the classical sequential detection problem with a single
observer with infinite time horizon and a stationary observa-
tion model, it is known that there are time-invariant optimal
policies. Are time-invariant policies optimal for observer O1
with infinite time horizon and a stationary observation model?
The following example shows that the answer is negative.

Example 3
Consider the instance of Problem 1 described in Example

1 of Section III-B with infinite time horizon and a stationary
observation model for O1 that is same as the model at time
t = 1 in Example 1:

Observation P (·|H = 0) P (·|H = 1)
1 0 (1− p)
2 p p
3 (1− p) 0

where 0 < p < 1. The observation model of O2 is also
stationary and noiseless. As in Example 1, we assume that

J(U,H) = 0 if U = H , and that the cost of a mistake (U 6=
H), is sufficiently high so that unless O2 is certain from O1’s
messages what the true hypothesis is, it will prefer taking a
measurement at a cost c2 rather than making a guess. Also,
recall that the prior probability of H = 0 is 1/2.

We start by making the following simple observations:

(i) For all t ≥ 1, π1
t ∈ {0, 1, 1/2}.

(ii) If π1
t = 0 (or 1), then π1

t+1 = 0 (or 1).
(iii) The probability that π1

t = 1/2 is pt.

Now consider any stationary rule of the form Z1
t = γ(π1

t ),
with π1

t ∈ {0, 1, 1/2}. We have 3 possible cases:

1) If γ(0) = b or γ(1) = b: Suppose γ(0) = b. With
probability (1 − p)/2, the posterior at time t = 1 will
be 0, which implies that posterior at all subsequent times
will be 0. Thus, under the given stationary rule, with
probability (1−p)/2, O1 will never stop and incur infinite
costs. Clearly, such rules cannot be optimal. Similar
argument holds for γ(1) = b.

2) If γ(1/2) = b: We will lower-bound the cost in this case.
At any time t, observer 1 will not stop with probability pt.
Hence, the total cost is at least (c1+

∑
t≥1

pt·c1) = c1/1−p.

3) If γ(π) 6= b for any π: In this case, O1 always stops a
time t = 1. It is easy to see that the best rule of this kind
is the one for which γ(0) = 1 and γ(1/2) = γ(1) = 0.
The expected cost of this rule is: c1 + c2/2 + pc2/2.

Now consider the non-stationary rule described by equations
(13) and (14) in Example 1. The cost of this rule, as evaluated
in Example 1, is c1 + pc2 + (1 − p)c1/2. A little algebra
shows that for c2 = 2c1 and p > 1

√
3, the non-stationary rule

outperforms any stationary rule described above.

VII. COMMUNICATION WITH M-ARY ALPHABET

Consider models of Problem P1 or P2 with the following
modification: when observer 1 chooses to stop taking mea-
surements and send a message to observer 2, it can choose to
send one of M possible choices from the set: {0, 1, ...,M−1}.
Thus, observer 1’s message at time t to observer 2, which is
a function of all its observations,

Z1
t = γ1

t (Y 1
1:t), (36)

belongs to the set {0, 1, ...,M−1, b}, where we use b for blank
message, that is, no transmission. The sequence of functions
γ1
t , t = 1, 2, ..., constitute the policy of observer 1. Let τ1

be the stopping time when observer sends a final message to
observer 2, that is,

τ1 = min{t : Z1
t ∈ {0, 1, ...,M − 1}} (37)

Observer 2’s operation and the overall system objective are the
same as in problem P1 or P2. Then, we have the following
result:

Theorem 10: In Problems P1 or P2 where observer 1 can
send one of M possible final messages, there is no loss of
optimality in restricting attention to policies for observer 1
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that are of the form:

Z1
T 1 =


M − 1 if π1

T 1 ≤ αM−1
T 1

M − 2 if αM−1
T 1 < π1

T 1 ≤ αM−2
T 1

.....
1 if α2

T 1 < π1
T 1 ≤ α1

T 1

0 if π1
T 1 > α1

T 1

where 0 ≤ αM−1
T 1 ≤ αM−2

T 1 ≤ ... ≤ α1
T 1 ≤ 1 are M − 1

thresholds and for k = 1, 2, .., T 1 − 1,

Z1
k =



b if π1
k < αM−1

k

M − 1 if αM−1
k ≤ π1

k ≤ βM−1
k

b if βM−1
k < π1

k < αM−2
k

M − 2 if αM−2
k ≤ π1

k ≤ βM−2
k

...

...
1 if α1

k ≤ π1
k ≤ β1

k

b if β1
k < π1

k < α0
k

0 if α0
k ≤ π1

k ≤ β0
k

b if π1
k > β0

k

where 0 ≤ αM−1
k ≤ βM−1

k ≤ αM−2
k ≤ ... ≤ α1

k ≤ β1
k ≤

α0
k ≤ β0

k ≤ 1 are 2M thresholds.
Proof: It is straightforward to extend the arguments of

Theorem 1 to show that for a fixed policy of observer 2
optimal policies of observer 1 are functions of its posterior
belief π1

t . Similarly, the proof of Lemma 1 can be extended to
show that the value function for observer 1 is minimum of M
affine functions of the belief, that represent the expected cost
of stopping and sending one of the M symbols, and 1 concave
function of the belief that represents the expected cost of
continuing. Taking minimum of affine and concave functions
will result in M intervals of the belief space [0, 1] where
it is optimal to stop and send one of the M symbols. If at
some time t, the symbols are not ordered in the monotonically
decreasing way as specified in the result above, one can
permute the symbols in policies of O1 and O2 at time t to
get the desired ordering without losing performance.

VIII. EXTENSION TO MULTIPLE SENSORS

In this section, we extend our results to the case when
several peripheral sensors similar to observer 1 in Problems
P1 and P2 are required to send a single final message to a co-
ordinating sensor (similar to O2) which may be taking its own
measurements from t = 1 or may start taking measurements
after receiving final messages from all the peripheral sensors.
We show that the peripheral sensors have similar parametric
characterizations of their optimal policies as observer O1
in Problems P1 and P2. We obtain a characterization of
coordinator’s strategy that is similar to that of O2.

A. Problem P2 with Multiple Peripheral Sensors

Consider a group of N peripheral sensors: S1,S2,...,SN and
a coordinating sensor S0 (see Figure 1). Each sensor can make
repeated observations on the random variable H . As before,
we assume that conditioned on H , the observations at different
sensors are independent, and the observations made at different

time instants at any sensor are also independent conditioned
on H .

Each of the peripheral sensors observes its own measure-
ment process Y it , i = 1, 2..., N and t = 1, 2, .... At any time
t, the ith peripheral sensor can decide either to stop and
send a binary message 0 or 1 to the coordinating sensor or
to continue taking measurements. Each time the ith sensor
decides to continue taking measurements, a cost ci is incurred.
Each peripheral sensor sends only a single final message to
the coordinator. The policy Γi := (γi1, γ

i
2, . . .) of ith sensor is

of the form:
Zit = γit(Y

i
1:t) (38)

where Zit is ith sensor’s message at time t to the coordinating
sensor. Z1

t belongs to the set {0, 1, b}, where we use b for
blank message, that is, no transmission. The time τ i is the
stopping time when ith sensor sends a final message to the
coordinating sensor, that is,

τ i = min{t : Zit ∈ {0, 1}} (39)

The coordinating sensor observes its own measurement pro-
cess, Y 0

t , t = 1, 2, .... In addition, it receives messages from all
the peripheral sensors (we assume that when the coordinating
sensor receives a message it knows which peripheral sensor
sent that message). At any time t, S0 can decide to stop
and declare a final decision on the hypothesis or take a new
measurement and wait for more messages from the peripheral
sensors. Each time S0 postpones its decision on the hypothesis,
it incurs a cost c0. When S0 announces a final decision U on
the hypothesis, it incurs a cost given as J(U,H). Thus, the
coordinator’s decision at time t is given as:

Ut = γ0
t (Y 0

1:t, Z
1
1:t, Z

2
1:t, ..., Z

N
1:t) (40)

Ut belongs to the set {0, 1, N}, where we use N for a null
decision, that is, a decision to continue waiting for more
messages and taking more measurements. The sequence of
functions Γ0 = (γ0

1 , γ
0
2 , ...) is the policy of the coordinating

sensor. The time τ0 is the stopping time when S0 announces
its final decision on the hypothesis, that is,

τ0 = min{t : Ut ∈ {0, 1}} (41)

We consider the following problem.
Problem P3: Consider a finite horizon T i for the peripheral
sensors (that is, we require that τ i ≤ T i) and a finite
horizon T 0 for the coordinating sensor, that is, τ0 ≤ T 0. The
optimization problem is to select polices Γ0,Γ1, .., .ΓN of all
the sensors to minimize

E{
N∑
i=0

ci.τ i + J(Uτ0 , H)} (42)

We now obtain a characterization of the peripheral sensors’
optimal policies. For the ith peripheral sensor, we define

πit := P (H = 0|Y i1:t) (43)

Theorem 11: For any peripheral sensor i and any fixed
choice of strategies Γj , for j = 0, 1, ..., N, j 6= i, there is
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an optimal policy of the peripheral sensor i of the form:

ZiT i =

{
1 if πiT i ≤ αiT i

0 if πiT i > αiT i

where 0 ≤ αiT i ≤ 1, and for k = 1, 2, .., T i − 1,

Zik =


b if πik < αik
1 if αik ≤ πik ≤ βik
b if βik < πik < δik
0 if δik ≤ πik ≤ θik
b if πik > θik

where 0 ≤ αik ≤ βik ≤ δik ≤ θik ≤ 1.
Proof: The main idea of the proof is that once the policies

of all sensors except i are fixed, the optimization problem for
the ith sensor is similar to the problem for O1 in Problem P2.
The ith sensor plays the role of O1 in Problem P2 and the
coordinating sensor plays the role of O2. The observations of
the coordinating sensor at time t can be defined as:

Ỹ 0
t := (Y 0

t , Z
j
t , j = 1, 2, ..., N, j 6= i)

Note that conditioned on H , the observations Ỹ 0
t are indepen-

dent of the ith sensor’s observations. We can now follow the
arguments of Theorem 1 and 2 to conclude the result for the
ith peripheral sensor.

To find a characterization of the coordinating sensor’s
policy, we fix the policies of all peripheral sensors and define

π0
t := P (H = 0|Y 0

1:t, Z
1
1:t, Z

2
1:t, ..., Z

N
1:t) (44)

Theorem 12: For any fixed choice of policies of the pe-
ripheral sensors, the policy of the coordinating sensor is given
as

UT 0 =

{
1 if π0

T 0 ≤ αT 0

0 if π0
T 0 > αT 0

Uk =


1 if π0

k ≤ αk(Z1
1:k, Z

2
1:k, ..., Z

N
1:k)

N if αk(Z1
1:k, Z

2
1:k, ..., Z

N
1:k) < π0

k <
βk(Z1

1:k, Z
2
1:k, ..., Z

N
1:k)

0 if π0
k ≥ βk(Z1

1:k, Z
2
1:k, ..., Z

N
1:k)

where 0 ≤ αk(Z1
1:k, Z

2
1:k, ..., Z

N
1:k)≤

βk(Z1
1:k, Z

2
1:k, ..., Z

N
1:k) ≤ 1 are thresholds that depend

on sequence of messages received from the peripheral
sensors.

Proof: The proof follows the arguments of Theorem 3
and Theorem 4.

B. Problem P1 with Multiple Peripheral Sensors

In the multiple sensor analogue of Problem P1, the fusion
center waits to receive final messages from all sensors before it
starts its operation. The qualitative properties of O2 established
in Section IV-A hold here as well. That is, after receiving all
the messages, the fusion center’s problem is a classical Wald
problem with the initial belief

π2
0 := P (H = 0|Z1

1:τ1 , Z2
1:τ2 , . . . , ZN1:τN )

Moreover, the characterization of the optimal policies of pe-
ripheral sensors obtained in Theorem 11 can be established in
this case as well by employing essentially the same arguments
as in the proof of Theorem 11.

IX. CONCLUSION

We presented two new models for sequential problems in
decentralized detection where peripheral sensors send only
their final message to a fusion center/coordinating sensor.
In the first model, the fusion center waits to receive the
final message from each of the peripheral sensors and then
starts taking measurements of its own. In the second model,
the coordinating sensor starts taking measurements from the
beginning, without waiting for the final messages from the
peripheral sensors. We first addressed simple two sensors
(observers) version of the problems. We derived structural
properties of optimal policies for the two observers with a
single, terminal communication from observer 1 to observer
2. We showed that classical two threshold rules no longer
hold for observer 1. However, since observer 1’s problem is a
stopping time problem, a finite parametric characterization of
optimal policies is still possible and is described by at most
4 thresholds. We obtained a characterization of observer 2’s
optimal policy as well. We presented a methodology to find
the optimal policies in a sequential manner. We also looked
at an infinite horizon version of the problem with stationary
observation statistics. We showed that while a 4 parameter
characterization of policies is almost optimal for observer 1,
these parameters may not be stationary. We then extended
the qualitative results to the general scenario with multiple
peripheral sensors sending their final messages to a fusion
center/coordinating sensor.

APPENDIX A
PROOF OF THEOREM 1

Consider an arbitrary choice Γ2 = (γ2
1 , γ

2
2 , ..., γ

2
T2) for O2’s

policy. O2’s policy is assumed to be fixed to Γ2 throughout
this proof. Note that for a fixed Γ2, τ2 and U2

τ2 are functions
of O2’s observation sequence (Y 2

1 , Y
2
2 , ..., Y

2
T 2) and messages

received from O1 (Z1
1 , ..., Z

1
τ1). In other words, a policy of O2

induces a stopping time function SΓ2

and an estimate function
RΓ2

defined for all possible realizations of the observations of
O2 and messages from O1 such that

τ2 = SΓ2

(Y 2
1:T 2 , Z1

1:τ1) (45)

U2
τ2 = RΓ2

(Y 2
1:T 2 , Z1

1:τ1) (46)

Also, by a simple application of Bayes’ rule, we know that
π1
k+1 can be updated from π1

k and Y 1
k+1.

π1
k+1 =P (H = 0|Y 1

1:k+1)

=
P (Y 1

k+1|H = 0)π1
k

P (Y 1
k+1|H = 0)π1

k + P (Y 1
k+1|H = 1)(1− π1

k)
(47)

Thus, we have that

π1
k+1 = Tk(π1

k, Y
1
k+1) (48)

where Tk is defined by (47).
We will now show that under any policy for O1, the

expected future cost at time k for O1 is lower bounded by
the functions Vk defined in Theorem 1. Consider any policy
Γ1 for O1. Under the policies Γ1 and Γ2, and for a realization
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y1
1:k of O1’s observations till time k, let Wk(y1

1:k) be observer
1’s expected future cost at time instant k if it has not sent its
final message before time k. That is,

Wk(y1
1:k) := EΓ1,Γ2

[c1 · (τ1 − k) + c2τ2 + J(U2
τ2 , H)|y1

1:k,

Z1
1:k−1 = b1:k−1] (49)

First consider time T 1. We have

VT 1(π) := min{

EΓ2
[
c2τ2 + J(U2

τ2 , H)
∣∣∣ π1

T 1 = π, Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0

]
,

EΓ2
[
c2τ2 + J(U2

τ2 , H)
∣∣∣ π1

T 1 = π, Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 1

]
}

(50)

If observer 1 has not sent a final decision before time T 1,
then under policy Γ1, O1 will either send 0 or 1 at time T 1.
O1’s expected cost to go at T 1, if it sends a 0 at time T 1 is

WT 1(y1
1:T 1) = w(y1

1:T 1 , 0)

:= EΓ2
[
c2τ2 + J(U2

τ2 , H)
∣∣∣ y1

1:T 1 , Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0

]
(51)

Similarly, if O1 sends a 1 at T 1, its expected cost to go is

WT 1(y1
1:T 1) = w(y1

1:T 1 , 1)

:= EΓ2
[
c2τ2 + J(U2

τ2 , H)
∣∣∣ y1

1:T 1 , Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 1

]
(52)

Consider the expectation in (51). We can write it as

EΓ2
[
c2τ2 + J(U2

τ2 , H)
∣∣∣ y1

1:T 1 , Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0

]
=EΓ2

[c2SΓ2

(Y 2
1:T 2 , Z1

1:τ1) + J(RΓ2

(Y 2
1:T 2 , Z1

1:τ1), H)|y1
1:T 1 ,

Z1
1:T 1−1 = b1:T 1−1, Z

1
T 1 = 0] (53)

=EΓ2
[
c2SΓ2

(Y 2
1:T 2 , b1:T 1−1, 0)+

J(RΓ2

(Y 2
1:T 2 , b1:T 1−1, 0), H)

∣∣∣ y1
1:T 1 , Z1

1:T 1−1 = b1:T 1−1,
Z1
T 1 = 0

]

(54)

where we used (45) and (46) in (53) and substituted Z1
1:τ1

in (54) with the values specified in the conditioning term
of the expectation. Since the only random variables left in
the expectation in (54) are Y 2

1:T 2 and H , we can write this
expectation as∑

h=0,1
y2

1:T2∈Y2
1:T2

[P (y2
1:T 2 , H = h| y

1
1:T1

, Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0

)

× {c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0) + J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), h)}]

(55)

Consider first the term for h = 0 in (55). Because of
the conditional independence of the observations at the two

observers, we can write this term as follows:∑
y2

1:T2∈Y2
1:T2

[P (y2
1:T 2 |H = 0).P (H = 0|y1

1:T1
,

Z1
1:T 1−1 = b1:T 1−1, Z

1
T 1 = 0)× {c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0)+

J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), 0)}]

=
∑

y2
1:T2∈Y2

1:T2

[P (y2
1:T 2 |H = 0).π1

T 1(y1
1:T 1)

× {c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0)

+ J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), 0)}] (56)

Similarly, the term for h = 1 in (55) can be written as,∑
y2

1:T2∈Y2
1:T2

[P (y2
1:T 2 |H = 1).(1− π1

T 1(y1
1:T 1))

× {c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0) + J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), 1)}]

(57)

Combining equations (56) and (57), we see that the expectation
in (55) depends on π1

T 1(y1
1:T 1) and not on the entire sequence

y1
1:T 1 . Hence, we can replace y1

1:T 1 by π1
T 1(y1

1:T 1) in the
conditioning in (51). Therefore,

wT 1(y1
1:T1

, 0)

=EΓ2

[c2τ2 + J(U2
τ2 , H)|y1

1:T1
, Z1

1:T 1−1 = b1:T 1−1, Z
1
T 1 = 0]

=EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

T 1(y1
1:T1

), Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0]

≥VT 1(π1
T 1(y1

1:T1
)) (58)

where we used the definition of VT 1 in (58). Exactly same
arguments can be used if O1 sends a 1 at time T 1 to show
that

wT 1(y1
1:T 1 , 1) := EΓ2

[c2τ2 + J(U2
τ2 , H)|y1

1:T 1 ,

Z1
1:T 1−1 = b1:T 1−1, Z

1
T 1 = 1]

≥ VT 1(π1
T 1(y1

1:T1
)) (59)

Hence, we conclude that the following inequality always holds
for policy Γ1:

WT 1(y1
1:T1

) ≥ VT 1(π1
T 1(y1

1:T 1))

Now consider time k. Assume that

Wk+1(y1
1:k+1) ≥ Vk+1(π1

k+1(y1
1:k+1))

If observer 1 has not sent a final decision before time k, then it
will send either a 0, 1 or b at time k. Therefore, O1’s expected
cost to go at k, Wk(y1

1:k), is either

wk(y1
1:k, 0) := EΓ2

[c2τ2 + J(U2
τ2 , H)|y1

1:k, Z
1
1:k−1 = b1:k−1,

Z1
k = 0] (60)

if Z1
k = 0; or

wk(y1
1:k, 1) := EΓ2

[c2τ2 + J(U2
τ2 , H)|y1

1:k, Z
1
1:k−1 = b1:k−1,

Z1
k = 1] (61)
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if Z1
k = 1; or

wk(y1
1:k, b) := c1 + EΓ2

[Wk+1(y1
1:k, Y

1
k+1)|y1

1:k, Z
1
1:k = b1:k]

(62)
if Z1

k = b.
By arguments similar to those used at time T 1, we can show
that Vk is a lower bound to expressions in (60) and (61). That
is,

wk(y1
1:k, z

1
k)

= EΓ2

[c2τ2 + J(U2
τ2 , H)|y1

1:k, Z
1
1:k−1 = b1:k−1, Z

1
k = z1

k]

≥ Vk(π1
k(y1

1:k)) (63)

for z1
k ∈ {0, 1}.

Consider equation (62). From the induction hypothesis at time
k + 1, we have that

Wk+1(y1
1:k+1) ≥ Vk+1(π1

k+1(y1
1:k+1))

which implies

EΓ2

[Wk+1(y1
1:k, Y

1
k+1)|y1

1:k, Z
1
1:k = b1:k]

≥ EΓ2

[Vk+1(π1
k+1(y1

1:k, Y
1
k+1))|y1

1:k, Z
1
1:k = b1:k]

= EΓ2

[Vk+1(Tk(π1
k(y1

1:k), Y 1
k+1))|y1

1:k, Z
1
1:k = b1:k] (64)

The above expectation is a function of π1
k(y1

1:k) and the
conditional probability:

P (Y 1
k+1|y1

1:k, Z
1
1:k = b1:k)

which can be expressed as:

P (Y 1
k+1|H = 0).π1

k(y1
1:k) + P (Y 1

k+1|H = 1).(1− π1
k(y1

1:k))

Thus the expectation in (64) depends only on π1
k(y1

1:k) and
not the entire sequence y1

1:k; Hence, it can be written as:

EΓ2

[Vk+1(Tk(π1
k(y1

1:k), Y 1
k+1))|π1

k(y1
1:k), Z1

1:k = b]

Equations (62) and (64) then imply that

wk(y1
1:k, b)

= c1 + EΓ2

[Wk+1(y1
1:k, Y

1
k+1, Z

1
k+1)|y1

1:k, Z
1
1:k = b1:k]

≥ c1 + EΓ2

[Vk+1(Tk(π1
k(y1

1:k), Y 1
k+1))|π1

k(y1
1:k), Z1

1:k = b1:k]

= c1 + EΓ2

[Vk+1(π1
k+1)|π1

k(y1
1:k), Z1

1:k = b1:k]

≥ Vk(π1
k(y1

1:k)) (65)

where we used the definition of Vk in (65). From equations
(63) and (65), we conclude that the inequality Wk(y1

1:k) ≥
Vk(π1

k(y1
1:k)) is true. Hence, by induction it holds for all k =

T 1, T 1 − 1, ..., 2, 1. Since Γ1 was arbitrary, we conclude that
Vk are lower bounds on the expected cost to go for O1 under
any policy for O1 (with O2’s policy fixed at Γ2).

A policy Γ∗ that always selects the minimizing option
in the definition of Vk for each π will achieve the lower
bounds Vk on Wk with equality for all k. Note that the total
expected cost of policy Γ1 for O1 is c1 + E[W1(Y 1

1 )] which
is greater that c1 +E[V1(π1

1(y1
1))] (since we have shown that

W1(y1
1) ≥ V1(π1

1(y1
1))). Thus, we have that Γ∗ also achieves

the lower bound on total expected cost for any policy. Hence,
it is optimal.

Thus, an optimal policy is given by selecting the minimizing
option in the definition of Vk at each π. This establishes the
dynamic program of Theorem 1 and shows that there is an
optimal policy of the form:

Z1
t = γ∗t (π1

t )

APPENDIX B
PROOF OF LEMMA 1

Consider the first term in definition of VT 1 . Using functions
SΓ2

and RΓ2

from equations (45) and (46) in first term of (50),
we get

EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

T 1 = π, Z1
1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0]

=EΓ2

[c2SΓ2

(Y 2
1:T 2 , Z1

1:τ1) + J(RΓ2

(Y 2
1:T 2 , Z1

1:τ1), H)

|π1
T 1 = π, Z1

1:T 1−1 = b1:T 1−1, Z
1
T 1 = 0]

=EΓ2

[c2SΓ2

(Y 2
1:T 2 , b1:T 1−1, 0) + J(RΓ2

(Y 2
1:T 2 , b1:T 1−1, 0), H)

|π1
T 1 = π, Z1

1:T 1−1 = b1:T 1−1, Z
1
T 1 = 0] (66)

where we substituted Z1
1:T 1 in (66) with the values specified

in the conditioning term of the expectation. Since the only
random variables left in the expectation in (66) are Y 2

1:T 2 and
H , we can write this expectation as∑

{h=0,1}

∑
y2

1:T2∈Y2
1:T2

[

P (y2
1:T 2 , H = h|π1

T 1 = π, Z1
1:T 1−1 = b, Z1

T 1 = 0)

{c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0)

+ J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), h)}] (67)

Consider first the term for h = 0 in (67). Because of
the conditional independence of the observations at the two
observers, we can write this term as follows:∑

y2
1:T2∈Y2

1:T2

[P (y2
1:T 2 |H = 0).π.

{c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0) + J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), 0)}]

=π×
[

∑
y2

1:T2∈Y2
1:T2

P (y2
1:T 2 |H = 0).{c2SΓ2

(y2
1:T 2 , b1:T 1−1, 0)

+ J(RΓ2

(y2
1:T 2 , b1:T 1−1, 0), 0)}] (68)

=π ×AΓ2

T 1 (69)

where AΓ2

T 1 is the factor multiplying π in (68). Note that this
factor depends only on the choice of O2’s policy. Similar
arguments for the term corresponding to h = 1 in (67) show
that it can be expressed as

(1− π)×BΓ2

T 1 (70)

Equations (69) and (70) imply that first term of (50) is an
affine function of π, given as AΓ2

T 1 .π + BΓ2

T 1 .(1 − π). Similar
arguments hold for the second term of (50). Hence, we have
that

VT 1(π) := min{L0
T 1(π), L1

T 1(π)}
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Since VT 1 is minimum of two affine functions, it is a concave
function of π.

We now proceed inductively. Assume that Vk+1 is a concave
function of π and consider Vk,

Vk(π) := min{
EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

k = π, Z1
1:k−1 = b1:k−1, Z

1
k = 0],

EΓ2

[c2τ2 + J(U2
τ2 , H)|π1

k = π, Z1
1:k−1 = b1:k−1, Z

1
k = 1],

c1 + E[Vk+1(Tk(π1
k, Y

1
k+1))|π1

k = π, Z1
1:k = b]} (71)

Repeating the arguments used for VT 1 , it can be shown that
first two terms in (71) are affine functions of π. These are the
functions L0

k and L1
k in Lemma 1. To prove that the third term

is concave function of π, we use the induction hypothesis that
Vk+1 is a concave function of π. Then, Vk+1 can be written
as an infimum of affine functions

Vk+1(π) = inf
i
{λiπ + µi} (72)

Furthermore, last term in (71) can be written as:

c1 + E[Vk+1(Tk(π, Y 1
k+1))|π1

k = π, Z1
1:k = b1:k]

=c1 +
∑

y1
k+1∈Y1

[P (y1
k+1|π1

k = π, Z1
1:k = b1:k)

· Vk+1(Tk(π, y1
k+1))] (73)

Using the definition of Tk from equation (47), each term in
the above summation can be written as

P (y1
k+1|π1

k = π, Z1
1:k = b1:k)

.Vk+1

(
P (y1

k+1|H = 0).π

P (y1
k+1|H = 0).π + P (y1

k+1|H = 1).(1− π)

)
= {P (y1

k+1|H = 0).π + P (y1
k+1|H = 1).(1− π)}

.Vk+1

(
P (y1

k+1|H = 0).π

P (y1
k+1|H = 0).π + P (y1

k+1|H = 1).(1− π)

)
(74)

Now using the characterization of Vk+1 in terms of the affine
functions (from equation 72) in the equation (74), we obtain

inf
i
{λi.P (y1

k+1|H = 0).π+

(P (y1
k+1|H = 0).π + P (y1

k+1|H = 1).(1− π)).µi} (75)

Substituting this expression in (73), we obtain

c1 +
∑

y1
k+1∈Y1

[inf
i
{λi.P (y1

k+1|H = 0).π+

(P (y1
k+1|H = 0).π + P (y1

k+1|H = 1).(1− π)).µi}] (76)

Observe that the expression under the infimum is an affine
function of π. Hence, taking the infimum over i gives a
concave function of π for each y1

k+1. Since the sum of concave
functions is concave, the expression in (76) is a concave
function of π. We will call this function Gk(π). Thus, the
value function at time k given by (71) can be expressed as:

Vk(π) := min{L0
k(π), L1

k(π), Gk(π)} (77)

Since Vk is minimum of a concave and two affine functions,
it itself is a concave function. This completes the argument
for the induction step and (77) now holds for all k = (T 1 −
1), ..., 2, 1.

APPENDIX C
PROOF OF THEOREM 3

Proof: Let Γ1 = (γ1
1 , γ

1
2 , ..., γ

1
T 1) be the fixed policy of

O1. By definition of π2
k+1, we have

π2
k+1(Y 2

1:k+1, Z
1
1:k+1) := PΓ1

(H = 0|Y 2
1:k+1, Z

1
1:k+1)

=
P (H = 0, Y 2

k+1, Z
1
k+1|Y 2

1:k, Z
1
1:k)∑

h=0,1 P (H = h, Y 2
k+1, Z

1
k+1|Y 2

1:k, Z
1
1:k)

(78)

(although we omit the superscript Γ1 for ease of notation, it
should be understood that these probabilities are defined with
a fixed Γ1.)
Consider the numerator in (78). It can be written as:

P (Y 2
k+1|H = 0, Y 2

1:k, Z
1
1:k+1).P (Z1

k+1|H = 0, Y 2
1:k, Z

1
1:k).

P (H = 0|Y 2
1:k, Z

1
1:k)

= P (Y 2
k+1|H = 0).P (Z1

k+1|H = 0, Z1
1:k).π2

k(Y 2
1:k, Z

1
1:k)

(79)

where we used conditional independence of the observations
in (79). Under a fixed policy of O1, Z1

ks are well-defined
random variables and hence the second term in (79) is well-
defined. Similar expressions can be obtained for the terms in
the denominator of (78). Thus, we have that π2

k+1 is a function
of π2

k, Y 2
k+1 and Z1

1:k+1. That is,

π2
k+1 = T̃k(π2

k, Y
2
k+1, Z

1
1:k+1) (80)

In the statement of Theorem 3, we defined ṼT 2 as

ṼT 2(z1
1:T 1 , π) := min{EΓ1

[J(0, H)|π2
T 2 = π],

EΓ1

[J(1, H)|π2
T 2 = π]} (81)

If O2 has not declared a final decision on the hypothesis
till T 2 − 1, and selects U2

T 2 = 0, then his future cost at time
T 2 is

W̃T 2(y2
1:T 2 , z1

1:T 1 , 0) := EΓ1

[J(0, H)|y2
1:T 2 , z1

1:T 1 ]

=π2
T 2(y2

1:T 2 , z1
1:T 1).J(0, 0) + (1− π2

T 2(y2
1:T 2 , z1

1:T 1)).J(0, 1)

=EΓ1

[J(0, H)|π2
T 2(y2

1:T 2 , z1
1:T 1)] (82)

which corresponds to the first term in definition of ṼT 2 at
π2
T 2(y2

1:T 2 , z1
1:T 1). A similar expression is true if U2

T 2 = 1.
In either case, we have from the definition of ṼT 2 that for
u ∈ {0, 1},

W̃T 2(y2
1:T 2 , z1

1:T 1 , u) := EΓ1

[J(u,H)|y2
1:T 2 , z1

1:T 1 ]

≥ ṼT 2(z1
1:T 1 , π2

T 2(y2
1:T 2 , z1

1:T 1)) (83)

thus, the optimal action at time T 2 is to select the minimizing
option in the definition of ṼT 2 and the optimal future cost is
the value of ṼT 2 .

We will employ backward induction on the functions Ṽk
defined in Theorem 3 to show that they represent the optimal
value functions for O2. Consider time instant k. Assume Ṽk+1

gives the optimal cost to go (future cost) function at time k+1.
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We have, by definition,

Ṽk(z1
1:k, π) := min{

EΓ1

[J(0, H)|π2
k = π],

EΓ1

[J(1, H)|π2
k = π],

c2 + EΓ1

[Ṽk+1(Z1
1:k+1, π

2
k+1)|π2

k = π, z1
1:k]} (84)

At time k, for a realization y2
1:k, z

1
1:k of O2’s observations and

O1’s messages, the cost of stopping and declaring a decision
on the hypothesis at time k is either

W̃k(y2
1:k, z

1
1:k, 0) := EΓ1

[J(0, H)|y2
1:k, z

1
1:k] (85)

or

W̃k(y2
1:k, z

1
1:k, 1) := EΓ1

[J(1, H)|y2
1:k, z

1
1:k] (86)

By arguments similar to those at time T 2, the above terms are
the same as the first two terms of Ṽk(z1

1:k, π
2
k(y2

1:k, z
1
1:k)). The

cost of continuing at time k is

W̃k(y2
1:k, z

1
1:k, N) = c2 + EΓ1

[Ṽk+1(Z1
1:k+1, π

2
k+1)|y2

1:k, z
1
1:k]

= c2+

EΓ1

[Ṽk+1(Z1
1:k+1, T̃k(π2

k, Y
2
k+1, Z

1
1:k+1))|y2

1:k, z
1
1:k] (87)

= c2+

EΓ1

[Ṽk+1(z1
1:k, Z

1
k+1, T̃k(π2

k, Y
2
k+1, z

1
1:k, Z

1
k+1))|y2

1:k, z
1
1:k]

(88)

The expectation in (88) depends on π2
k, z1

1:k and
PΓ1

(Y 2
k+1, Z

1
k+1|y2

1:k, z
1
1:k). This probability can be written

as:

P (Y 2
k+1|H = 0).P (Z1

k+1|H = 0, z1
1:k).π2

k+

P (Y 2
k+1|H = 1).P (Z1

k+1|H = 1, z1
1:k).(1− π2

k) (89)

which depends only on z1
1:k and π2

k. Thus, the cost of contin-
uing is the same as

c2 + EΓ1

[Ṽk+1(Z1
1:k+1, π

2
k+1)|π2

k(y2
1:k, z

1
1:k), z1

1:k]

which corresponds to the last term in the definition of Ṽk.
Consequently, the optimal action at time k is to select the
minimizing option in definition of Vk and the value of Vk is
the optimal expected cost to go at time k. This completes the
proof of the assertion of Theorem 3.

APPENDIX D
PROOF OF LEMMA 2

Proof: The result of Lemma 2 for time T 2 follows from
the definition of ṼT 2 since

EΓ1

[J(0, H)|π2
T 2 = π] = π.J(0, 0) + (1− π).J(0, 1)

This corresponds to the line l0(π). Similarly,

EΓ1

[J(1, H)|π2
T 2 = π] = π.J(1, 0) + (1− π).J(1, 1)

which corresponds to line l1(π). Since, for any realization
of z1

1:T 1 , ṼT 2 is minimum of two affine functions of π, it is
concave in π for each z1

1:T 1 .

Assume now that Ṽk+1(z1
1:k+1, π) is concave in π for each

z1
1:k+1. Then, we can write Ṽk+1 as:

Ṽk+1(z1
1:k+1, π) = inf

i
{λi(z1

1:k+1).π + µi(z
1
1:k+1)} (90)

where λi(z1
1:k+1) and µi(z1

1:k+1) are real numbers that depend
on z1

1:k+1. Consider the value-function at time k.

Ṽk(z1
1:k, π) = min{EΓ1

[J(0, H)|π2
k = π],

EΓ1

[J(1, H)|π2
k = π],

c2+EΓ1

[Ṽk+1(Z1
1:k+1, π

2
k+1)

∣∣∣π2
k = π, z1

1:k]}
(91)

The first two terms in (91) correspond to the affine terms l0

and l1. The last term in (91) can be written as:

c2 + EΓ1

[Ṽk+1(Z1
1:k+1, π

2
k+1)|π2

k = π, z1
1:k]}

=c2 + EΓ1

[Ṽk+1(Z1
1:k+1, T̃k(π2

k, Y
2
k+1, Z

1
1:k+1))|π2

k = π, z1
1:k]}

=c2 +
∑

y2
k+1∈Y2

∑
z1
k+1∈{0,1,b}

[Pr(y2
k+1, z

1
k+1|π2

k = π, z1
1:k).

Ṽk+1(z1
1:k+1, T̃k(π, y2

k+1, z
1
1:k+1))] (92)

We now use the fact that T̃k(π, y2
k+1, z

1
1:k+1) is given as

P (y2
k+1|H = 0).P (z1

k+1|H = 0, z1
1:k).π

P (y2
k+1, z

1
k+1|π2

k = π, z1
1:k)

(93)

(see equations (78) and (79)).
Focusing on one term of the summation in (92) and using

(90), we can write it as

P (y2
k+1, z

1
k+1|π2

k = π, z1
1:k)×

inf
i
{λi(z1

1:k+1).

(
P (y2

k+1|H = 0).P (z1
k+1|H = 0, z1

1:k).π

P (y2
k+1, z

1
k+1|π2

k = π, z1
1:k)

)
+ µi(z

1
1:k+1)} (94)

Note that the expression outside the infimum in (94) is the
same as the denominator in the term multiplying λi(z

1
1:k+1)

in (94). The expression (94) can now be written as

inf
i
{λi(z1

1:k+1).P (y2
k+1|H = 0).P (z1

k+1|H = 0, z1
1:k).π

+µi(z
1
1:k+1).P (y2

k+1, z
1
k+1|π2

k = π, z1
1:k) (95)

Expanding the probability multiplying µi, we can write (95)
as

inf
i
{λi(z1

1:k+1).P (y2
k+1|H = 0).P (z1

k+1|H = 0, z1
1:k).π

+µi(z
1
1:k+1).(P (y2

k+1|H = 0).P (z1
k+1|H = 0, z1

1:k).π+

P (y2
k+1|H = 1).P (z1

k+1|H = 1, z1
1:k).(1− π))} (96)

For the given z1
1:k+1 and y2

k+1, the term in the infimum in
(96) is affine in π. Therefore, the expression in (96) is concave
in π. Thus, for the given realization of z1

1:k, each term in the
summation in (92) is concave in π. Hence, the sum is concave
in π as well. This establishes the structure of Ṽk in Lemma 2.
To complete the induction argument, we only have to note that
since Ṽk is the minimum of 2 affine and one concave function
of π , it is concave in π (for each z1

1:k).
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APPENDIX E
PROOF OF LEMMA 4

Proof: We first prove the second part of the lemma.

By definition, we have

ψt+1(h, π1, π2, 1)

= P (H = h, π1
t+1 = π1, π2

t = π2, Dt+1 = 1|Z1
1:t = b1:t)

= P (H = h, Tt(π
1
t , Y

1
t+1) = π1, π2

t = π2,

Dt+1 = 1|Z1
1:t = b1:t) (97)

where we used the fact that O1’s belief at time t + 1 is a
function of its belief at time t and the observation at time
t + 1, that is, π1

t+1 = Tt(π
1
t , Y

1
t+1) (see Appendix A, (48).

The right hand side (RHS) of (97) can further be written as:

=

∫
y,π′

1Tt(π′,y)=π1 .P (H = h, π1
t = π′, Y 1

t+1 = y, π2
t = π2,

Dt+1 = 1|Z1
1:t = b1:t)

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).P (H = h, π1

t = π′,

π2
t = π2, Dt+1 = 1|Z1

1:t = b1:t)

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).P (H = h, π1

t = π′,

π2
t = π2, Dt.1α2

t<π
2
t<β

2
t

= 1|Z1
1:t = b1:t) (98)

where we used the fact that if Z1
1:t = b1:t, then the event

{τ2 ≥ t + 1} is same as {τ2 ≥ t} ∩ {α2
t < π2

t < β2
t } and

hence Dt+1 = Dt.1α2
t<π

2
t<β

2
t
. The RHS of (98) can be written

as:

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).P (H = h, π1

t = π′,

π2
t = π2, Dt = 1|Z1

1:t = b1:t).1α2
t<π

2<β2
t

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).φt[b](h, π

′, π2, 1)

.1α2
t<π

2<β2
t

(99)

The expression given by (99) depends on φt[b], the thresholds
α2
t , β

2
t specified by γ2

t and the observation statistics that are
known a priori. Thus ψt+1(h, π1, π2, Dt+1 = 1) is a function
of φt[b] and γ2

t .

Similarly, ψt+1(h, π1, π2, Dt+1 = 0) can be written as:

ψt+1(h, π1, π2, Dt+1 = 0)

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).P (H = h, π1

t = π′,

π2
t = π2, Dt.1α2

t<π
2
t<β

2
t

= 0|Z1
1:t = b1:t)

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).P (H = h, π1

t = π′,

π2
t = π2, Dt = 0|Z1

1:t = b1:t)

+

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).P (H = h, π1

t = π′,

π2
t = π2, Dt = 1|Z1

1:t = b1:t).1(π2≤α2
t )∪(π2≥β2

t )

=

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).φt[b](h, π

′, π2, 0)

+

∫
y,π′

1Tt(π′,y)=π1 .P (Y 1
t+1 = y|H = h).φt[b](h, π

′, π2, 1)

.1(π2≤α2
t )∪(π2≥β2

t ) (100)

The RHS of (100) depends only on φt[b] and the thresholds
α2
t , β

2
t specified by γ2

t . This concludes the proof of the second
part of the lemma.

For the first part of the lemma, consider

φt[b](h, π
1, π2, 1)

= P (H = h, π1
t = π1, π2

t = π2, Dt = 1|Z1
1:t = b1:t) (101)

To simplify this term, first note that

π2
t (y2

1:t, z
1
1:t) := P (H = 0|y2

1:t, z
1
1:t)

=
P (H = 0, y2

t , z
1
t |y2

1:t−1, z
1
1:t−1)∑

h=0,1 P (H = h, y2
t , z

1
t |y2

1:t−1, z
1
1:t−1)

(102)

The numerator in (102) can be written as:

P (y2
t |H = 0, y2

1:t−1, z
1
1:t).P (z1

t |H = 0, y2
1:t−1, z

1
1:t−1).

P (H = 0|y2
1:t−1, z

1
1:t−1)

= P (y2
t |H = 0).P (z1

t |H = 0, z1
1:t−1).π2

t−1(y2
1:t−1, z

1
1:t−1)

(103)

where we used the conditional independence of observations
given H . Thus the numerator in (102) can be evaluated from
y2
t , π

2
t−1 and P (z1

t |H = 0, z1
1:t−1). Similar expression can be

obtained for the terms in the denominator of (102). Therefore,
we have

π2
t (y2

1:t, z
1
1:t) = T̃t−1(π2

t−1, y
2
t , P (z1

t |H, z1
1:t−1)) (104)

For z1
1:t = b1:t, we have

π2
t (y2

1:t, b1:t) = T̃t−1(π2
t−1, y

2
t , P (Z1

t = b|H,Z1
1:t−1 = b1:t−1))

= T̃t−1(π2
t−1, y

2
t , P (π1

t ∈ Ct|H,Z1
1:t−1 = b1:t−1))

(105)

where Ct := [0, α1
t ) ∪ (β1

t , δ
1
t ) ∪ (θ1

t , 1]. The conditional
probability in the argument of T̃t−1 is a function of ψt and
the thresholds specified by γ1

t . Thus, when z1
1:t = b1:t,

π2
t = T̃t−1(π2

t−1, Y
2
t , ψt, γ

1
t ) (106)

(since the function γ1
t is completely characterized by a set of

thresholds, we use γ1
t to denote the set of thresholds).
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Because of (106), the expression in (101) can now be
expressed as:

P (H = h, π1
t = π1, T̃t−1(π2

t−1, Y
2
t , ψt, γ

1
t ) = π2,

Dt = 1|Z1
1:t = b1:t) (107)

This can further be expressed as

P (H = h, π1
t = π1, T̃t−1(π2

t−1, Y
2
t , ψt, γ

1
t ) = π2,

Dt = 1, Z1
t = b|Z1

1:t−1 = b1:t−1)

P (Z1
t = b|Z1

1:t−1 = b1:t−1)

P (H = h, π1
t = π1, T̃t−1(π2

t−1, Y
2
t , ψt, γ

1
t ) = π2,

Dt = 1, Z1
t = b|Z1

1:t−1 = b1:t−1)

P (π1
t ∈ Ct|Z1

1:t−1 = b1:t−1)
(108)

where Ct := [0, α1
t ) ∪ (β1

t , δ
1
t ) ∪ (θ1

t , 1]. The denominator is
a function of a marginal distribution of ψt. To simplify the
numerator, first note that ψt is fixed already by the choice of
decision functions till time t− 1. The numerator in (108) can
therefore be written as:

=

∫
y,π′

1T̃t−1(π′,y,ψt,γ1
t )=π2 .P (H = h, π1

t = π1, Y 2
t = y,

π2
t−1 = π′, Dt = 1, Z1

t = b|Z1
1:t−1 = b1:t−1)

=

∫
y,π′

1T̃t−1(π′,y,ψt,γ1
t )=π2 .P (Y 2

t = y|H = h)

.P (Z1
t = b|π1

t = π1).P (H = h, π1
t = π1, π2

t−1 = π′,

Dt = 1|Z1
1:t−1 = b)

=

∫
y,π′

1T̃t−1(π′,y,ψt,γ1
t )=π2 .P (Y 2

t = y|H = h).1π1∈Ct .

P (H = h, π1
t = π1, π2

t−1 = π′, Dt = 1|Z1
1:t−1 = b1:t−1)

=

∫
y,π′

1T̃t−1(π′,y,ψt,γ1
t )=π2 .P (Y 2

t = y|H = h).1π1∈Ct .

ψt(h, π
1, π′, 1) (109)

The expression in (109) is a function of ψt and the thresholds
specified by γ1

t . Since (109) is equal to the numerator of
(108), it follows from (108) and (109), and the fact that the
denomination of (108) is a marginal distribution of ψt,

φt[b](h, π
1, π2, 1) = Q1

t (ψt, γ
1
t , b)

Similar analysis holds for Dt = 0 and also for φt[0] and φt[1].

APPENDIX F
PROOF OF THEOREM 6

Proof: With the appropriate definitions of the information
states ψt and φt, the proof of Theorem 6 is similar to that
of Theorem 5. As in the proof of Theorem 5, we proceed
backward in time.

Consider first the final horizon for O1: T 1. Assume that
the designer has already specified functions γ1

1 , γ
1
2 , ..., γ

1
T 1−1

for O1 and γ2
1 , γ

2
2 , ..., γ

2
T 1−1 for O2. The designer has to

select a function to be used by O1 at time T 1 in case O1’s
final message has not been already sent. By Theorem 2,
this function is characterized by a single threshold α1

T 1 . The

expected future cost for the designer is the cost of a Wald
problem with horizon T 2 − T 1, if observer 2 has not already
declared its final decision. Thus, the expected cost for the
designer is:.

E[{c2(τ2 − T 1) + J(Uτ2 , H)}.1τ2≥T 1 |Z1
1:T 1−1 = b1:T 1−1]

= E[KT 2−T 1

(π2
T 1).1τ2≥T 1 |Z1

1:T 1−1 = b1:T 1−1]

= E[KT 2−T 1

(π2
T 1).DT 1 |Z1

1:T 1−1 = b1:T 1−1] (110)

where KT 2−T 1

(·) is the cost of using the optimal Wald
thresholds from T 1 onwards with an available time horizon
of T 2 − T 1. This cost can be expressed as:

=E[KT 2−T 1

(π2
T 1).DT 1 |Z1

1:T 1−1 = b1:T 1−1, Z
1
T 1 = 1]

· P (Z1
T 1 = 1|Z1

1:T 1−1 = b1:T 1−1)

+ E[KT 2−T 1

(π2
T 1).DT 1 |Z1

1:T 1−1 = b1:T 1−1, Z
1
T 1 = 0]

· P (Z1
T 1 = 0|Z1

1:T 1−1 = b1:T 1−1)

=

∫
π2

[KT 2−T 1

(π2).P (π2
T 1 = π2, DT 1 = 1|Z1

1:T 1−1 = b1:T 1−1,

Z1
T 1 = 1)].P (π1

T 1 ≤ α1
T 1 |Z1

1:T 1−1 = b1:T 1−1)

+

∫
π2

[KT 2−T 1

(π2).P (π2
T 1 = π2, DT 1 = 1|Z1

1:T 1−1 = b1:T 1−1,

Z1
T 1 = 0)].P (π1

T 1 > α1
T 1 |Z1

1:T 1−1 = b1:T 1−1)

=: LT 1(φT 1 [0], φT 1 [1], ψT 1 , α1
T 1) (111)

where we used the fact that the probabilities in the integrals are
marginals of φT 1 [1] φT 1 [0] respectively and the probabilities
multiplying the integrals are marginals of ψT 1 . Using Lemma
4, we can write (111) as

= LT 1(Q1
T 1(ψ1

T 1 , α1
T 1 , 0), Q1

T 1(ψ1
T 1 , α1

T 1 , 1), ψT 1 , α1
T 1))

=: FT 1(ψT 1 , α1
T 1) (112)

Thus the optimization problem for the designer is to select
α1
T 1 to minimize FT 1(ψT 1 , α1

T 1). Define

F∗T 1(ψT 1) = inf
α1

T1

FT 1(ψT 1 , α1
T 1)

For a given ψT 1 , the function F∗T 1 describes the optimal future
cost for the designer and the optimizing α1

T 1 gives the best
threshold.
Proceeding backwards, assume F∗t+1 describes the designer’s
future cost from time t + 1. We now consider the designer’s
problem of selecting thresholds α2

t , β
2
t to be used by O2 if it

received all blank messages from O1, that is, Z1
1:t = b1:t. The

cost at time t is J(0, H) if observer 2 stops and declares 0,
J(1, H) if observer 2 declares 1. In case, observer 2 does not
make a final decision at this point, a cost of c2 is incurred.
The future cost for the designer will be the optimal cost at
time t+ 1 which is given by F∗t+1(ψt+1). Thus the expected



22

cost is given as:

E[c1(τ1 − (t+ 1)) + {c2(τ2 − t) + J(Uτ2 , H)} ·Dt

|Z1
1:t = b1:t]

= E[{J(1, H).1π2
t≤α2

t
+ J(0, H).1π2

t≥β2
t
+

c2 · 1π2
t∈[α2

t ,β
2
t ]}.Dt|Z1

1:t = b1:t] + F∗t+1(ψt+1)

= E[{J(1, H).1π2
t≤α2

t
+ J(0, H).1π2

t≥β2
t
+

c2 · 1π2
t∈[α2

t ,β
2
t ]}.Dt|Z1

1:t = b1:t] + F∗t+1(Q2
t (φt[b], α

2
t , β

2
t ))

(113)

=: Gt(φt[b], α2
t , β

2
t ) (114)

where we used the fact that the expectation in (113) depends
on the thresholds α2

t , β
2
t , and the conditional belief on H , Dt

and π2
t given Z1

1:t = b11:t- which is a marginal of φt[b]. Thus
the optimization problem for the designer is to select α2

t , β
2
t

to minimize Gt(φt[b], α2
t , β

2
t ). Define

G∗t (φt[b]) = inf
α2

t ,β
2
t

Gt(φt, α2
t , β

2
t )

Now consider the designer’s problem of selecting thresholds
α1
t , β

1
t , δ

1
t , θ

1
t to be used by O1 at time t. The expected future

cost is KT 2−t(π2
t ) if a final message is sent at time t and if

O2 had not already stopped (that is, Dt = 1). In case a blank
message is sent, the designer will need to choose thresholds
at time t for O2 and the optimal future cost would be given
by c1 + G∗t (φt[b]). The total expected future cost is therefore,

E[c1(τ1 − t) + {c2(τ2 − t) + J(Uτ2 , H)}Dt

|Z1
1:t−1 = b1:t−1]

= E[KT 2−t(π2
t ).Dt|Z1

t = 0, Z1
1:t−1 = b1:t−1]

· P (Z1
t = 0|Z1

1:t−1 = b1:t−1)

+ E[KT 2−t(π2
t ).Dt|Z1

t = 1, Z1
1:t−1 = b1:t−1]

· P (Z1
t = 1|Z1

1:t−1 = b1:t−1)

+ [c1 + G∗t+1(φt[b])] · P (Z1
t = b|Z1

1:t−1 = b1:t−1)

=E[KT 2−t(π2
t ).Dt|Z1

t = 0, Z1
1:t−1 = b1:t−1]

· P (δ1
t < π1

t < θ1
t |Z1

1:t−1 = b1:t−1)

+ E[KT 2−t(π2
t ).Dt|Z1

t = 1, Z1
1:t−1 = b1:t−1]

· P (α1
t < π1

t < β1
t |Z1

1:t−1 = b1:t−1)

+ [c1 + G∗t+1(φt[b]).Dt] · P (π1
t ∈ Ct|Z1

1:t−1 = b1:t−1)
(115)

=: Lt(φt[0], φt[1], φt[b], ψt, α
1
t , β

1
t , δ

1
t , θ

1
t ) (116)

=: Ft(ψt, α1
t , β

1
t , δ

1
t , θ

1
t ) (117)

where, to write (116), we used the fact that the two expec-
tations in (115) are functions of φt[0] and φt[1] (this can be
established using analysis similar to that leading to (111)) and
the probabilities multiplying the three terms are marginals of
ψt . Further, since φt[0] and φt[1] are functions of ψt, we can
write (116) as (117). The analysis for time t can be inductively
repeated for all times.

APPENDIX G
PROOF OF LEMMA 5

The first part of the lemma follows directly from the fact that
Ṽ T

2

t is defined as infimum over a monotonically increasing
sequence of sets AT 2

.
We will now prove the second part of the lemma. Ṽ∞t is

defined as infimum of the objective over the set of policies
A∞ which contains AT 2

,∀T 2, hence we conclude that

Ṽ∞t (z1
1:t, y

2
1:t) ≤ lim

T 2→∞
Ṽ T

2

t (z1
1:t, π̄

2
t ) (118)

Assume that the inequality in (118) is strict. Then, there exists
a policy G ∈ A∞ for observer 2 such that the expected cost
under G,

Wt(G) := EΓ1,G[c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t],

is strictly less than limT 2→∞ Ṽ T
2

t (z1
1:t, π̄

2
t ). Therefore, the

policy G is better than any finite horizon policy. We will
now construct a sequence of finite horizon policies GT 2 , T 2 =
t, t+1, t+2, ... such that the expected cost of GT 2 approaches
the expected cost of policy G as T 2 →∞. This will contradict
the fact that Wt(G) < limT 2→∞ Ṽ T

2

t (z1
1:t, π̄

2
t ). Let τG and

UτG be the stopping time and the decision at the stopping
time induced under policy G. The policy GT 2 is characterized
by the stopping time τ ′ and the decision at stopping time Uτ ′
it induces as follows:

τ ′ =

{
τG if τG ≤ T 2

T 2 if τG > T 2

and

Uτ ′ =

{
UτG if τG ≤ T 2

0 if τG > T 2

Note that GT 2 is finite horizon policy since it always stops no
later than the horizon T 2. Define

Wt(GT 2) := EΓ1,GT2 [c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t]

By assumption, the cost under policy G is better than the
cost under any finite horizon policy. Therefore, Wt(GT 2) ≥
Wt(G). Moreover,

Wt(GT 2)−Wt(G)

= EΓ1,GT2 [c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t]

− EΓ1,G[c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t]

= E[c2(τ ′ − τG) + J(Uτ ′ , H)− J(UτG , H)|y2
1:t, z

1
1:t]

= E[{c2(τ ′ − τG)+

J(Uτ ′ , H)− J(UτG , H)}.1τG≤T 2 |y2
1:t, z

1
1:t]

+ E[{c2(τ ′ − τG)+

J(Uτ ′ , H)− J(UτG , H)}.1τG>T 2 |y2
1:t, z

1
1:t] (119)

The first expectation in equation (119) is 0 since for τG ≤
T 2, the policy GT 2 has the same stopping time and the final
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decision as policy G. Thus, we get:

Wt(GT 2)−Wt(G)

=E[{c2(τ ′ − τG)+

J(Uτ ′ , H)− J(UτG , H)}.1τG>T 2 |y2
1:t, z

1
1:t]

=E[{c2(T 2 − τG)

+J(0, H)− J(UτG , H)}.1τG>T 2 |y2
1:t, z

1
1:t]

≤E[{J(0, H)− J(UτG , H)}.1τG>T 2 |y2
1:t, z

1
1:t] (120)

≤L.E[1τG>T 2 |y2
1:t, z

1
1:t]

=L.P (τG > T 2|y2
1:t, z

1
1:t), (121)

where L is the finite positive constant that upper-bounds
J(U,H). Since the stopping time under policy G is almost
surely finite (otherwise cost of policy would be infinite), we
have that P (τG > T 2|y2

1:t, z
1
1:t) → 0, as T 2 → ∞. Thus, for

any ε > 0, there exists a horizon T 2 large enough for which
Wt(GT 2)−Wt(G) ≤ ε. Therefore,

lim
T 2→∞

Wt(GT 2) = Wt(G)

Hence, we conclude that there does not exist any policy G ∈
A∞ for which Wt(G) < limT 2→∞ Ṽ T

2

t (z1
1:t, π̄

2
t ). Therefore,

Ṽ∞t (z1
1:t, y

2
1:t) = limT 2→∞ Ṽ T

2

t (z1
1:t, π̄

2
t ).

APPENDIX H
PROOF OF LEMMA 6

The fist part of the lemma follows directly from the fact that
V T

2

t is defined as infimum over a monotonically increasing
sequence of sets BT 2

.
We will now prove the second part of the lemma. Since
B∞ contains BT 1

,∀T 1, we conclude that V∞t (y1
1:t) ≤

limT 1→∞ V T
1

t (π̄1
t ). Assume that the inequality is strict. Then,

there exists a policy Λ ∈ B∞ for observer 1 such that the
expected cost under Λ,

Wt(Λ) := EΛ,Γ2

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y1

1:t],

is strictly less than limT 1→∞ V T
1

t (π̄1
t ). Therefore, the policy Λ

is better than any finite horizon policy. We will now construct
a sequence of finite horizon policies ΛT 1 , T 1 = t, t + 1, t +
2, ... such that the expected cost of ΛT 1 approaches the cost
of policy Λ as T 1 → ∞. This will contradict the fact that
Wt(Λ) < limT 1→∞ V T

1

t (π̄1
t ).

Let τΛ and Z1
τΛ be the stopping time and the decision at

the stopping time induced under policy Λ. The policy ΛT 1

is characterized by the stopping time τ∗ and the decision at
stopping time Z1

τ∗ it induces as follows:

τ∗ =

{
τΛ if τΛ ≤ T 1

T 1 if τΛ > T 1

and

Z1
τ∗ =

{
Z1
τΛ if τΛ ≤ T 1

0 if τΛ > T 1

Note that ΛT 1 is finite horizon policy since it always stops no
later than the horizon T 1. Define

Wt(ΛT 1) := EΛT1 ,Γ
2

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y2

1:t, z
1
1:t]

By assumption, the cost under policy Λ is better than cost
under any finite horizon policy. Therefore, Wt(ΛT 1) ≥Wt(Λ).
Moreover,

Wt(ΛT 1)−Wt(Λ)

= EΛT1 ,Γ
2

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y1

1:t]

− EΛ,Γ2

[c1τ1 + c2τ2 + J(U2
τ2 , H)|y1

1:t]

= E[c1(τ∗ − τΛ)|y1
1:t] + EΛT1 ,Γ

2

[c2τ2 + J(U2
τ2 , H)|y1

1:t]

− EΛ,Γ2

[c2τ2 + J(U2
τ2 , H)|y1

1:t] (122)

≤ EΛT1 ,Γ
2

[c2τ2 + J(U2
τ2 , H)|y1

1:t]

− EΛ,Γ2

[c2τ2 + J(U2
τ2 , H)|y1

1:t] (123)

where we used the fact that since τ∗ ≤ τΛ, the first term in
(122) is less than or equal to 0. Further, (123) can be written
as:

EΛT1 ,Γ
2

[{c2τ2 + J(U2
τ2 , H)}.1τΛ≤T 1 |y1

1:t]

− EΛ,Γ2

[{c2τ2 + J(U2
τ2 , H)}1τΛ≤T 1 |y1

1:t]

+ EΛT1 ,Γ
2

[{c2τ2 + J(U2
τ2 , H)}.1τΛ>T 1 |y1

1:t]

− EΛ,Γ2

[{c2τ2 + J(U2
τ2 , H)}1τΛ>T 1 |y1

1:t] (124)

For all realizations where τΛ ≤ T 1, the policy ΛT 1 has
the same stopping time and the final decision as policy Λ and
hence they both will send the same realization of messages
to O2 and hence O2’s policy Γ2 will produce the same
realizations of τ2 and U2

τ2 . This implies that the first two terms
in (124) are equal. Thus, (124) becomes

EΛT1 ,Γ
2

[{c2τ2 + J(U2
τ2 , H)}.1τΛ>T 1 |y1

1:t]

− EΛ,Γ2

[{c2τ2 + J(U2
τ2 , H)}1τΛ>T 1 |y1

1:t]

≤ (c2.T 2 + L).E[1τΛ>T 1 |y1
1:t]

= (c2.T 2 + L).P (τΛ > T 1|y1
1:t) (125)

where we used the fact that τ2 is bounded by T 2 under policy
Γ2 by assumption. Since the stopping time under policy Λ
is almost surely finite (otherwise cost of policy would be
infinite), we have that P (τΛ > T 1|y1

1:t) → 0, as T 1 → ∞.
Thus, from equations (122)-(125), we conclude that for any
ε > 0, there exists a horizon T 1 large enough such that
Wt(ΛT 1)−Wt(Λ) ≤ ε. Therefore,

lim
T 1→∞

Wt(ΛT 1) = Wt(Λ)

Hence, we conclude that there does not exist any policy
Λ ∈ B∞ for which Wt(Λ) < limT 1→∞ Ṽ T

1

t (π̄1
t ). Therefore,

V∞t (y1
1:t) = limT 1→∞ V T

1

t (π̄1
t ).
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