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Diagnosability of Stochastic Discrete-Event Systems
David Thorsley and Demosthenis Teneketzis, Fellow, IEEE

Abstract—We investigate diagnosability of stochastic dis-
crete-event systems. We define the notions of A- and AA-diag-
nosability for stochastic automata; these notions are weaker than
the corresponding notion of diagnosability for logical automata
introduced by Sampath et al. Through the construction of a
stochastic diagnoser, we determine offline conditions necessary
and sufficient to guarantee A-diagnosability and sufficient to
guarantee AA-diagnosability. We also show how the stochastic
diagnoser can be used for on-line diagnosis of failure events. We
illustrate the results through two examples from HVAC systems.

Index Terms—Discrete-event systems, failure detection, fault di-
agnosis, probabilistic models, stochastic automata.

I. INTRODUCTION

I N THIS paper we investigate the diagnosability of stochastic
discrete-event systems (DESs) or stochastic automata. DESs

are systems whose evolution is guided by the occurrence of
physical events that are separated by regular or irregular inter-
vals of time. Stochastic automata are a more precise formula-
tion of the general DES model, in which a probabilistic structure
is appended to the model to estimate the likelihood of specific
events occurring. An introduction to the theory of stochastic au-
tomata can be found in [2].

The failure diagnosis problem for DES is to detect the occur-
rence of specific predefined failure events that may not be di-
rectly observed by the sensors available to the system. Roughly
speaking, a system is considered to be diagnosable if any in-
stance of a failure event can eventually be detected from the ob-
servations made on the system.

The problem of diagnosability of logical DES has received
a lot of attention in recent years in the contexts of centralized
systems [1], [3]–[10], decentralized systems [11], timed sys-
tems [12], [13], modeling of systems [14]–[17], and applica-
tions [18]–[24]. Diagnosability of stochastic automata was in-
vestigated by Lunze and Schröder [25]. The approach to diag-
nosability of stochastic automata we adopt in this paper is sim-
ilar to that of [1]; comparisons between our results and those of
[1] will be made throughout the rest of this paper.

The main differences between the results of this paper and
those on diagnosability of logical DES are the following. Log-
ical DES models cannot distinguish between strings or states
that are highly probable and those that are less probable. There-
fore, the notions that a state can be observed or a failure can
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be diagnosed after a finite delay are “all-or-nothing” proposi-
tions: One possible system behavior, however improbable, that
does not allow the failure to be diagnosed is sufficient to con-
sider a system to be nondiagnosable. In this paper, we present
definitions of diagnosability that allow such improbable system
behaviors to be disregarded.

The main differences between are results and those of [25] are
the following. Our notions of diagnosability are distinct from
those of [25]; therefore, the conditions for diagnosability deter-
mined in this paper are distinct from those of [25]. Lunze and
Schröder correctly demonstrate that, in general, the observer
or diagnoser of a stochastic automaton cannot be itself real-
ized by another stochastic automaton, and do not attempt to ex-
tend the logical diagnoser approach of [1] to stochastic systems.
The “stochastic diagnoser” introduced in this paper inherits the
structure of the logical diagnoser of [1], and appends to each
transition a matrix that can be used to update the probability
distribution on the state estimate. The resulting machine is not
a stochastic automaton, but possesses a structure superficially
similar to one.

The main contributions of this paper are: 1) the introduction
of two notions of diagnosability that appropriately incorporate
the stochastic structure of the automaton; these notions of di-
agnosability are, as expected, less stringent than those of [1];
and 2) the determination of necessary or sufficient conditions to
guarantee the aforementioned notions of diagnosability. Prelim-
inary versions of the results in this paper previously appeared in
[26].

Because the model under consideration here allows us to for-
mulate the probability distributions of various state estimates
and failures, we consider two different definitions of what it
means for a failure to be “diagnosed.” In the first situation, a
failure is not said to be diagnosed until all possible system be-
haviors consistent with the observations of the system contain
at least one instance of the failure event. In the second situation,
we merely require that of all the consistent system behaviors, the
subset that contains the failure event has a probability above a
predetermined threshold. Both notions of diagnosability display
long term properties approximating the type of diagnosability
proposed in [1]. The conditions necessary and sufficient or suf-
ficient to ensure both types of diagnosability can be expressed
in terms of properties of a “diagnoser” that is the stochastic ana-
logue of that in [1].

This paper is organized as follows. Section II introduces the
stochastic automaton model under consideration and the con-
cepts and notation required to define diagnosability. Section III
introduces new definitions of diagnosability motivated by the
probabilistic nature of the automaton. Section IV describes the
construction of a stochastic diagnoser used to state conditions
that ensure diagnosability. These conditions are presented in
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Section V and illustrated using examples from HVAC systems
in Section VI. The results of the paper are summarized in Sec-
tion VII.

II. MODEL

This section describes the formal model of the type of system
we will attempt to diagnose and introduces the basic concepts
and notation necessary to approach the problem.

The type of system to be diagnosed is a stochastic automaton.
It is a quadruple

(1)

where

• is a finite set of events;
• is a finite state–space;
• is a state transition probability defined for

, , ;
• is the initial state.

The system evolves through the triggering of events at discrete
points in time, forming a sequence, or string, of events. The set
of all finite strings of positive probability is the prefix-closed
language , which for simplicity will be denoted as . is
a subset of , the Kleene-closure of the event set .

The system is observed through the events transitioning the
system from one state to another. The event set is partitioned
as , where represents the set of observable
events and represents the set of unobservable events. Ob-
servable events are events the occurrence of which is detected
by the sensors available to the system; unobservable events are
those events that the available sensors cannot detect.

When a string of events occurs in a system, the sequence of
observable events is indicated by the projection of the string,
which is defined in the usual manner [27] as

if
if

for (2)

where denotes the empty string. The inverse projection of a
string of observable events with respect to a language is
given by

(3)

We define a set of failure events . The objective of
the diagnosis problem under consideration is to determine the
likelihood of the occurrence of these failure events when only
the events in are observed. We can assume, without loss of
generality, that , because it is a trivial problem to
determine when an observable failure has occurred.

To facilitate the diagnosis problem, the set of failure events is
partitioned into a set of failure types

(4)

Fig. 1. Stochastic automaton. X = f0; 1; 2g, � = fa; b; c; � g, � =

� = f� g, and x = 0.

If a failure event occurs, we will say that “a failure of
type has occurred.”

The probability transition function defines the
probability that a certain event will occur and transition the
state of the machine from a given state to the specified state

. For example, states that, if the system is in
state , with probability 0.7 the event will occur and transition
the state of the system to . We will assume, for the sake of
simplicity, that for at most one . The
results that follow hold without this assumption.

Under this assumption, the probability transition function can
be used to define the partial transition function, which is defined
as where

(5)

If for some and , there does not exist such
that , then is undefined.

This relationship demonstrates that the stochastic model is a
more specific model than the logical finite state machine model
discussed in [1]. In the logical automaton model, the partial
transition function is defined as part of the specification of the
system, but here it is derived from the state transition probabil-
ities.

The partial transition function can be extended to strings of
events as follows:

(6)

(7)

Fig. 1 provides a pictorial representation of a stochastic au-
tomaton. The set of states is , and the initial
state is denoted by an unconnected transition. The
set of events is , which is partitioned into

and . A transition arc is
drawn between two states if the probability of that transition
occurring is greater than zero.

In order to facilitate the solution to the diagnosis problem, we
make two assumptions about the stochastic automaton :

(A1): The language generated by is live. That is to say,
for every state in , the probability of a transition occurring
from that state is one or, equivalently, for

(8)
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(A2): The generator does not have any cycle of unobserv-
able events or, equivalently

such that

Together these two assumptions force observable events to
occur with regularity. Assumption (A1) requires that transitions
will continue to occur regardless of the state of the system, and
(A2) requires that after at most a finite delay, one of these tran-
sitions will be an observable event.

The liveness assumption (A1) also forces all states in to
satisfy the Markov property, allowing the use of techniques of
Markov chain analysis in subsequent sections of this paper.

A. Discrete-Event Notation

The symbol will be used to denote the prefix-closure of
a string . The postlanguage is the set of possible
continuations of a string , i.e.,

(9)

When defining diagnosability, it will be important to consider
strings that end in a failure event of a specific type. Let the final
event of a string be denoted by . Define

(10)

Let represent the set of all strings that originate from
the state in the state–space of . Define

(11)

(12)

Convention: In the examples of stochastic automata in this
paper, observable events will be marked using lowercase Roman
letters, while unobservable events that are not failure events will
be denoted by lowercase Greek letters. Failures will be denoted
as .

B. Probabilistic Notation

From our assumption that for only one for
each pair , we can write . Therefore,
the probability of an event being the next event given the
system is in state is given by

(13)

If we wish to find the probability of a particular string being the
true future system behavior given the system is state , we can
calculate this recursively as

(14)

Because our tests for diagnosability can only be based on ob-
servable events, it will be important to determine the probability

that will be the next observable event given the system
is in state . This can be calculated as

(15)

If our state observation is incomplete, we will need to determine
the probability being in a state , given that we have observed
the string . This probability is

(16)

By combining (15) and (16), we can determine the probability
of the next observable event being , given that the string of
observed events to date is

(17)
Finally, if we are in a state , the probability that after the next
event , the system has been transitioned to the state is given
by

(18)

III. APPROACHES TO DEFINING DIAGNOSABILITY

The objective of the diagnosis problem is to detect the oc-
currence of an unobservable failure in the system, based on the
information available from the record of observed events. As a
starting point for motivating the discussion of diagnosability of
stochastic automata, we present a standard definition of logical
diagnosability defined in [1].

Definition 1: (Logical Diagnosability): A live, prefix-closed
language is -diagnosable with respect to a projection if

(19)

where the diagnosability condition function
is given by

if
otherwise

(20)

Fig. 2 shows an example of a system that is -diagnosable.
If the event occurs, the next observable event will be either

or . If is observed, then we know that the only possible
system behavior consists with our observation of is , and
the failure will be diagnosed. On the other hand, if is observed,
it will necessarily be followed by . The only behavior consis-
tent with the string of observations is , so once again
the failure will be diagnosed. Regardless of whether the first ob-
served event is or , in this example we will not have to wait
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Fig. 2. System that is logically diagnosable.

for more than two events after the failure to determine that the
failure has indeed occurred.

This definition of diagnosability was developed for logical
automata models and the necessary and sufficient conditions
for this type of diagnosability are stated in [1]. This definition,
therefore, makes no use of the probabilistic information that the
stochastic model under consideration in this paper contains. We
now present weaker definitions of diagnosability that take into
account the stochastic structure of the model.

A. A-Diagnosability

Consider the system in Fig. 3, and suppose that the behavior
of the system is the string . Clearly, . The
postlanguage of is given by , meaning that it
consists of an arbitrary number of ’s followed by an arbitrary
number of ’s.

Let . Let such that . Then, is of the
form , .

Suppose . Then, . The
failure is therefore diagnosed, as every string in the projection
contains the failure event .

Now, suppose , that is to say, . Then,
. The logical diagnosability

condition is not satisfied, as . Since the string is
part of the postlanguage for an arbitrarily large , there is
potentially an infinite delay before the failure can be diagnosed.
Therefore, the system is not logically diagnosable.

The string that does not allow us to declare the systems to be
diagnosable is , the only continuation after the failure
event along which the failure cannot be diagnosed. Because we
have appended probabilities to the system model considered in
[1], we can now consider the probability of the string being
the actual behavior of the system. At each moment, the proba-
bility of occurring is 0.9, so . As increases,
the probability of the set of strings that do not allow diagnosis
approaches zero.

Although in this system we can never guarantee that the
failure will be diagnosed after a finite delay, the probability of
a string of events that allows diagnosis becomes greater as we
observe more events after the failure event.

This observation is the motivation for this weaker definition
of diagnosability, which is created by making (19) less stringent.

Definition 2: (A-Diagnosability): A live, prefix-closed lan-
guage is -A-diagnosable with respect to a projection
and a set of transition probabilities if

(21)

Fig. 3. System that is A-diagnosable but not logically diagnosable.

where the diagnosability condition function is as in (20)

if
otherwise

(22)

The system in Fig. 3 is -A-diagnosable. The only string in
the postlanguage that does not allow diagnosis of the failure

is , a string whose probability of occurring approaches
zero as becomes arbitrarily large. This indicates that, after
a failure occurs, we can let the probability of diagnosing the
failure after a finite delay become arbitrarily high by selecting a
value such that is sufficiently small.

B. AA-Diagnosability

The definition of stochastic diagnosability presented in Sec-
tion III-B is not the only way in which the diagnosability con-
ditions in Definition 1 can be weakened using a probabilistic
model. Consider the system shown in Fig. 4. Let . The
postlanguage is given by . Let and let

be an integer such that contains observable events.
Then, , and .

The string is part of the set , regardless
of the length of the continuation . Similarly, if has
observable events, then .

Because and , the diagnosability
condition function is equal to zero for all continuations
of the string . Therefore this system is neither diagnosable nor
A-diagnosable, as we can never say for any continuation that
all possible true system behaviors consistent with the observed
behavior contain the failure event .

The problematic string is . However, just as when
the condition for A-diagnosability was developed, we can
consider the probability of the string which does not
contain the failure event . The probability of this string is

.
The probability of the string that does not contain a failure ap-

proaches zero as the number of events observed becomes large.
Therefore, although we cannot assure that a correct diagnosis
is made, we can force the probability of the failure event being
included in the actual behavior to be arbitrarily close to one by
waiting for a sufficiently long, yet finite, amount of observa-
tions.

This observation allows us introduce a third notion of diag-
nosability that is weaker than both logical diagnosability and
A-diagnosability:
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Fig. 4. System that is AA-diagnosable but not A-diagnosable.

Definition 3: (AA-Diagnosability): A live, prefix-closed lan-
guage is -AA-diagnosable with respect to a projection
and a transition probability function if

(23)

where the diagnosability condition function is

if
otherwise

(24)
The system in Fig. 4 is -AA-diagnosable, because as

becomes large, the probability that the system behavior that does
not contain a failure approaches zero.

Roughly speaking, the difference between logical diagnos-
ability and AA-diagnosability can be described as the differ-
ence between a “sure” convergence and an “almost sure” con-
vergence. For an automaton to be logically diagnosable, it is
required that all strings of a certain length allow the system to
be diagnosed, and a system is not considered to be diagnosed
until all strings consisted with the observed behavior contain
the failure event. In AA-diagnosability, we require that “almost
all” strings of a certain length will diagnose the failure, and we
consider a failure to be diagnosed if “almost all” strings consis-
tent with the observed behavior contain the failure event.

A-diagnosability can be interpreted as a condition halfway
between logical diagnosability and AA-diagnosability, as a
system is A-diagnosable if almost all strings of a certain length
diagnose the failure (as in AA-diagnosability) but we still
require that every string consistent with the observed behavior
must contain a failure before we diagnose the system (as in
logical diagnosability).

In our opinion, the notions of A- and AA-diagnosability
present an intuitive approach to defining diagnosability of
stochastic systems. This is because we are interested in the
behavior of stochastic systems only along strings of nonzero
probability; A- and AA-diagnosability are concerned with the
behavior of a stochastic automaton along only these strings.

The definitions of A- and AA-diagnosability place conditions
on the limiting behavior of the system as the length of a con-
tinuation following a failure grows without bound. To test for
these limiting properties, we will need to derive offline condi-
tions that are necessary and sufficient to confirm A- and AA-di-
agnosability.

On the other hand, if we wish to determine if the diagnos-
ability condition is satisfied for a specific , we can
do this by observing the behavior of the system online. Given an

observed string , we can calculate the probability that a failure
of type has occurred using a machine called the “stochastic
diagnoser.” If the probability of failure is greater than , we can
declare that a failure has occurred. The stochastic diagnoser can
also be used as a tool to help accomplish the primary goal of this
paper, which is to determine conditions necessary and sufficient
or sufficient to ensure A- and AA-diagnosability.

IV. STOCHASTIC DIAGNOSER

The stochastic diagnoser is a machine constructed from the
stochastic automaton that can be used either online or offline
to describe the behavior of the system. Its construction is based
on that of the logical diagnoser of [1].

Offline, the stochastic diagnoser can be used to formulate
necessary and/or sufficient conditions for A- and AA-diagnos-
ability.

Online, the stochastic diagnoser is used to determine three
pieces of information. First, it estimates the current state of the
system after the occurrence of each observable event; secondly,
it determines which failure events may have occurred for any
such estimate of the system state; and lastly, it calculates the
probability of each component of the state estimate.

A state of the logical diagnoser contains the first two of these
three pieces of information. In general, a logical diagnoser is
a finite state machine since there are a finite number of pos-
sible state estimates and a finite number of possible failures.
However, in a given stochastic diagnoser there may be infinitely
many probability mass functions associated with one logical di-
agnoser state, and thus a stochastic automaton cannot in general
be diagnosed using a finite state machine. This observation is in
agreement with the results of [25].

The stochastic diagnoser is thus a compact representation of
an infinite state machine. It is useful to think of the informa-
tion state (see [28]) of the stochastic diagnoser consisting of a
“logical element” containing the state estimate and failure infor-
mation, and a “stochastic element” containing the probabilities
of each component of the logical part of the state.

In this section, we describe the construction of the stochastic
diagnoser and demonstrate how it can be used to determine the
probabilities of failure events online. We also show how the sto-
chastic diagnoser can be described as a Markov chain, and re-
view results from Markov chain theory that will be used to de-
rive conditions for A- and AA-diagnosability in Section V.

A. Construction of the Stochastic Diagnoser

In order to construct the stochastic diagnoser, we need to first
define a set of failure labels where
is the number of different failure types in the system. The set of
possible failure labels is defined as

(25)

where denotes the power set of . The label
should be interpreted as representing the “normal” behavior
of the system, while a label of the form should be
interpreted to mean that “at least one failure of type and at
least one failure of type have occurred.”
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The set of observable states of the stochastic automaton is
defined as

(26)
The set of possible “logical elements” of the stochastic diag-
noser states is defined as follows:

(27)

Each logical element consists of a subset of the observable states
of the original system with failure labels attached.

The stochastic diagnoser for a stochastic finite-state machine
is the machine

(28)

where

• is the set of logical elements;
• is the set of observable events;
• is the transition function of the diagnoser (to be de-

fined later);
• is the initial logical element, defined as

;
• is the set of probability transition matrices (to be

defined later);
• is the initial probability mass function on .

As an illustration, the stochastic diagnoser for the system of
Fig. 1 is presented in Fig. 5.

The set of logical elements, , is the subset of that is
reachable from under . A logical element is a set
of the form

where and . A pair in a logical element
of a diagnoser state is called a component. The set of compo-
nents of the diagnoser is defined as the set of all triples
such that , , , and . The number
of components in a logical element will be denoted by .

In order to construct the probability transition matrices , we
will need to impose an order on the set of components in each
logical element . This order can be chosen arbitrarily.
By convention, the th component of a state will be denoted
by .

Each logical element of the diagnoser consists of the set of
components that are possible true states consistent with the ob-
served system behavior. If the component is part of , it
means that for every sequence of observed events that transitions
the diagnoser to , there exists at least one string in the inverse
projection of that sequence such that transitions the stochastic
automaton to the state and failures of all types included in the
label are included in . The properties of components of the
diagnoser will be essential to providing conditions for A- and
AA-diagnosability in Section V.

In order to define , the transition function of the diagnoser,
we must first define how the labels change from one logical

Fig. 5. Stochastic diagnoser of the system in Fig. 1.

element to another. Define the label propagation function
as

if

otherwise

(29)

Using the label propagation function, we can define the transi-
tion function of the diagnoser as

(30)

The function shows that a label is added whenever
the true behavior of the system contains an event .
Once this label is appended, it cannot be removed regardless
of whether or not an event in occurs or not in the system
behavior following the label.

From the transition functions of the original stochastic au-
tomaton and the stochastic diagnoser, we can define the compo-
nent transition function , which determines the component
of the diagnoser that is the true state of the original system, given
that the true behavior of the system is and .
Given , , and

(31)

The quadruple that has been defined above is
equivalent to the diagnoser presented in [1], with the modifica-
tion that the “ambiguous” label has been removed from the set
of possible labels. This quadruple is used to provide estimates
of the state and information on the possible failure events. This
is the “discrete-event” part of the stochastic diagnoser, which is
used to determine the logical element of the diagnoser state. In
order to derive the probabilities of each component in the logical
element of an information state, we now append a probabilistic
structure to make the diagnoser “stochastic.”
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We define a set of probability transition matrices as

(32)

(33)

where the range represents the set of finite-dimensional
matrices whose values are contained in the interval [0, 1]. The
size of the matrix outputted by is .
So, for example, if an event takes the diagnoser from a logical
element with components to a logical element with com-
ponents, the size of the matrix associated with that event will be

. The initial probability vector of the system corresponds
to the probability mass function of the initial logical element.
Since the only component of the initial logical element is, by
construction, , we define

(36)

(37)

(38)

(39)

...
. . .

...

(40)

(41)

In general, the number of information states of a stochastic
diagnoser is infinite because there may be a unique for each
sequence of observable events in the system. Since there may
be infinitely many unique sequences of observable events, there
may be infinitely many reachable probability vectors. The set of
matrices are a compact representation of the calculations that
are needed to compute the reachable probability vectors along
any observed behavior of the stochastic automaton.

Given that the information state of a diagnoser is ,
where is an order set and is a vector

, we conclude that , .
The following theorem makes clear the procedure of calculating
the probability vector from the set of matrices .

Theorem 1: The state probability vector can be cal-
culated recursively as follows:

(42)

(43)

Proof: If the observed string is the empty string, then, by
its construction, the stochastic diagnoser is in the initial logical
element and . Now, suppose there exists an
observable event that transitions the system from a logical
element where to where .
The recursive equation for the probability vector is given by the
derivation (36)–(41)

The dependence on the observed string in (40) does not
affect the values of the terms of the matrix since these probabil-
ities satisfy the Markov property (Assumption A1).

This result gives us a method to perform on-line diag-
nosis by calculating the probability vector from the ma-
trices in the stochastic diagnoser. Suppose the observed
behavior of the system is , and the se-
quence of observed logical elements is .
Then, the unnormalized probability vector is given by

. To find
the normalized probability, we need to divide this vector by

, which is simply the sum of the terms of .
To perform online diagnosis of failures using the stochastic

diagnoser, select a threshold such that . Suppose
we observe online the string of events , and let .
We say that a failure has been diagnosed online if
or, equivalently, if .

Example 1: Consider the diagnoser in Fig. 5, and suppose
the observed behavior of the system is . Then, the
probability vector is given by

(44)

The logical element reached after observing is
. Therefore, the information state of the

stochastic diagnoser is

From this information state, we can conclude that

Therefore
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If we had set a failure threshold of, say, , we would now
declare that a failure has occurred and take appropriate steps to
repair the system. If we had set a higher threshold ( ),
we would continue to observe the system until such time as a
string is observed where .

B. Embedded Markov Chain of the Stochastic Diagnoser

Despite the fact that the stochastic diagnoser has matrices as-
sociated with each transition instead of simple probabilities, em-
bedded within a diagnoser is a Markov chain whose states are
the components of each state estimate in the diagnoser. The ex-
istence of this embedded chain will allow us to use techniques
of Markov chain analysis to derive conditions for A- and AA-di-
agnosability in Section V.

To construct the embedded Markov chain, first define
as

(45)

is simply the sum of all the matrices associated with
the transitions from to . If there are no transitions from
to , is a matrix of zeros of size .

We can construct the embedded Markov transition matrix
from as follows.

Theorem 2: Let be a stochastic diagnoser. Then, the ma-
trix is a Markov transition matrix, where is de-
fined as

...
. . .

... (46)

Proof: Let , and let be the th compo-
nent of . By construction

(47)

(48)

The sum of the th row of is, therefore, given by

(49)

When the matrix is constructed, the th row of is
constructed from the th rows of , where is an arbitrary
logical element in the stochastic diagnoser. So, the sum of the

th row of is given by

(50)

(51)

(52)

Therefore, the sum of each row of is 1. The number of
rows in is equal to the sum of the number of rows in

for any , i.e., . Similarly, the number
of columns in is equal to the sum of the number of
columns in for any , i.e., . Because
it has an equal number of rows and columns, is a square
matrix. Therefore, is a Markov transition matrix.

Example 2: To illustrate the results of Theorem 2, consider
again the stochastic diagnoser shown in Fig. 5. Denote this diag-
noser by . The Markov chain embedded in has a matrix of
transition probabilities that is given at the bottom of the
page. The components to the left of the matrix indicate which
component is associated with each row of the matrix. The hor-
izontal and vertical lines in the matrix delineate the boundaries
between the different matrices . By inspecting ,
the matrices associated with each transition of can easily be
identified.

C. Relevant Results From Markov Chain Theory

Because the components of the diagnoser can be thought of as
states of a finite Markov chain, we will be able to use the theory
of finite-state Markov chains to derive conditions for A- and
AA-diagnosability. The following subsection is a review of the
results in finite-state Markov chain theory that will be essential
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for this paper; readers seeking a more thorough review of the
subject should consult [29] or [30].

Suppose that and are two states of a Markov chain. The
notation indicates the probability that if the Markov chain
is in state , it will, at some point in the future, visit state .

If, for a state , , that state is called recurrent. Oth-
erwise, if , then is a transient state. If a state is tran-
sient, then at some point in the evolution of the Markov chain
the system will leave that state and never return; on the other
hand, if a state is recurrent, if the Markov chain visits the state
once, the chain will return to that state infinitely often. If the
Markov chain is finite-state, there must be at least one recurrent
state in the chain.

If , it is said hat is reachable from ; this is denoted
by . If is a recurrent state and , then is also
a recurrent state and . If there is a set of recurrent states

such that and for
, then that set is called a recurrence class. Paz [2]

indicates that determining whether or not a state is recurrent is
a decidable problem.

Suppose a chain starts in state . The probability that after
transitions, the state of the Markov chain will have transitioned
from to is denoted by . We can rewrite this proba-
bility in discrete-event notation as

(53)
As the number of transitions in a Markov chain grows large,

the probability of being in a transient state approaches zero.
As this idea is central to the development of conditions for A-
and AA-diagnosability, it will be expressed formally in the fol-
lowing lemma.

Lemma 1: Let be the finite state–space of a Markov chain,
and let be the set of transient states of the chain.

Let be an arbitrary state of the Markov chain, and let
be an arbitrary sequence of state transitions beginning at .

Then, , such that

(54)

Proof: Let . Then, the number of times that the evo-
lution of the chain takes it to state will be denoted by
the number of times the state is visited along a string

. Then

(55)

(56)

(57)

(58)

as the fact that is a transient state implies that .

Furthermore

(59)

In order for the sum of an infinite series to be finite, the terms
of that infinite series must approach zero. Therefore, ,

such that

(60)

This relationship can be rewritten in discrete-event notation as

(61)

where is the number of transient states of the Markov chain.
Since is an arbitrary element of , we can conclude

(62)

(63)

V. CONDITIONS FOR DIAGNOSABILITY

In this section, we present necessary and sufficient conditions
for a stochastic automaton to be A-diagnosable, and sufficient
conditions for a stochastic automaton to be AA-diagnosable.
These conditions are expressed in terms of the stochastic diag-
noser introduced in the previous section and take advantage of
the Markov properties of the diagnoser shown by Theorem 2.
Before determining conditions for A- and AA-diagnosability,
we present some additional properties of the stochastic diag-
noser.

A. Properties of the Stochastic Diagnoser

The following properties of the stochastic diagnoser can be
deduced from the properties of the label propagation function
and the Markovian structure of the problem.

Property 1: All components that are reachable from a com-
ponent with the label also bear the label .

Proof: If , then for
. Essentially, once a failure label is appended, it cannot

be removed.
Property 2: A logical element of the diagnoser is said to

be -certain if for all , either or . If a
logical element is -certain, then either every string reaching
that element contain some event such that or there
does not exist any string reaching that element that contains any
such .

This property is shown in [1, Lemma 1-i].
Property 3: All components in the same recurrence class

have the same failure label.
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Proof: Suppose and are components in the same re-
currence class. Then, is reachable from and vice versa.
From Property 1, if a label were appended to by a string
reaching from to , it cannot be removed again by any string
reaching from to . Therefore, and must carry the same
label.

Property 4: All components reachable from a recurrent com-
ponent bearing the label in an -uncertain logical element
are contained in -uncertain elements.

Proof: Let denote a recurrent component bearing the
label in an -uncertain logical element.

Consider a logical element where all components
have labels that include . By Property 1, all components
reachable from any component in this element also bear the
label . The diagnoser transition function shows that any
logical element reachable from contains only those com-
ponents that are reachable from the components of . From
Property 1, the only components reachable from the compo-
nents of carry the label ; therefore, all logical elements
reachable from must be -certain.

Since is in an -uncertain element, it cannot be reached
from . Therefore, no component of can be in the same
recurrence class as , which implies that no component of
is reachable from .

Furthermore, from Property 1, no component that is reachable
from cannot carry a label , so no element that is certain that

did not occur can be reachable from . Therefore, the only
logical elements that can be reached from are -uncertain.

B. Necessary and Sufficient Condition for A-Diagnosability

Using the previous properties of the stochastic diagnoser, we
can state conditions for a language to be A-diagnosable in
terms of the structure of the diagnoser.

Theorem 3: A language generated by a stochastic au-
tomaton is -A-diagnosable if, and only if, every logical
element of its diagnoser containing a recurrent component
bearing the label is -certain.

Proof: Necessity: Necessity will be shown by contradic-
tion. Suppose there exists that such that is not -cer-
tain and contains a recurrent component such
that . We will then show that

(64)

By construction, every component of every logical element of
the diagnoser is accessible from the initial element. Therefore,
there exists a string , where and such
that and . Because is in an

-uncertain logical element, .
Let . Let be such that . By Property

4, for , the string transitions the diagnoser to an
-uncertain element. Therefore, for all

(65)

Choose such that

(66)

Equations (65) and (66), along with the fact that
, imply that for

(67)

Therefore, if there is a recurrent component carrying the label
in an -uncertain logical element, the stochastic automaton

is not A-diagnosable.
Sufficiency: Let be the set of components of a stochastic

diagnoser, and let be the set of transient components.
Suppose that every that contains a recurrent component

such that is -certain.
Let . By Lemma 1, there exists such that

(68)

Since is a component of the diagnoser of the system
reached by , this implies that

(69)

Therefore, if at least events have occurred since the failure
event, with probability greater than , we will reach an ele-
ment that contains at least one recurrent component.

However, because , . From
Property 1, any label reachable after the string must contain

.
If the true behavior of the system reaches a recurrent compo-

nent with label , then, by assumption, that component is part
of an -certain logical element. Therefore .

Since the probability of reaching an -certain element is at
least

(70)

(71)

Therefore, if every logical element containing a recurrent com-
ponent bearing the label is -certain, the system is A-diag-
nosable.

Example 3: Fig. 6 shows the stochastic diagnoser of the sto-
chastic automaton in Fig. 3, which was shown in Section III to
be A-diagnosable, but not diagnosable according to Definition
1.

The conditions for logical diagnosability indicate that this
stochastic automaton is not logically diagnosable because there



486 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 4, APRIL 2005

Fig. 6. Diagnoser of the system in Fig. 3. The recurrent components of the
system are (q ; 1;N) and (q ; 3; F ).

is a string that takes the diagnoser into a cycle of -uncertain
logical elements, and this cycle of -uncertain elements corre-
sponds to two separate cycles in the original system model.

However, the Markov matrix associated with this stochastic
diagnoser is

From this matrix, we can determine that the recurrent compo-
nents are and . To test for A-diagnosability,
we need only consider the recurrent component carrying the
label . This component is the only component in the logical
element ; therefore it is part of an -certain element. There-
fore, the stochastic automaton in Fig. 3 is A-diagnosable.

Theorem 3 indicates that in order to test for A-diagnosability,
we only need to be able to determine the recurrent components
of the stochastic diagnoser. This is equivalent to determining the
recurrent states of a Markov chain. Therefore, in order to test for
A-diagnosability, we need only know which events in our model
of the system have a nonzero probability of occurring and we do
not need to know the specific values of . This allows
us to confirm if our system is A-diagnosable even if we have not
modeled the transition probabilities exactly.

In the logical diagnosability conditions considered in [1], the
diagnoser itself was insufficient to confirm whether or not a
system was diagnosable; in general, it was also necessary to
consult a nondeterministic generator automaton based on the
logical automaton. However, the stochastic diagnoser contains
sufficient information to test the necessary and sufficient con-
ditions for A-diagnosability without reference to a generator or
to the original stochastic automaton. The reason for this is that
the set of matrices contains information that is lost in the
construction of the logical diagnoser; specifically, whether cer-
tain components in one diagnoser state are reachable for certain
components in other diagnoser states. This additional feature of
the stochastic diagnoser captures the information contained in
the generator automaton and allows the calculation of recurrent
components to be made by consulting only the stochastic diag-
noser.

C. A Sufficient Condition for AA-Diagnosability

Again using the properties of the stochastic diagnoser devel-
oped in Section V-A, we can determine a condition sufficient to
guarantee AA-diagnosability.

Theorem 4: A language generated by a stochastic au-
tomaton is -AA-diagnosable if for every logical element
in the diagnoser constructed from , the set of recurrent
components is -certain.

Proof: Suppose that in each logical element of the diag-
noser, the set of recurrent components is -certain. Let be
the set consisting of every component in every element in the
stochastic diagnoser, and let and be the sets
of transient and recurrent components of the diagnoser, respec-
tively.

From Theorem 2, the components of the stochastic diagnoser
can be treated as states of a Markov chain. Therefore, we can
apply Lemma 1 to say that , , such that

(72)
for any . For simplicity of notation, we will denote

by .
Suppose we observe the a string . We can then

condition the probability in (72) on , yielding

(73)
Because every term in this summation is nonnega-

tive, we can consider only the subset of possible strings
where .
For convenience of notation, that conditional probability
will be denoted by , and the conditional probability

will be denoted
by . This results in the following derivation:

(74)

(75)

(76)

(77)

(78)

Now, consider a fixed . Since ,
any recurrent component reachable by bears the label .
Therefore, if the probability that the system is in a recur-
rent component is greater than , the probability that has
occurred is also greater than , under the assumption that
the set of recurrent components in each logical element is

-certain. That is to say, if the failure has occurred, the con-
dition implies that

by (25).
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Therefore, if , and , we can
rewrite (78) as

(79)

(80)

Therefore, for , if the true continuation is events
long ( ), the probability of the set of strings of observable
events that take the stochastic diagnoser to an information state
where diagnosis can not be made has a probability of less than
. Therefore

(81)

That is to say, if the set of recurrent components in each log-
ical element of the stochastic diagnoser is -certain, the system

-diagnosable.
Example 4: 4 The stochastic diagnoser of the system in Fig. 4

is shown in Fig. 7. In Section III-B, it was shown that this sto-
chastic automaton is AA-diagnosable but not A-diagnosable.
The Markov matrix associated with its stochastic diagnoser is

Inspection of the matrix reveals that the recurrent components
of the stochastic diagnoser are and . Because
these components appear in logical elements that are not -cer-
tain, this system is not A-diagnosable.

However, the component is the only recurrent com-
ponent in the logical element , and is the only re-
current component in . Thus, the set of recurrent components
in each logical element is -certain and therefore the system is
AA-diagnosable. For this particular system, there is no string of
finite length such that the probability of failure given that string
is 1, but the probability of failure approaches 1 as the length of
the observed string increases.

As is the case with A-diagnosability, it is not necessary to
refer to the original stochastic automaton to determine if a
system meets this sufficient condition for AA-diagnosability.
The set of matrices provides enough information to de-
termine which components are recurrent, thereby making it
unnecessary to refer to the original system model.

Although this condition developed in Theorem 4 is sufficient
for AA-diagnosability, it is not necessary. The next example will
show a system that is AA-diagnosable but does not meet the
condition of Theorem 4.

Example 5: Consider the system in Fig. 8. We can use the
observations after the occurrence of the failure to determine if
the system is in states 1 or 2.

Fig. 7. Stochastic diagnoser of the system shown in Fig. 4. This system is
AA-diagnosable but not A-diagnosable.

Fig. 8. System that is AA-diagnosable, but does not satisfy the sufficient
condition of Theorem 4. States 1 and 2 can be distinguished by observing the
relative frequency of the events a and b.

The AA-diagnosability of the system in Fig. 8 can be deter-
mined using hypothesis testing techniques [31]. Because states
1 and 2 are separate recurrence classes, we can treat each state
as a hypothesis for the true state of the system.

Let denote the hypothesis that the system is in state ,
. If we observe events, a certain fraction will be and

the rest will be . Let denote the fraction of the observed
events that are .

To determine which hypothesis is correct, we consider the
likelihood function

(82)

Taking the logarithm of the likelihood function gives

(83)

As grows large, the log-likelihood of grows large as
well, provided the term is
greater than zero, which is the case when .

If the failure has occurred and the state of the system is state
2, we can determine from the law of large numbers that
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Fig. 9. HVAC system to be diagnosed. The failure events are � = fSTUCK CLOSEDg and � = fSTUCK OPENg.

Therefore, . Let . Now, choose
such that

Let . If a string occurs such that
and , then . Also, the probability that

is, by the law of large numbers, greater than .
Therefore, by Definition 3, this system is AA-diagnosable, de-
spite the fact that its stochastic diagnoser contains a state whose
recurrent labels are -uncertain.

VI. EXAMPLES

We illustrate the results on A- and AA-diagnosability to sto-
chastic versions of models of HVAC systems found in [32].
These examples also illustrate the relationships between logical,
A-, and AA-diagnosability.

A. HVAC System

The system model is a stochastic automaton constructed from
the composition of four components: a pump, a valve, a con-
troller, and a flow sensor. Probabilities are assigned to each

transition in the composed model, producing the stochastic au-
tomaton shown in Fig. 9. This is the system that will be diag-
nosed.

There are two failures under consideration in this system:
the valve in the HVAC system may become stuck open,
or it may become stuck closed. Formally, we define

and .
Using this fault partition, we construct the stochastic diagnoser

shown in Fig. 10.

By inspecting the diagnoser and the composed system model,
we can see that are no -indeterminate cycles (see [1]) in the
diagnoser, but there exists an -indeterminate cycle. Therefore,
the failure (STUCK_CLOSED) is logically diagnosable, but
the failure (STUCK_OPEN) in logically nondiagnosable.

To test for A- and AA-diagnosability, we need to determine
which components of are transient and which are recurrent.
We do this be constructing the Markov chain associated with this
diagnoser. For this example, this Markov chain has 29 states,
since there are 29 components in the diagnoser.

From the associated Markov chain, we can determine that
there is a recurrence class of components bearing the label
and another recurrence class bearing the label . These com-
ponents are highlighted in Fig. 10.
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Fig. 10. Stochastic diagnoser of the HVAC system. The recurrent components are highlighted.

Each recurrent component bearing the label is in a state by
itself; therefore, each component is part of an -certain state.
We thereby conclude that the fault is A-diagnosable. Simi-
larly, each of these components is a state whose set of recurrent
components if -certain, so is also AA-diagnosable.

The recurrent components bearing the label are not in
-certain states, therefore is not A-diagnosable. However,

since each of these components is the only recurrent component
in its state, is AA-diagnosable.

In this system, the STUCK_CLOSED failure is logically di-
agnosable and, thus, the STUCK_CLOSED failure is also A-
and AA- diagnosable. However, the STUCK_OPEN failure is
neither logically diagnosable nor A-diagnosable; it is merely
AA-diagnosable.

This example illustrates that logical diagnosability implies
A-diagnosability, which in turn implies AA-diagnosability;
however, a system that is AA-diagnosable may be neither
logically diagnosable nor A-diagnosable.

Consider the behavior of the stochastic diagnoser along the
trace

The logical element reached by is . Cal-
culating the probability vector along indicates that the prob-
ability that the valve is stuck open is 0.078, as shown by the
following calculation:
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Fig. 11. HVAC system with the new controller. The failure events are � = fSTUCK CLOSEDg and � = fSTUCK OPENg.

B. HVAC System With an Improved Controller

We now modify the stochastic automaton under consider-
ation by replacing the controller from the previous example
with another controller, which randomly decides the order in
which: a) the STOP_PUMP and CLOSE_VALVE commands
are executed; and b) the order in which the START_PUMP
and OPEN_VALVE commands are executed. The stochastic
automaton composed from this controller, the pump, and the
valve is shown in Fig. 11.

As in the previous example, we consider that the valve may
became either stuck open or stuck closed and formally define

and .
The stochastic diagnoser associated with this composed system
is shown in Fig. 12.

Once again, inspection of this diagnoser and the original
system indicate the absence of any -indeterminate cycles, but
the presence of an -indeterminate cycle. Thus, is again
logically diagnosable but is again logically nondiagnosable.

The Markov chain associated with this stochastic diagnoser
contains 43 states; the recurrent components are highlighted in

Fig. 12. As before, all recurrent components bearing the label
are in -certain states and, thus, is both A- and AA-di-

agnosable.

All the recurrent components bearing the label are in
-certain states. Therefore is A- and AA-diagnosable.

This example again illustrates that logical diagnosability im-
plies A- and AA-diagnosability. It also shows that a fault may
be A-diagnosable without being logically diagnosable, and the
an A-diagnosable fault must also be AA-diagnosable.

The previous examples illustrate how the concepts of A- and
AA-diagnosability can be applied to practical systems. In the
second HVAC example, the controller is an improvement over
the first example is the sense that the STUCK_OPEN fault
becomes A-diagnosable when the second controller is used, as
opposed to being merely AA-diagnosable under the first con-
troller. Thus, under the second controller, whenever is diag-
nosed we can be certain that valve is indeed stuck open; in the
first example, we cannot diagnose online without first setting
a probability threshold strictly less than one and thus creating
the possibility of a false positive diagnosis. However, sense this
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Fig. 12. Stochastic diagnoser of the HVAC system in Fig. 11. The recurrent components are highlighted.

probability threshold can be set arbitrarily close to one, the prob-
ability of a false positive can be made arbitrarily small.

VII. SUMMARY AND CONCLUSION

We presented an approach to diagnosability of stochastic au-
tomata. We defined A- and AA-diagnosability, two notions of
diagnosability that are appropriate for stochastic automata and
showed that they are weaker than the corresponding notion of
diagnosability for logical automata introduced in [1]. Roughly
speaking, a system is A-diagnosable if, in the long run, it is al-
most sure that we will become certain as to whether or not a
failure has occurred. The notion of AA-diagnosability is weaker
than A-diagnosability as, in AA-diagnosable systems, it is not
necessary that failures be diagnosed with absolute certainty, but
merely with almost sure certainty.

We determined offline conditions that ensure diagnosability
and showed how a “stochastic diagnoser” can be used for online
diagnosis of failure events. An important open problem is the
determination of a condition necessary and sufficient to ensure
AA-diagnosability.
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