
In Section IV of the paper, remarks 4 iii)-v) as well as the proofs of 
Lemmas 4 and 5 ,  to the extent that they depend  on these remarks, are 
incorrect. While the remarks pertain to general functions in Tern, the 
lemmas deal with more restrictive classes of functions. Hence, the state- 
ment of the lemmas themselves and consequently the proof of stability, 
are  not affected. 

Remark 4 iii) states that if two continuous functions . x ( . ) .  y ( - )  are in 
Yex. then only one of the following conditions holds: 

This is not true in general, as shown by the following example. 
Example: Let { t i } .  { t,’}, and { T , }  be three unbounded sequences in 

R +  such that f , ’ < t i < t , ’ - ’ ,  To=Tl=O, Tz,+l=(t~’+l-r,)+Tz!-l ,  and 
Tzr = (t,  - I;)+ Tr, -2 ,  where i E {1,2,. . . }. Let x(.), y (  ,) be two func- 
tions defined as: 

Choosing the sequences { ti ) and { 2,’) in such a manner that 
lim,-.~(T,+l/T,)=co. we  see that x(.) and p(.) do not satisfy 4 iii): 
Similar examples can also be given to invalidate remarks 4 iv) and v), In 
the proofs of Lemmas 4 and 5 ,  Remark 4 is used to prove that  a function 
I f ( t ) l= O [ s ~ ~ , ~ r l g ( ~ ) 1 1  by demonstrating that Ig(t)l f O[sup,~,If(.r)ll. 
In what follows we present alternate proofs of Lemmas 4 and 5. 

Lemma 4: Let .x( .) and y(  .) be the  input and output, respectively, of 
a system with a rational transfer function whose zeros are  in the open left 
half plane. If x(.)  is such that i) . x ( . ) E T e X  and ii) I . t ( r ) l =  
O[sUPr,rl-y(T)U, then I x ( t ) l = O [ ~ ~ ~ ~ ~ r l ~ ( ~ ) l I .  

Proofi With Hl(s), H 2 ( s )  and .x1 as defined in [l] 

If h ( r )  is the impulse response of N2(s), then for a A > 0 and any 
r, E R’ 

where co.wl(t ,]  is due  to initial conditions. Let I x ( t ) l  = sup,.,lx(~)1 for 
all I E [ t , ,  t, + A]. Then 

where c2 > 0 is as defined in the paper’. Further, by assumption ii) a 
constant 0 < c3 ( 1  exists such that I.x(t,)l> c31x(ti + A)l .  Hence. in (2), 
if Ixl(t,)l < M l . x ( t i ) l .  then ( .x( t i  + A ) (  < ( l / ( M +  8))l.xl(ri + A ) (  where 
M = (c2c3 - 8)/(lcolc3 A 1) > 0 and 6 > 0. Since ti is arbitrary, this con- 
dition holds for every t for which \x( I ) \  = sup, . Is( T )  I. Further, since 
S U P , ~ , J X ~ ( T ) ~  > l . x , ( r ) l  for all t E R+, it follows that 

Corollaty: Lemma 4 is valid when condition ii) is replaced by the 
condition I-~(t)l=O[sup,.,llz(~)11] where I:T(t)=[.~(t)..xl(f)]. The same 
arguments carry over since ] x l ( t , ) l  < Mlx(t,)l implies ~ ~ z ( z ~ ) ~ ~  

< ~ ~ l . x ( ~ , ) l ,  and hence 
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The Decentralized Quickest Detection Problem 
D. TEhlEKETZIS AND P. VARAIYA 

Abstract -Two detectors making  independent  observations  must  decide 
when a Markov  chain  jumps  from state 0 to state 1. The decisions are 
coupled through a  common cost function. It is shown  that  the  optimal 
decision is characterized by thresholds as in  the  decoupled case. However, 
the thresholds are timevarying and  their  computation  requires  the solution 
of two coupled sets of dynamic  programming equations. A comparison to 
the  decoupled w e  shows the structure  of  the  coupling. 

I. INTRODUCTION 

Two detectors make independent observations of a Markov chain .xr 
which jumps from state 0 to state 1 at the  random time 6. Based on its 
own observation detector i declares that the jump occurred at time T,, 

i = 1,2. The problem is to find stopping times T, that minimize the 
expected cost E J ( T ~ ,  T ~ ,  6). 

I f t h e c o s t i s s e p a r a b l e , J ( ~ ~ , ~ ~ , 9 ) = J ~ ( ~ ~ , 9 ) + J ~ ( ~ ~ , S ) . t h e n t h e t ~ o  
decisions are decoupled. In th s  case. for certain costs J,. the optimal 
decision T,* is to stop when the  “false alarm’’ probability drops below a 
threshold p?, i.e., 

T,*=min{rlP(6>tlY,‘)dp:},  (1.1) 

where xi is the information available to i at time I. This threshold 
property holds for the cost function J , (  T ,  6 )  = I( T < 8 )  T c( T - 6)1( T 2 
6) .  See [l], [2]. Here 1 ( A )  is the  indicator of .4. 

In this paper the cost function considered is 

J ( ~ ~ . ~ ~ . i t ) = 1 ( ~ ~ < 9 ) 1 ( ~ ~ < 8 ) + ~ ~ ( ~ ~ - 6 ) 1 ( ~ ~ ~ 9 )  

+C:(T2-fi)1(72>6). (1 .2 )  

This cost puts a  constant penalty for false alarms and, for each detector, a 
penalty  proportional to the delay in detecting the jump. Since this cost is 
not decoupled there is an interaction between the optimal decisions. The 
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interaction is simple since there is no communication between the detec- 
tors. The same problem is considered in [3]. The proofs given here are 
simpler and the results are more general. 

Theorem 3.1 states  that the optimal stopping time T,* is still char- 
acterized by a threshold p:( t ) .  which  however  varies with time [unlike 
( l l ) ] :  

The computation of these thresholds requires a simultaneous solution of a 
pair of coupled dynamic programming equations. 

If instead of (1.2) one considers the separable cost 

then the  optimal decisions T: are decoupled and characterized by con- 
stant thresholds pp, say. Theorem 4.1 states that ppd p:( t )  for all t so 
that 7: 2 T,*. Theorem 4.2 states that under some additional conditions 

The remainder of the paper is organized as follows. The formal model is 
presented in Section 11. Section I11  is devoted to a proof of the threshold 
property,  and Section IV developes some properties of the thresholds. 

p ? ( t )  -+ pp as f -+ x .  

11. THE MODEL 

Let { . x f ,  t = 1 , 2 , - . - }  be a Markov chain with values in {0,1} and 
known transition probabilities 

P { x , ~ l = l J s l = o } = q ,  P { x , - l = l ~ . x l = l } = l ,  P { . x , = 0 } = p o .  

Thus, the chain makes a single jump to 1 at the random time 6: = min, { .xl 
= 1). 

Let { w; }, i = 1,2, be mutually independent iid sequences, also indepen- 
dent of { x I } .  Detector i’s observation at f is ?;‘=f‘(.x,. w;). Let yI’:= 
(r(?;’, s d t ) .  and let T, denote r,i stopping times. The problem is 

I T,  - 1 

(2.1) 

Fix T,, possibly at the optimum. Then detector 1’s problem is 

I 7, - 1 

rvhere 

Since attention is henceforth focused on problem (2.2). the index 1 is 
dropped. Thus the aim is to find a stopping time T to minimize W ( T )  
where 

Until .Section IV the special fonn (2.3) of y is not required. It is 
assumed only that c > 0 and that y is nonnegative and bounded. 

111. DYNAMIC P R O G ~ I I N G  

To express (2.4) in a more convenient fonn introduce the statistic 

p 1 : = P { x r = O ~ y I ) = P { ~ ~ t l Y , } ,  (3 .1)  

and observe that 

Let P i ( y )  be the probability density of yr conditioned on .xf = i, and 

A familiar argument using Bayes’ rule gives the “updating” formulas 

From (3.4) one can conclude using dynamic programming arguments 
that the optimal  stopping time is based only on the “sufficient” statistic 
p r .  Furthermore, if GI is constant then known results imply that the 
optimal rule is characterized by a threshold [l]. [2]. For the time varying 
case it is necessary to  study  the value function. To do this it is convenient 
to first consider a finite horizon N and then let X -+ m. 

Finire Horizon 

Fix N < x and consider the problem 

min U(T)  
1 q r s . v  

Define the  operator q which transforms any function W( p ) ,  p E [O,l], 
into 

and define the functions W, by 

A dynamic programming argument then shows that W, is the value 
function, i.e.. 

r - 1  

G , l ( x , = O ) + c x   l ( . u , = l ) l p l = p  . (3.9) 
I = I  I 

This indeed implies that the optimal decision at I need only be based on 
p r .  In fact it is optimal to  stop at I if and only if 

G r p l d c ( l - ~ , ) + [ ‘ k W , + , l ( ~ , )  

P { “ r - s = O I Y , } = p l ( l - q ) s ,  s > o .  (3.2) The threshold property is based on the following fact. 
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Lemma 3.1: W , ( p )  is a concave nonnegative function of p .  1 = 1;. ., A'. 
Proof: By (3.7) the assertion is true for t = N .  Suppose W,+l is 

concave. Then there is a collection of affine functions a , p  + /3,. i E Z, 
such that, 

W+1(P)=inf{aiP+P,B,).  

With this representation, and (3.6), 

= J i n f { ~ i p ( l - ~ ) p o ( ~ , + l ) + P , ~ ( ~ J r + l l p ) J  dYt+l. 

Hence, [ 'k W,+ is concave since the term within { . . . } is affine in p .  
From (3.8) it follows that W, is concave. Since the G, are nonnegative, so 
are the W,. 0 

Sincec>O,G,p<c(l-p)+['PW,+l](p)atp=O.Thisinequalityand 
Lemma 3.1 imply the threshold property. 

Infinite Horizon 

To minimize (2.4) take A'+ co in (3.5). So let W," 1 d 1 d N ,  denote the 
value functions defined by (3.7), (3.8). Since the set of Y,-stopping times 
T, with T 6 N as., increases with N it follows that W * " + l ( p ) <  W,,"(p), 
and so the following limit is defined: 

& ( p ) : =  lim ~ " ( p )  = inf w,"(p ) .  (3.10) 
N - r .v 

Theorem 3.1: The value functions W , ( p )  for detector 1 satisfy 

W , ( p ) = m i n { G , p , ~ ( l - p ) + I ~ W , + ~ I ( p ) } ,  t = 1 , 2  :... 
(3.11) 

W,( p )  is nonnegative and concave. Define p * (  t )  by 

Grpdc(l-p)+['I'W,+l](p) i f f P d P * ( l ) .  (3.12) 

Then  the  optimal  stopping time for detector 1 is 

T * = D l h { t l p , < p * ( f ) ) .  (3.13) 

Proof: One gets (3.11) from (3.8); and concavity and nonnegativity 
follow from Lemma 3.1. Since % is concave (3.12) defines p * ( f ) ;  see the 
figure below. From (3.11), the optimal decision at t is to  stop iff 
W,(p,)  = G,p, which  gives the rule (3.13). 

0 I P 

It is interesting to  note the uniqueness of the solution to (3.11). 
Theorem 3.2: The value functions { W , ( p ) }  give the unique solution to 

V , ( p ) = m i n { G r p , c ( l - p ) + [ ' k V , + l ] ( p ) } ,   t = 1 , 2 , . . . .  

(3.14) 

Proof To show V , ( p )  d W , ( p ) ,  consider w,", t d N .  Then from 
(3.14) 

l,f';(p)=G,\rp>Y,T(p). 

Suppose W,.:, 2 V,+,. Then 

where the inequality follows from the fact that f > g implies 'I'f 2 9 g .  
Letting N + co proves the inequality. To show V , ( p )  > W,( p )  fix t ,  p ,  
and consider the problem starting at time t -4th p f  = p .  Define the 
stopping time T 2 r by 

~ = m i n { s 2 t ( G ~ p , d c ( l - p , ) + [ ' k V , _ ~ ] ( p , ) } .  

Then 

Adding and taking expectations conditioned on gives 

since W, is the minimum cost. 
Remark: Thus, the solution to (2.1) is obtained by solving a pair of 

coupled equations similar to (3.14). The coupling arises from the fact that 
for  detector i the penalty for false alarm at time t is G,! which depends on 
?* [see (3.3)j. Second, it should be clear that a pair of stopping times that 
satisfy these coupled equations only guarantee person-by-person optimal- 
ity. Third, to prove the existence of a person-by-person optimum one may 
argue as follows. Obtain sequences { Gj(n), l , f q ( n ) )  for detector i, n = 

1,2;.. such that {G,!(n),W,'(n)J are optimal for {G:(n),W,'(n)} and 
{G,'(n+l),W,*(n+l)} areoptimal  for {G,!(n),W,'(n)). The Gi(n) are 
uniformly bounded, and the W,'(n) are uniformly bounded and equicon- 
tinuous in p .  There will be a subsequence along which these functions 
converge. It is not difficult to see that these limit functions define a 
person-by-person optimal  pair. 

Iv. PROPERTTES OF THE THRESHOLD 

Assume henceforth that y is given  by (2.3). 

Now { T2 B t -1) E Y,?, and the fields y-,, o(xs,  s > t )  are independent 
given u(xx, s d t - 1). Hence 

Corollary 4.1: 

GfSG,+1<1.  

Proof: From (3.2) and (4.1) 
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by Lemma 4.1. Finally. since y Q 1, G, 6 1, by (3.3). conveyed to  the  other one. The information  structure is no longer static 
Corollav 4.2: since the information available to 1 at time f is now described by the 

o-field generated by x' and the sets { T, < s, s 6 t ) .  which depends on the 

is no longer clear that T,* is based only on p;. 
& a  % + I .  (4-3) decision of  detector 2. This problem is more complex to analyze. Indeed it 

Proof From (3.9) 

i } 
7 - 1  

w,"(p)= min E G , , , _ , ~ ( X , = O ) + C C   l ( . x , = O ) l p l = p  . 
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l (x ,=o)+c   1( .x ,=1)  
t = l  

which is a special case of (2.4) with y = 1. For this case it is known that 
the  dynamic programming equation has a stationary solution [l]. [2]. 
Therefore, from Theorem 3.1 the  optimal value function W". threshold 
pd, and stopping time T" are given by 

Theorem 4.1: p*(t)  > pd for all t. Hence. T* 6 T" with probability 1. 
Linear-Quadratic  Reversed  Stackelberg  Differential 

Games with Incentives Proof From (3.11) and (3.12), p > p*(t) iff 

I T - 1  \ 
M. PACHTER 

P > ~ ; l ~ , ( p ) = ~ ; ' m i n ~  7 2 1  ~ l ( x T = o ) + c  c 1 ( X J = l ) t p r = p )  Abstracr-h this note the bear-quadratic staekelberg dif- 
ferential game with reversed information structure is considered. The 

> - ~ { l ( . r , = 0 ) + c C 1 ( . x , = l ) l p , = p }  using(4.2) leader is confined to stroboscopic (or  snapdecision) strategies and neces- 
wry and sufficient conditions are then given for the leader to be able to 

= W d ( P ) ,  impose, with the help of side payments, the (optimal) team solution. 

i s = r  

7 2 1  

and so p > pd. 
Thus, the alm is declared later if the decisions are decoupled. This is 

intuitive since the false alarm penalty is larger, although the argument is 
more  subtle since it depends on (4.2). 

Theorem 4.2: p*( r )+pd i fandon ly i f   P r{~ ,<6111=t}+ las t+x .  
Proof: Clearly p*( t )  + pd if and only if G, - 1 as r - x. and then 

the result follows from (3.4) and Lemma 4.1 I 
The condition of Theorem 4.2 will hold if detector 2's obsenrations are 

poor. In the extreme case, if detector 2 makes no observations at all, then 
T~ = T, uill  be a fixed stopping time and so Pr( 7. < 6/19 = f) = Pr{ T? < 
t } = 1 for t > T,. In the other extreme, if = x,. so that detector 2 has 
perfect observations, then clearly T? = 6. Pr( T~ < 613 = r } = 0, and so 
p*(t)  will be bounded away from p". 

V. CONCLUSIONS 

In the  situation considered here there is no communication between the 
two detectors. Thus. this is a team problem with static information 
structure. Even in this simple case, the coupling induced by the cost 
structure causes considerable complexity in the optimal stopping rules. 
Honrever, the fact that  the false alarm penalty in the coupled case is 
smaller than in the decoupled case permits a comparison between the two 
sets of stopping rules and may  suggest some simple suboptimal rules for 
the coupled problem. 

A more interesting problem than the one considered here would be to 
allow communication between the two detectors. Specifically, suppose 
that whenever a detector decides to declare the alarm, this decision is 

I. INTRODUCIION 

In this technical note we discuss deterministic, two-player, linear- 
quadratic, dynamic continuous-time differential games with a fiied hori- 
zon,  and, from the  information  structure  point of view,  we are in the 
realm of closed-loop Stackelberg games with reversed information struc- 
ture. In addition, we also incorporate into the model a side-payment 
transfer (viz. an incentive). 

Loosely speaking. two agents, the leader and the follower, control a 
linear dynamic system and are interested in optimizing (viz ,  in minimiz- 
ing) their respective quadratic loss functionals. The follower employs a 
feedback strategy, whereas the leader's strategy is a mapping from the 
space of follower decisions into the decision space of the leader. In 
addition, ~5th a view to inducing desirable results, the leader announces 
his strategy (in conjunction with the formula for the side-payment transfer 
from the follower to the leader) in advance; whereas the follower moves 
first and informs the leader on his instantaneous decision. A similar 
formulation was adopted in [l]  in a dscrete-time setting. Our formulation 
for the continuous-time problem has recourse to a strategy concept (for 
the leader) introduced in [2 ] ,  viz. the concept of a "stroboscopic" strategy. 

Thus, in Section I1 a concise formulation for the game is presented and 
the minimum-energy problem is discussed. Necessary and sufficient con- 
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