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The Decentralized Wald Problem 
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Two detectors making independent observations must decide which one of two 
hypotheses is true. The decisions are coupled through a common cost function. It is 
shown that the detectors’ optimal decisions are characterized by thresholds which 
are coupled and whose computation requires the solution of two coupled sets of 
dynamic programming equations. An approximate computation of the thresholds is 
proposed and numerical results are presented. ‘(” 1987 Academic Presr, Inc. 

1. INTRODUCTION 

The classical theory of optimal sensor signal processing is based on 
statistical estimation and hypothesis testing methods (Van Trees, 1969). 
The salient feature of classical signal processing theory is that all sensor 
signals are implicitly assumed to be available in one place for processing. In 
recent years, however, there has been an increasing interest in distributed 
sensor systems. This interest has been sparked by large-scale systems 
such as power systems, surveillance systems, etc., where because of 
considerations such as cost, reliability, survivability, communication 
bandwidth, compartmentalization, or even problems caused by flooding a 
central processor with more information than it can process, there is never 
centralization of information in practice. Thus, extensions are needed to the 
classical framework of detection theory if it is to be relevant to the design 
of distributed systems. The purpose of this paper is to attempt a modest 
step in the direction of a detection theory for distributed sensors. 

In this paper we study one of the simplest possible decentralized detec- 
tion problems. We consider two detectors 1 and 2, and two hypotheses 
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h, = 0 and h , = 1. The detectors make independent observations and based 
only on their information they have to decide which hypothesis is true. 
Each observation is costly. The cost associated with the final decisions U, 
(u,=O, 1, i= 1, 2) of the detectors is J(u,, u?, 12). In general J(u,, z12, h)# 
J,(u,,l1)+JAu2, h) so that the detectors are coupled through their common 
cost. The detectors’ objective is to determine the optimal decision rules 
which minimize the average cost due to their observations and their final 
decisions. 

A similar situation where two or more detectors with different infor- 
mation are coupled through a common cost has been previously considered 
by Tenney and Sandell (1981) and Lauer and Sandell (1982). However, the 
problems studied by Tenney and Sandell (1981) and Lauer and Sandell 
(1982) are considerably simpler than the problem considered here because 
the detector’s final decisions are based on a single observation only. A 
model of decentralized hypothesis testing and coordination where the 
detectors are allowed to accumulate more information at some cost has 
been recently considered by Kushner and Pacut (1982). The presence of the 
coordinator, as well as the approach taken in Kushner and Pacut (1982) 
(simulation study ), makes that problem essentially different from the 
problem and the approach presented in this paper. Another model of 
decentralized detection where the detectors are allowed to accumulate more 
information at some cost has been considered by Teneketzis and Varaiya 
(1984) and Teneketzis and Sandell (1985). However, the objective in 
Teneketzis and Varaiya (1984) and Teneketzis and Sandell (1985) is to 
detect the time of the jump from one hypothesis to another and not the 
true hypothesis. The same problem has been considered in Teneketzis 
(1982). The results presented here are more general as they deal with both 
the finite and infinite horizon decentralized Wald problem and provide an 
approximate solution to the problem when the statistics of the observation 
noise are Gaussian. 

The remainder of the paper is organized as follows: The formal model is 
presented in Section 2. Section 3 is devoted to a proof of the threshold 
property. An approximate computation of the thresholds is proposed in 
Section 4, and the numerical results of the proposed computation appear in 
Section 5. 

2. THE MODEL 

2.1. Problem Formulation 

Consider two hypotheses h, = 0, h, = 1 and assume that 

Prob(h = 0) = p (2.1) 
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Consider two detectors 1 and 2 and make the following assumptions: 

(A.1 ) The ith detector’s observation at time z is described by 

.I,;( f) = ,f;(h, n’: 1, i= 1,2, (2.2) 

where (n,; i, i= 1, 2 are mutually independent i.i.d. sequences which are 
also independent of the hypothesis 11. A typical example is the case of 
Eq. (4.1 ), where J,~( t) = h + n’,(t). The probability p, the distributions of ~1’. 
12,’ and the functions ,f,, ,fi are known to the designer of the policies. 

(A.2) The two detectors do not communicate. Each detector has to 
decide which hypothesis is true based on its own observations. Thus, if U, is 
the decision of detector i, and f is the time this decision is made then 

rr,(t) = :~,(.v:), (2.3 1 

where 
?.::=(~,(l)..‘?‘,(f)) (2.4) 

u, = 0, 1, i= 1, 2. (2.5) 

(A.3) The cost incurred by the final decisions U, of the detectors is 
J(u,, u2, h), where h is the true hypothesis. In general, J(u,, u2, h)# 
J,(u,, II) + Jz(uZ, II). Otherwise the problem decomposes into two standard 
independent Wald problems (Wald, 1947; Bertsekas, 1976; and Chernoff, 
1972). It is the coupling of the detectors through the cost that makes this 
problem interesting. Furthermore, 

Similar relations hold for U, . All inequalities in (2.6) imply that at most 
one mistake is less costly than at least one mistake. 

(A.4) Each observation made by each detector costs c. 

Let Yi = a(yi(s), s d t), let ~~ denote Y: stopping times and let fi (i = 1, 2) 
denote the set of stopping rules which are measurable functions of the data 
of detector i. The Decentralized Wald problem is 

Minimize E(c~,(~,)+c~~(Y~)+J(;I,(~,II), ;‘r(.r;‘), 11); 
(i.#E/-,;i= I.2 (2.7) 

subject to the assumptions above. 
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2.2. Features @the Problem 

The salient features of the problem formulated above are: 

1. There are two detectors with dij@rent information 
2. The decisions of the detectors are coupled through their common 

cost. 

Since J(u,, u,, h)#J,(u,, h)+J,(uz, h), the decentralized Wald problem is 
a team problem. More specifically, it is a sequential team problem with 
static information structure. The information structure is static because 
each detector’s information is not affected by the actions of the other detec- 
tor, (Ho, 1972, and Yoshikawa, 1978). Thus, the decomposition techniques 
of Yoshikawa (1978) can be used to determine the member by member 
optimal solutions of the decentralized Wald problem. 

3. ANALYSIS 

Fix y2~fZ, possibly at the optimum. Then, detector l’s problem is to 
determine a stopping rule to minimize EL(y , ), where 

EL(Y~)=E{c~,(Y,)+J(Y,(~;‘), u?, 4). (3.1) 

Note that in (3.1) we have used u2 instead of yz(y;2); we will use the same 
notation as in (3.1) in the sequel, with the understanding that u2 is a 
random variable whose statistics depend on the decision rule y2. 

In extensive form the problem for detector 1 is 

Minimize EL(u,, s,) 
U,6 ;o.l;.T, (3.2) 

where 

EL(u,, r,)=E{ct, +J(u,, u2, h)( Y;‘}. (3.3) 

This problem can be solved by backward induction. We first establish some 
notation, then we consider a finite horizon T and finally let T+ CCI. 

3.1 Preliminaries 

To write the equations for the backward induction in a more convenient 
form introduce the statistic 

n,:= P(h=O\ Y’,). (3.4) 
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Let Pi(y r (t )) be the probability density of y, (t) conditioned on h = i; define 

q(y,(~+l)l~,):=7r,P,(l’,(r+l))+(l-7r,)P,(.r,(r+l)) Vt. (3.5) 

d(n,, l’,(t+ 1)) := ~,P”(?‘,(f + 1 ))/q(.v,(r+ 1) 171,) ‘ft. (3.6) 

A familiar argument using Bayes’ rule gives the “updating” formulas 

P(y,(t+ 111 y;)=q(y,(t+ 1)1x,) Vt. (3.7) 

7T ,+I =d(~,, y,(t+ 1)) Vt. (3.8) 

With this notation we proceed to study a finite horizon problem. 

3.2. Finite Horizon 

Fix T < cc and consider the problem 

Min EL(u,, r,). 
7’: p;, I . ,5 

(3.9) 

Define the operator tj which transforms any function W,, ,(n), ICE [0, 11, 
t = 0, 1, 2 ,..., into 

and define the functions W: by 

W~(~r)=min(Go(y2)Ir+K0(y2), G,(Y~)~+K,(Y,)) (3.11) 

WT(~C)=~~~{G~(Y,)~+K~(Y,), G,(Y,)~+K,(Y,), 

c+ CtiWl,,I(~)~~ t= 1, 2 ,..., T- 1, (3.12) 

where 

GAY,) = 1 P(UZ Iho) J(j, u2, ho) 
u2 

-CP(U2Ih,)J(i,u2,h,) i=O, 1 (3.13) 
w 

mY2)=CPb, Ih,)J(C u27 h,) i=o, 1. (3.14) 
w 

A dynamic programming argument shows that Wr is the value function, 
that is, 
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Wf(rc)= min E:c(r,-t)+J(u,,u,,h)ln,=71) 
lSI,GT 
u, F :().I ; 

= min E(~(z,-r)+J(u,,u,,h)lProb(h=O)=n~ 
rcr,<T 
i,,t :0.1 I 

= min Elc(r,-t)+J(u,,u2,h)lY;). (3.15) 
tsr,<T 
1!, t :a1 : 

The term G,(yr) n+ K,(y?), represents the cost due to stopping at a 
certain time t and deciding h,. It is obtained by considering the 
cost E{J(u,, uz,h)l rl,: and setting U, = 0. Then E(J(0, u2, h) 1 Y; ) = 
nC,,p(u,/h,) J(O.~,~h)+(l-~) Cu2~blh) J(O,~~,~,)=G,(Y,)~+ 

K&i). The term G, (yz) rr + K,(y,) represents the cost due to stopping at a 
certain time t and deciding h, . It is obtained in exactly the same way as the 
cost due to stopping and deciding h,. Finally, the term c+ [1(1 WY+ ,1(n) 
represents the cost due to continuing at time t. It is optimal to stop at 
time t if and only if the cost due to stopping does not exceed the cost due 
to continuing, that is if and only if 

min {Gi(YJK+K,(y>)) <r+ [$f+'T+,](n). (3.16) 
IE fO.1 I 

The properties of the optimal stopping rule of detector 1 for a fixed yr E r2 
are based on the following facts: 

LEMMA 3.1. W:(z) is a nonnegative concave function of 71 (f = 1,2,..., T). 

Proof. By (3.11) the assertion is true for t = T as W;(n) is the minimum 
of two afline functions of 7~. Suppose that WY+ ,(rc) is concave. Then it can 
be described as an envelope of a collection I of aftine functions j.in + p,. 
i E Z, where A,, ~1, are constants such that 

WT+,(rr)=inf {A,n+~,~. (3.17) 

With this representation of W,!, ,(n), 

[~w,+,l(n,=jinf(~;~(~,~,(t+1))+,,iiq(J~,(t+l)lx)~~,(t+l) I 

= inf pIoII(t+ 1))  

jf{ ‘dy,(t+ l)ln) 
+I4 

I 
qb,(t+ l)ln)&,(t+ 1) 

= ! ii inf ~,P,(~,(t+1)(~)71+~;~(~~(~+~)l~)}~~,(~+~). 

(3.18) 



DECENTRALIZED WALD PROBLEM 29 

Consequently [$ IV, + ,](rc) is concave since the term within { } is affine in 
II. From (3.14) it follows that W:‘(rc) is concave, as it is the minimum of 
two affine and one concave function of n. 1 

LEMMA 3.2. At 7c =0 und x= I the ,jtillowing inequalities hold .for all t 
(t = 1, 2,..., T- 1 ) 

min 
iE [o.l; 

(G,(y2) n + K,(y?) iIn=,,<C‘+ c~~:+,l(~)l.=,, (3.19) 

min (G,(g,) 7~+K~(;~,))l~=, It :0.1 / cc+ [$~:+,l(~)l.=I. (3.20) 

Moreover, 

[+w:, ,1(~)2- C$Vl(~) for all t = 1, 2 ,..., T. (3.21) 

Proqf: Equations (3.19)-(3.20) follow directly from the definitions of 
W,!(X) and [$W:‘](n) for t = 1, 2,..., T. To prove (3.21) note that for all t 

Wl(n) < WY+ ,(71) (3.22) 

(because the set of stopping times increases as the horizon increases). The 

last inequality and (3.10) prove (3.21). 1 

The threshold property of the optimal stopping rule of detector 1 for 
fixed y3 E I-, follows from Lemmas 3.1 and 3.2. 

THEOREM 3.1. For,fi.xed yz E f2 the optimal stopping rule qf detector I is 
described bJ> thresholds m,, CI,, B,, z2, /I2 ,..., CZ~-, , PTp,. The optimal stop- 
ping time for detector 1 is 

r1=min{t:a,~rc,or~,<7r,~. (3.23) 

Proof: For t = T the threshold property of the optimal stopping rule 
follows from (3.11). The threshold mT is determined by the solution of the 
equation 

G(Y~) m,+ KAY,) = G,(YJ m,+ K,h). (3.24) 

For t = 1,2,..., T- 1 the threshold property follows from (3.12) the con- 
cavity of V(70, C$W,‘,,l(~), and (3.19)-( 3.2 1). The thresholds 
“I?B,,@,,PZY., ar-l,PT-, are defined by (3.16). More specifically 
x1 2 %,..., UT- , are determined by the solution of 

G,(Y,)@,+K,(Y,)=c+ C$W:+,l(~,), t = 1, 2 ,..., T- 1, (3.25) 
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and PI, h,..., Br , are determined by the solution of 

G”(~*)B,+K,,(Y,)=c+CI(IWT+,l(B,), t= 1, 2 ,..., T- 1 (3.26) 

(see Fig. 1). Detector 1 stops as soon as the cost due to stopping does not 
exceed the cost due to continuing; the cost due to stopping does not exceed 
the cost due to continuing if and only if 7t, < CI or rr, > /I (see Fig. I). Hence 
t, satisfies (3.23). 1 

3.3. Irzfkite Horizon 

To minimize (3.2) take T-+ IX, in (3.9). So let W,? denote the value 
functions defined by (3.11), (3.12). Since the set of stopping times z,, 
{r, < Tj, increases with Tit follows that W:‘+‘(n)< W:(x), therefore the 
following limit is defined: 

W,(n)= lim W:(rr)=i:f W:(x)= W(n). (3.27) T- I 

The last equality in (3.27) follows from (3.15); for all t, by a time-shift, 
we can obtain W, by 

minEfcs,+J(u,,U?,h)iProb(h=0)=71). 
r, 20 

It is possible to extend the results of Section 3.2 to obtain the following 
properties of W(z) and the optimal stopping rule of detector 1 for the 
infinite horizon problem: 

THEOREM 3.2. The value,function W(n) is a nonnegative concave function 
qf 71 M’hich satkfies the equation 

W(~)=min{G,(y,)71+K,(y,), G,(Y~)~+$~(Y,), c+ C$Wl(~)). (3.28) 

0 a1 PI 1 

-n- 

FIGURE I 
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The optimal stopping rule of detector 1 is characterized by thresholds ~1, /I 
which are determined by 

c+ [$W](rr)= min (G,(yz)n+Kj(l~,)). (3.29) 
it (0.I) 

The optimal stopping time,for detector 1 is 

5, =min{t:7r<aorrc>/IB). (3.30) 

Proof: The nonnegativity and concavity of W(n) follow from 
Lemma 3.1. Equation (3.28) follows from (3.12). Inequalities similar to 
(3.19)-(3.20) also hold because of Lemma 3.2. The threshold property of 
the optimal decision rule of detector 1 follows from (3.28), the concavity of 
[II/W](z), and (3.19)-(3.20) (see Fig. 1). The thresholds c(, fl are deter- 
mined by (3.29). The threshold c1 is determined by the solution of 

c+ C~wl(a)=G,(~r)a+K,(~z) 

and the threshold /I is determined by the solution of 

c + C$ WI(B) = G,(Y,) B + K,(Y~). 

(3.31) 

(3.32) 

Finally (3.30) can be obtained in exactly the same way as (3.23). 1 

It is interesting to note the uniqueness of the solution to (3.23). 

(3.33) 

from 

LEMMA 3.3. The value,function W(n) gives the unique solution to 

V(7C)=min{G,(y,)71+Ko(‘J2),GI(Y2)71+KI(Y2),c+ CICIWn)). 

Proof: To show that V(z) < W(n) consider W:(x), t ,< T. Then. 
(3.11) we get 

W?(n) 3 V(n). 

Suppose 

Then 

V(n) = min{G,(yd n+ &(Y,), G,(YJ 71 
+K,(YJ? c+ CtiV+,l(~)) 

> minIGo n+ &(~d, G,(y,) z+ K,(YA 
c+ CIClUn)) = Un). (3.34) 
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The inequality in (3.34) follows from the fact that f., &:fi implies $f, >, $fi. 
Letting T-+ ry proves W(X)>, V(z). To show V(n)2 W(rc) fix z, and 
define the stopping time z > t by 

t=min(s3rImin :G,(;‘,)~~.,+K,(Y~))~(.+ [$V](n,)}. (3.35) 
, 

Then 

V(?T,)=c+E{V(7r,+,)I r;; 

V(n ,+,)=(.+E{V(n,+,)l Y:+‘j 

since 

= mm, E{~(T-r)+J(u,,u,,h)l Y’,). 
Ld,E ;“,I; 

3 W71,), (3.36) 

W(n,)= min E I YS. I (3.37) 
u, t ro.1 : 

7, 

V(% ,)=c+E(V(TT,)I Y;-') 

V(7c,) = min 
It (0.1; 

{ Gj(y2) x, + K,(g,) ). 

Adding and taking expectations conditioned on Y; gives 

V(n,)= min Ejc(s-t)+G,(y,)7(,+K,(~~)I Y:J 
IE 10.1 I 

For fixed y2 E f2 the analysis of detector l’s problem is now complete. 
Based on the analysis above we can conclude the following about the mem- 
ber-by-member optimal (mbmo) solutions of the decentralized Wald 
problem. 

3.4. Qualitative Properties qf the mhmo Solutions of the Decentralized Wald 
Problem 

THEOREM 3.3. The mbmo stopping rules of the detectors are charac- 
terized by time-invariant thresholds cl’*, fl’*, a2*, fl’*. These thresholds are 
coupled and their computation requires the solution of the following coupled 
sets of dynamic programming equations: 

d*F,(a’*, j’*) + Q,(a’*,/?‘*) = c + [t,b W’](a’*), (3.38) 

P’*Fo(=‘*, P’* I+ Qo(a j*, B’*)=c+ [$w](j?‘*), (3.39) 
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where i # j, i, j = 1, 2; 

&(a’*, /?‘*) = G,(yl), j= 1, 2, f=O, 1, (3.40) 

Q,c@j*, P’*) = my: 1, j=l,2, f=O, 1. (3.41 ) 

G,(yT), K,(y,?) are given by (3.13) and (3.14), respectively, and IV’ refers 
to the value function of detector i. The optimal stopping times of the detec- 
tors have the property 

t* = minj t: 7r; d ai* or 71: > /?‘* ), i= 1, 2. (3.42) 

Proof: Since Theorem 3.2 holds for any stopping rule yZ E r, of the 
second detector, it also holds for a mbmo yf (the existence of such y:‘s will 
be discussed below). Thus, the mbmo stopping rules of the first detector are 
characterized by thresholds CI ’ *, /?I*. By symmetry, the mbmo stopping 
rules of the second detector are also characterized by thresholds CX~*, j?‘*. 
These thresholds are coupled because the terms G,(y,?) and K,(y:) that 
appear in the dynamic program of detector i (i, j = 1,2, i # j) depend on 
the decision u,? of detector j which in turn depend on the thresholds 
xi*, j?‘*. Hence (3.38)-(3.41) result from the argument above, (3.29), and 
the properties of the value function F+‘(Z) described by Lemmas 3.1 and 3.2. 
The property of the optimal stopping times T:, t; can be obtained by 
arguments similar to those of Theorems 3.1 and 3.2. l 

Remarks. 1. It should be clear that the thresholds that satisfy (3.38) 
and (3.39) guarantee only member-by-member optimality. To prove that 
member-by-member optimal solutions exist one may argue as follows: 
Define stopping times {t,(n): n B 1 }, (r*(n): n 2 1 } and sequences {GA(n), 
Gf(n), KXn), K!(n), w’(n)}, {Wn), Gf(n), KZ,(n), Kf(n), W*(n)}, for n>, 1 
recursively as follows: Define G,!(n), K,!(n), i=O, 1, as the functions 
t + G:,(n) = G:(n) and t + K,!,(n) = K,!(n) in (3.13) and (3.14), respectively, 
using the rule y2 defined by t2(n). Let W’(n) be the value function 
(n. t)-* W:(n)= W’(Z) defined from the functions G,?(n), K,?(n), i=O, 1, 
above and (3.28). Using (3.28), let r,(n) be the stopping time defined by 
W’(n) and G:(n), K,‘(n), i= 0, 1. For detector 2 define G,2(n + l), c(n + l), 
i=O, 1, as the functions t+Gf,(n+l)=Gf(n+l) and r-+Kf,(n+l)= 
K;‘(n + 1 ), in the same way as in (3.13) and (3.14), respectively, using the 
rule y, defined by z,(n) Similarly, for detector 2 let W2(n + 1) be the value 
function (rc, 1) + v(7c) = W2(rc) defined from Gf(n + I), Kf(n + l), i = 0, 1, 
and an equation similar to (3.28). Define T2(n + 1) as the stopping time 
resulting from W2(n + l), Gf(n + l), e(n + l), i= 0, 1. Note that t + Gjl(n), 
t --f K/,(n), and t + W:(n), i = 0, 1, j = 1,2, have a compact range. Sequen- 
tial compactness of G,!(n), G;(n), K;(n), K:(n), i=O, 1, W’(n) and W2(n) 
then follow from Tychonoffs theorem (Kelly, 1975). Consequently, there 
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will be a subsequence along which G,!(n), G;(n), K:(n), c(n), i=O, 1, 
W’(n), W’(n) converge. These limit functions define a person-by-person 
optimal pair. 

2. When the finite horizon decentralized Wald problem is considered 
the mbmo thresholds of the detectors are time varying. In this case, if T is 
the horizon, one has to solve 4T- 2 nonlinear algebraic equations of the 
form (3.24) (for time T) and (3.38)-(3.39) (for time t = 1, 2,..., T- 1) in 
4T- 2 unknowns (the thresholds) to determine the mbmo stopping rules of 
the detectors. 

3. The results presented in this section hold for the case where there 
are two hypotheses h,, h, and M detectors (M> 2) coupled through their 
common cost. 

So far we have determined the qualitative properties of the mbmo stopp- 
ing rules for the decentralized Wald problem. To compute the mbmo 
thresholds for the infinite horizon problem we have to solve a coupled set 
of equations like (3.38~(3.39) to determine a’*, fl’*, a’*, /I’*. In the next 
section we present an approximate computation of the thresholds when the 
observation noise for both detectors has Gaussian statistics and discuss the 
features of the solution. 

4. AN APPROXIMATE COMPUTATION OF THE THRESHOLDS 

Consider the decentralized Wald problem formulated in Section 2 and 
assume that: 

1. The detectors’ observations are described by 

y;(t)=h+M’;(t), (4.1) 

where { upi( t) ) (i = 1, 2) are zero mean white Gaussian noise sequences with 
variance a; {w,(t)) and ( ul?( t ) } are independent of each other and 
independent of the hypothesis h. 

2. The cost J( U, , u2, h) incurred by the decisions U, , u2 of the detec- 
tors is 

if u,=u,=h 

if u,#uz (4.2) 
if u,=u,#h,k>l,k<co. 

In this section we propose an approximate solution of the decentralized 
Wald problem with observations and terminal cost given by (4.1)~(4.2). To 
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achieve this solution we combine the main results of Section 3 with results 
from standard sequential analysis. 

The idea of the solution is the following: Let S, (resp. E, ) be the 
probability of error type 1 for detector 1 (resp. detector 2) (that is, the 
probability that if h = 0 detector l(2) will declare h = 1); similarly let 6, 
(resp. cJ be the probability of error of type 2 for detector 1 (resp. detec- 
tor 2) (that is, the probability that if h = 1 is true detector 1 (2) will declare 
h = 0). We shall write the cost (2.7) as a function of these four quantities 
and then we shall minimize the cost jointly over 6,, d2, e,, E?. After 
6,, 6?, E, , E? are determined, standard results from statistical sequential 
analysis will be used to determine the thresholds for the two detectors, and 
the final decisions u, , u2 of the detectors will be determined graphically. 

From statistical sequential analysis (Chernoff, 1972; Wald, 1947) it is 
known that the average number of observations required to reach a 
decision with errors 6, and 6? is approximately 

L l-62 
f’(O)= -20 6, log- 

6, 
+(I -6,)log& 1 (4.3) 

I 

when the hypothesis ho is true, and 

f’(l)=20 (1 -&)log 
[ 

l-62 6, 
-+s, log- 6 

I l-6, 1 (4.4) 

when the hypothesis h, is true. Relations similar to (4.3) and (4.4) hold for 
detector 2 with E, and e2 in place of 6, and 6,, respectively. Using (4.3) 
(4.4), and (2.1) we can approximately write the cost to be minimized as 

+ (t -El) log - 

1-82 
+ E, log--- 

El 
+(1 -E,)lO& 1 +(l-6,)&(1 -p) 

‘I 

+&$(I -p) :=L(b,, &, E,, E2). (4.5 1 

Note that L(6,, 6,, E,, cZ) is a nonconvex function of 6,) 6,, E,, c2 so that 
the minimization of L(. ) with respect to 6,) 6?, E, , E? can only guarantee a 
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local minimum. Let S:, S,*, ET, 6; correspond to a local minimum. Then 
the definitions 

1 -ST 
A, =log- 

6: 

s; 
A*=log , -sT 

I -&f 
B, =log- 

s: 

&=,ogE’* 
1 -r: 

(4.6 1 

(4.8) 

(4.9) 

from standard sequential analysis (Chernoff, 1972; Wald, 1947) can be used 
to compute the mbmo thresholds of the detectors. Afterwards, the decisions 
U, , u2 of the dectectors can be determined graphically as follows (Wald, 
1947): At any time t the sum S= C,;= I J’,(S) of the observations up to that 
time is a sufficient statistic for detector 1. As long as this sum remains 
between the two parallel lines I,, I, (Fig. 2) detector 1 continues to take 
measurements. The first instant of time the sum S is above I, or below I, 
detector 1 stops and accepts h, if S is above 1, and h = 0 if S lies below I,. 
Similar results hold for detector 2. 

The thresholds A ], A,, B,, B, determined by (4.6)-(4.9), result when the 
log likelihood ratio log(p(h, 1 y;)/p(h,,) yj)) = log( I -Z/X) is used as a suf- 
ficient statistic for decision making instead of rc. Thus, the thresholds 

FIG. 2. Detector I’s decision rule. 
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A,, AZ, B,, B, are related to the thresholds a’*, al*, fi’*, fi’* defined in 
Section 3 by 

1 -p* 1 -CC’* 
A, =log- A,=log--- 

1 -p* 
B, =log- 

1 - $* 

B rl* ’ B2* ’ 
B, = log -. 

a2* 

Note that the mbmo thresholds are coupled because they depend on ST, 
ST, ~7, ET, which are determined by joint optimization for the two detec- 
tors. The optimization problem whose solution determines ST, 6;, ET, E* is 
simple as it only requires the minimization of (4.5) with respect to 
6,) 6,, t‘, , E,; furthermore the numerical results of the next section obtained 
by the approach proposed here are intuitively appealing. The only 
approximation in the proposed solution appears in Eqs. (4.3) and (4.4). 
These equations are derived by considering the log-likelihood ratio 
log(p(lz, 1 ,r;)/p(& 1 ~1:) (i = 1, 2) as a sufficient statistic for decision making 
for each detector. When the sequential process is terminated and a decision 
is reached by detector 1 it is assumed that if U, = 1 then the value of 
log( P(h, ( JT; )/p(h, ) 1~; )) = A, ; if II, = 0 then it is assumed that the value of 
log( p(h, 1 JZ{ )/p(/z, I yj )) = A?. Similar assumptions hold for detector 2; that 
is, if U? = 1 then log(p(h, I &)/p(h,I FL))= B, and if u2 =0 then 
log(p(h, I y;)/p(h,I y;)) = B,. Since the excess of log(p(h, I .v()/p(h,I I’:)) 
over the thresholds A,, A,, B,, B,, is neglected when the sequential process 
is terminated, (4.3) and (4.4) are only approximate expressions for the 
average number of observations. A detailed derivation of (4.3) and (4.4) as 
well as a more complete discussion about the computation of q’(O) and 
q’( 1) is given in (Wald, 1947, Chap. 3.5 and Appendix A.3). 

5. NUMERICAL RESULTS 

In this section we present the numerical results obtained by the 
implementation of the solution approach proposed in Section 4. The 
probabilities of error 6,) d2, E,, s2 as well as the thresholds A,(6,, 6,), 
,4,(6,, 6,), B,(c,,&J, B2(&,,~,) are computed for various values of the 
following parameters: 

1. The prior probability p = Prob(h = 0). 
2. The variance D of the observation noise. 
3. The cost c of the observations. 
4. The penalty k arising when both detectors’ decisions are wrong. 

We present each one of our parametric studies separately and interpret the 
results obtained by these studies. As pointed out in Section 4 the cost 
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WREMENT,, 

0.00 I I I I I 
0.X 0.30 0.40 0.50 

P 

FIG. 3. Type 1 error versusp (k=4. c=O.l, u=O.5). 

L(6,, 6,, E, , Q) is a nonconvex function of (6,) 6,, sr, E*), consequently the 
values of (6,, 6,, E,, sZ) determined by the minimization of (4.5) corres- 
pond to local minima. The result of the minimization of (4.5) depends on 
the initial guess of (6,, S,, E,, E*). Some of the local minima of (4.5) result 
in dl=.s, and Sz=sZ. Such local minima are obtained when the 
minimization of (4.5) is initiated with S’/ = S;q = EQ = ET. The numerical 
results we present below correspond to minima for which 6, = E, , 6, = Q. 

5.1. The Variation of 6,, 6,, E,, Ed, A,(S,, f&h A1(6,, &Jr B,(E,rd 
B2(c,, EJ as a Function of p 

Figures 3 and 4 present the variation of the proabilities of error of 
types 1 and 2 as a function of p for fixed c, k, (T. These figures show that as 

INCREMENTp 

P 

FIG. 4. Type 2 error versus p (k = 4, c = 0.1, r~ = 0.5). 
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p increases, 6, and E, decrease whereas d2 and sZ increase. Such a variation 
of 6,) d2, cl, s2 (as a function of p) is also predicted by the qualitative 
properties of the mbmo stopping rules. As p increases the probability of the 
set of measurements y; (~1;) that would cause p to drop below /?I” (p:) 
decreases, thus decreasing the probability of error of type I. On the con- 
trary, as p increases the probability of the set of measurements that would 
result in 7~ > af (af) increases, thus increasing the probability of error of 
type 2. 

Figure 5 presents the variation of the thresholds A,(6,, 6,), A2(6,, 8?), 
B,(r-:,, E?), BZ(~,, .sz) as a function of p for fixed c, k, o. The figure shows 
that as p increases the thresholds A,(S,,6,) (B,(E,,E?)) and A,(6,,6,) 
(WE,, ~1) increase. Such a behavior of the thresholds is also intuitively 
expected because as p increases each detector would be biased more and 
more towards declaring tz = 0. Therefore, the area where h = 0 is accepted 
in Fig. 2 would get larger, and the area where h = 1 is accepted in Fig. 2 
would get smaller. Consequently all thresholds 
increase. 

A,, A,, B,, Bz) should 

5.2. The Variation of S,, S,, E,, Ed. A,(6,, 6,), 
BJE,, Ed) as a Function ofk 

Figure 6 shows the variation of the probabilitie of error of type I and 
type 2 as a function of the terminal cost k, incurred by two errors, for fixed 
c, u and p = 0.5 (when p = 0.5 some of the local minima result in 6, = Sz = 
E, = Ed when the minimization of (4.5) is initiated with S’,V = ST = E? = ~7; 
Fig. 6 presents such a local minimum). It is seen that as k increases the 
error probabilities 6,. 6,, e, , Ed decrease. Such a variation is also intuitively 

INCREhlENTp 

P 

Al -  ‘Q . . . . . . . . 

FIG. 5. Thresholds versus p (k = 4, c’ = 0.1. 0 = 0.5). 
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I\CKEMkNTI 

FIG. 6. Type 1 error versus b (p = 0.5, c = 0.99, CT = 0.5). 

expected, because as k increases the detectors tend to become more conser- 
vative and more cautious, hence they tend to base their decisions on more 
reliable information. Thus, the probability of error decreases. 

The variation of the thresholds A,, A?, B, , B, as a function of k is 
shown in Fig. 7. Since the detectors become more conservative as k 
increases, the areas where h = 0 and h = 1 are accepted in Fig. 2 should get 
smaller. Consequently A, (B, ) should increase and A, ( B2) should 
decrease. This behavior is indeed shown by Fig. 7. 

INCREMENT i. 11.15 A (I.14 I ’ 0 a 2 -,I I3 -iI 2s r .‘... . . . . . . . . . . “‘.....(,_ ‘.. ‘.......,.._ 
P 

A, - Q . . . . . . . . 

FIG. 7. Threshold versus k (p = 0.5. c = 0.99. 0 = 0.5). 
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5.3. The Variation of 6,, 6,, E,, E?, A,(6,, 6,L A,(6,, 6,L B,(c,, E2), 

B2(&, , Ed) as a Function of c 

Figure 8 shows the variation of the probabilities of error of type 1 and 2 
as a function of the cost c of observations for fixed CJ, k and p = 0.5 (as 
pointed out before, when p = 0.5 some of the local minima result in 6, = 
6, =F, = Ed when the minimization of (4.5) is initiated with S;,‘= 
6;” = pi: = ET, Fig. 8 presents such a local minimum). As the cost of obser- 
vation increases, the detectors tend to take less observations before making 
a final decision, hence the quality of information, upon which the final 
decision is made gets worse with increasing C, and one would expect 
6,) S?, E,, E? to increase with increasing c. This behavior is shown by Fig. 8. 

The variation of the thresholds A,, A,, B,, B, as a function of c is shown 
in Fig. 9. Since the detectors would tend to make a final decision more 
quickly as c increases, we would expect the areas of Fig. 2 where /I = 0 and 
h = 1, are accepted to get larger with increasing C. Hence, we would expect 
the lower thresholds A,, B, to increase and the upper thresholds A,, B, to 
decrease. The variation of the thresholds shown by Fig. 9 confirms this 
intuition. 

5.4. The Variation of 6,, S2, c,, Ed, A,(&,, d,), Az(d,, &), B,(E,, E?) 
B,(e,, E?) as a Functiofl of CJ 

Figure 10 shows the variation of the probabilities of error of types 1 and 
2 as a function of the noise variance CJ for fixed k, C, p. We set p = 0,5; then 
some of the local minima result in 6, = s2 = E, = E> when the minimization 
of (4.5) is initiated with 6y = 8$ = E;” = ~g. Such minima are shown in 
Figs. 10 and 1 I. It is intuitively expected that as the noise variance CJ 

INCREMENT I 
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FIG. 8. Type 1 error versus c (p = 0.5, k = I, cs = 0.5 ) 
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INCREMENT r 

Al -  A? . . . . . . . . 

FIG. 9. Thresholds versus c (p = 0.5, k = 1, o = 0.5 ). 

increases the quality of information of the detectors gets worse, thus 
6,) 6?, E,, sL increase. This behavior is actually shown in Fig. 10. Note that 
for r~ 3 20 the information from the observations is practically useless for 
the detectors. 

The variation of the thresholds A,, A,, B,, B, as a function of CJ is 
shown in Fig. 11. As the quality of information received by the obser- 
vations gets worse the detectors tend to rely more on their prior infor- 
mation, thus they tend to make decisions more quickly. Consequently, as CJ 
increases the areas of Fig. 2 where h = 0 and h = 1 are accepted will get 
larger; hence the upper thresholds A, and B, will decrease and the lower 

0.50 

0.40 

61 

0 30 

0 20 

0.10 

FIG. 
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FIG. I 1. Thresholds versus 0 (p = 0.5. k = 1, c = 0.1 ) 

thresholds A, and B, will increase. This is seen in Fig. 11. Note, as before, 
that for o&20 the information from the observations is practically useless, 
therefore the thresholds A ,(B,) and AZ(B2) approach very close to each 
other because the detectors make decisions based practically on their prior 
information. 

So far the numerical results presented in this section correspond to local 
minima for which 6, = E,, S, = s7. There are local minima of (4.5) other 
than the symmetric ones. We present below such a local minimum. 

5.5. Nonsymmetric A4emhur-h~~-A4emher Optimal Thresholds 

When the initial values of 6,) 6,, E,, s2 used in the minimization of (4.5) 
are Sy #ST #E? #Q then the resulting local minima of (4.5) and the 
corresponding mbmo thresholds are not symmetric. For example, for 
p=O.9, k=4, c =0.05, and initial guess, 

sy=o2 . 7 ST=05 . 1 E’: = 0 74 . 3 Fin=03 * 3 

the resulting local minimum of (4.5) is 

6 I = 0.000 164, E, =0.1150, 

62 =0.999457, Ed =0.5694, 

and the corresponding mbmo thresholds are 

A, = 1.1972429, A,= -0.0003791, 

B, = 2.791737, Bl = - 0.4410045. 
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6. CONCLUSIONS 

In this paper we formulated a simple decentralized detection problem 
which is the decentralized version of Wald’s problem. Even in this simple 
case the coupling induced by the cost structure causes considerable com- 
plexity in the computation of the optimal stopping rules. However, the 
qualitative properties of the mbmo stopping rules obtained in this paper 
suggest some simple approximate rules for the decentralized Wald problem. 
Such a simple approximate rule has been proposed in this paper: it was 
shown that results obtained by that rule are intuitively appealing. 
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