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Abstract. We study the effect of communication delays on the performance of a coordinated decentralized
architecture for failure diagnosis of untimed discrete event systems. The architecture consists of local sites
communicating with a coordinator that is responsible for diagnosing the failures occurring in the system. A
protocol that realizes the architecture is defined by the diagnostic information generated at the local sites, the
communication rules used by the local sites, and the decision rule used by the coordinator to infer the occurrence
of failures. Our prior work (Debouk et al., 2000) has addressed the performance of a set of protocols under the
assumption that messages are received by the coordinator in the order in which they are sent globally. In this work
we relax the abovementioned assumption. We modify the coordinator’s decision rule for two of the protocols
analyzed in Debouk et al. (2000) to account for the reception of out of order messages. We discover conditions on
the system structure under which the modified protocols perform as well as the centralized diagnostic scheme
proposed in Sampath et al. (1995).
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1. Introduction

The problem of failure diagnosis has received considerable attention in the literature since
detecting and isolating failures plays an important role in the automatic control of large
complex systems. Consequently, many approaches for diagnosis have been extensively
studied (we refer the interested reader to Willsky, 1976; Pouliezos and Stavrakakis, 1994
and the introduction of Sampath et al., 1995 for a survey of failure diagnosis techniques).
Almost all of the failure diagnosis approaches in the literature have been developed for
systems where the information used for fault diagnosis is centralized. The majority of
technologically complex systems (computer and communication networks, manufacturing
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systems, process control and power systems, etc.) are informationally decentralized. In
decentralized information systems there are several work stations (decision makers,
controllers, diagnosers) each having access to its own local information. The stations may
communicate and exchange limited information with one another. If the local information
available at a work station is used in conjunction with the complete system model in order
to generate the local diagnostic information, then we are dealing with decentralized or
distributed diagnosis. Otherwise, if the work station only monitors a local component (or a
set of components) of the system and bases its diagnostic on the model of this component
(set of components) only, then we are dealing with modular diagnosis. In either case,
approaches to failure diagnosis suggested in the literature do not apply directly to these
systems, hence the need to develop diagnostic methodologies for informationally
decentralized systems. This fact is also recognized in Aghasaryan et al. (1998), Baroni et
al. (1999), Deb et al. (1998), Fabre et al. (2000), Holloway and Chand (1994), Mohindra
and Clark (1993), Pencolé (2000), Ricker and Fabre (2000), and Sengupta (1998). A
discussion of some of these approaches is available in Debouk (2000).

Although similarities exist between our approach and that of Baroni et al. (1999), Deb
(1998), Pencolé (2000), and Sengupta (1998), the modeling and/or informational
assumptions of Baroni et al. (1999), Deb (1998), Pencolé (2000), and Sengupta (1998)
and our work are clearly different: Sengupta (1998) proposes a discrete event systems
approach for failure diagnosis and focuses on diagnosis solutions based on inter-diagnoser
messaging schemes; the techniques of Deb (1998) rely on the fact that all information
about a sub-system and its neighbors is available for processing, or in other words the local
model is fully observable; Baroni et al. (1999) and Pencolé (2000) use modular diagnosis
approaches that are based on communicating finite system machines with some implied
timing information. Theses differences will become more evident in the sequel of the

paper.

System model
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(memory and processing constraints)
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Figure 1. Coordinated decentralized architecture.
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In this paper, we restrict attention to a coordinated decentralized architecture for failure
diagnosis with two local sites communicating with a coordinator. This architecture is
depicted in Figure 1. The top block in Figure 1 represents the complete system model. The
system is modeled by a regular language which accounts for both normal and failed
modes of operation of the system. The language is defined over an alphabet (event set)
which is the union of the disjoint sets of observable events and unobservable events. The
set of failures to be diagnosed is a subset of the set of unobservable events. Each site is
composed of two modules: an observation module and a diagnostic module. Site i,
ie{1,2}, locally observes the system, and based on its own observations generates its
own diagnostic information. Both sites communicate some form of their diagnostic
information to the coordinator. The task of the coordinator is to process, according to a
prescribed decision rule, the messages received from both sites to infer occurrences of
failures. If a failure is detected by the coordinator, it is broadcast to the failure recovery
module.

In Debouk et al. (2000) we investigated the diagnosability properties of the above
architecture under a set of assumptions. A major assumption is that the messages
communicated to the coordinator are received in the order they are sent globally. This
assumption may be too restrictive for decentralized systems. Local sites are using, in
general, different links to route their messages to the coordinator, and consequently
messages sent from different sites may be received out of order at the coordinator due to
communication or propagation delays. The objective of this paper is to study the effect of
these delays, and consequently the effect of out of order reception of messages, on the
performance of coordinated decentralized diagnostic protocols. For that matter, we
concentrate on two diagnostic protocols presented in Debouk et al. (2000), namely Protocols
1 and 2, and relax the assumption that global ordering of the messages at the coordinator’s
site is maintained. We call the resulting diagnostic schemes Protocol 1D and Protocol 2D,
respectively. We discover conditions sufficient to guarantee that Protocols 1D and 2D
perform as well as the centralized diagnostic scheme proposed in Sampath et al. (1995). The
diagnostic performance of Protocol 1D is inferior to that of Protocol 1 in the sense that there
are conditions on the system structure to guarantee that Protocol 1D performs as well as the
diagnostic scheme of Sampath et al. (1995) whereas Protocol 1 performs as well as the
diagnostic scheme of Sampath et al. (1995) irrespective of the system structure. Protocols 2
and 2D perform as well as the centralized diagnostic scheme of Sampath et al. (1995) under
the same conditions. Consequently, relaxing the assumption on global ordering of messages
at the coordinator’s site does not result in a performance degradation in the case of Protocol
2D. However, Protocol 2D requires more memory storage at the coordinator’s site than
Protocol 2. Similarly, in the instances where protocol 1D performs as well as the diagnostic
scheme of Sampath et al. (1995), the protocol requires more memory than Protocol 1.

This paper is organized as follows. Section 2 briefly reviews the coordinated
decentralized architecture for failure diagnosis of Debouk et al. (2000). Section 3
discusses our approach to accounting for communication delays in the framework of the
coordinated decentralized architecture of Figure 1. Sections 4 and 5 define two protocols
that realize the coordinated decentralized architecture and analyze their diagnostic
properties. Section 6 presents a brief critique of the diagnostic performance achieved by
the presented protocols.
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2. Preliminaries

We first note that this paper is presented as a complement of Debouk et al. (2000). The
definitions, assumptions, notations, and problem setting of Debouk et al. (2000) needed for
the development of the technical results of the paper are assumed. The following is a high
level description of the diagnostic approach and the coordinated decentralized
architecture.

2.1. The Diagnostic Approach

We begin by reviewing the discrete event systems approach to failure diagnosis with
centralized information upon which the decentralized diagnostic protocols we present
build on. The system to be diagnosed is represented by a deterministic automaton
G = (X,X,0,x,) where X is the state space, X is the set of events, ¢ is the partial transition
function, and x, is the initial state of the system. G accounts for the normal and failed
behavior of the system. The event set X over which the automaton is defined is partitioned
into two disjoint sets: a set of observable events X, and a set of unobservable events X, .
The projection from X to X, is denoted by P. Failures of interest are a subset X, of the set of
unobservable events. These failures are partitioned into disjoint failure types. The system
is said to be diagnosable with respect to a set of observable events if the occurrence of any
failure can be detected with a finite delay using the history of observable events. Diagnosis
of failures is achieved through the use of diagnosers. The diagnoser G, (or extended
diagnoser GY) of G is a deterministic automaton that estimates the state of the system
automaton following the observations and appends failure labels to the state estimates. The
diagnoser is at the core of the diagnostic methodology: it is used to analyze the
diagnosability properties off-line by performing a test on a specific type of its cycles, and
to perform diagnosis when it observes on-line the behavior of the system. Definitions
regarding diagnosers and extended diagnosers can be found in Sections 2.4 and 4.1.1 of
Debouk et al. (2000).

2.2. Diagnosis in the Coordinated Decentralized Architecture

In decentralized systems, the global system information is distributed at several sites. The
“‘agents’ (decision makers, diagnosers, etc.) at different sites may communicate and
exchange information in real time, or just report a processed version of their information to
a center that, in general, possesses limited knowledge of the system. In this paper we
consider the coordinated decentralized architecture depicted in Figure 1. The top block
represents the system model, or G in the notation of Section 2.1. G models the
synchronization of the interaction of all the components that constitute the system (see
Sampath et al., 1996). Each site is composed of two modules: an observation module and a
diagnostic module. Site i, i€ {1,2}, locally observes the system based on its available
sensing capabilities. Therefore, a projection P; is associated with site 7, where P; is defined
on the set of observable events X ;; X ; and X , need not be disjoint although sites 1 and 2
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may be physically apart. The union of X, and X, is the set of all observable events X,.
Site 7 locally processes its own observations and generates its own diagnostic information.
Both sites communicate a processed version of their observations to the coordinator. The
nature of information communicated is determined by the communication rules used by
the sites. The task of the coordinator is to process, according to a prescribed decision rule,
the messages received from both sites to infer occurrences of failures. If a failure is
detected by the coordinator, it is broadcast to the failure recovery module.

The main set of assumptions under which we intend to investigate the diagnosability
properties of the above architecture are as follows.

e The system is diagnosable with respect to the union of observable events at both sites,
however it is not diagnosable with respect to either set of locally observable events.

e Messages communicated by a given local site are received at the coordinator in the
order they are sent.

e The two sites are allowed to report to the coordinator only some processed version of
their raw data.

e The coordinator does not have a model of the system and it has limited memory and
limited processing capabilities.

We define a protocol to be a realization of the architecture, that is, a protocol is defined
by the local diagnostic rules, the communication rules between the local sites and the
coordinator, and the decision rule used by the coordinator to infer the occurrence of
failures. A protocol is said to diagnose the system if all failures are detected and isolated
by the coordinator within a finite number of steps after the failure event has occurred.
Thus, diagnosability requires that the detection of any failure should be achieved by the
coordinator within a finite delay of the occurrence of that failure.

We note that in this work, in contrast to Debouk et al. (2000) (cf. Section 3.1), there is no
assumption that global order of messages is maintained. That is, the messages transmitted
by different (distinct) local sites are not necessarily received at the coordinator’s site in the
order in which they are sent. In fact, and as mentioned earlier, this paper studies the effect
of out of order message reception at the coordinator’s site on the performance of the
decentralized diagnostic protocols presented in Debouk et al. (2000).

3. Addressing Communication Delay Issues in the Coordinated Decentralized
Architecture

In coordinated decentralized architectures, like the one in Figure 1, the coordinator may
receive messages out of order. Ordering of messages from one site to the coordinator may
be easily achieved with a transport layer protocol, for instance TCP, or a data link control
layer protocol such as Go Back n or Selective Repeat (Bertsekas and Gallager, 1992).
However, global order, i.e., ordering of messages sent by different local sites to the
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coordinator, is not necessarily maintained. To achieve global ordering of messages we
may use one of the following mechanisms:

1. We can introduce clocks at the local sites and time-stamp the messages sent by the
local sites to the coordinator. In this situation we need to make sure that clocks are
synchronized; we can achieve clock synchronization by the use of global positioning
systems (GPS) (see Schmid, 1997). Such a mechanism is not always practical or
feasible. For example, synchronizing clocks may be too constraining in low-energy
mobile communication networks (Stark et al., 2002) and telecommunication networks
(Fabre et al., 2000; Pencolé, 2000). The amount of information exchanged among the
nodes of a communication network to achieve the synchronization of the local clocks
is considerable; moreover additional processing and memory storage is required at the
local sites.

2. We can use untimed discrete event models and design algorithms that order the
messages arriving at the coordinator’s site. Such an approach is enforced, for instance,
in telecommunication networks where timing information, be it global time or local
time, is not available at any node (site) of the telecommunication network (Fabre et al.,
2000; Pencolé, 2000).

In this paper we will use the second approach. Under this approach, to generate a
diagnostic decision we store all incoming messages up until the instance where all possible
orders in which these messages are sent by various local sites can be sorted out. Once these
orders are sorted out, the coordinator’s decision rule is applied to all possible orders. The
same procedure is repeated every time incoming messages arrive at the coordinator’s site.
To highlight our approach to storing out message orderings at the coordinator’s site, we
assume that messages sent by local sites are received at the coordinator at most ‘‘one-step
out of order’’. The same approach can be used when messages are received at most “‘n-
step out of order’’ where 7 is finite, n > 1; the memory requirements at the coordinator’s
site increase as n increases. To illustrate the ‘‘one-step out of order’’ assumption consider
the following scenario. Assume the system executes the sequence of events ab. Suppose
that event a (resp. b) is observed by local site 1 (resp. local site 2). Denote by x (resp. y) the
message generated by the occurrence of event a (resp. b). If the order of reception of
messages at the coordinator’s site is yx, then x is said to be received ‘‘one-step out of
order’’. Under the assumption of at most ‘‘one-step out of order’’ arrival of messages at
the coordinator’s site, we analyze the performance of two of the protocols presented in
Debouk et al. (2000), namely Protocols 1 and 2.

4. Protocol 1D: A Coordinated Decentralized Protocol

In this section, we modify Protocol 1 considered in Debouk et al. (2000) to account for
communication delays. We refer to the modified protocol as Protocol 1D (where 1D stands
for the fact that it is a modification of Protocol 1 of Debouk et al. (2000) that allows for
communication Delays). A key feature of Protocol 1 studied in Debouk et al. (2000) is the
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following: under the assumption that all communicated messages are received in the
correct order by the coordinator, the coordinator is capable of ‘‘tracking’’ the state of the
system as well as a centralized diagnoser, even though it does not have any knowledge of
the dynamics of the system. This feature is the key to understanding and analyzing the
performance of Protocol 1D. When the messages are received out of order by the
coordinator, the coordinator should consider all possible orders according to which the
messages may have been sent and for each possible order it should use the information
update rule specified by Protocol 1 (briefly reviewed later). By doing so the coordinator
achieves the following (see Section 4.4): (1) if a specific order of messages corresponds to
a legal behavior of the system the coordinator’s update is non-empty, and for that order it
reconstructs the state of the centralized diagnoser associated with that legal behavior; (2)
otherwise the coordinator rejects that order as impossible because it gives rise to an empty
update. This implies that: (i) the memory requirements at the coordinator’s site may
increase considerably, because the coordinator has to store all the abovementioned
diagnoser states; (ii) the coordinator can identify a failure type F; only when F; appears in
the components of all the centralized diagnoser states reconstructed as described above.
Therefore, we expect that, in general, the performance of Protocol 1D will not be the same
as that of Protocol 1 (and consequently that of the centralized diagnostic scheme of
Sampath et al. (1995)). To achieve the same performance as a centralized diagnoser we
will need to impose further structure on the system. We determine conditions under which
the protocol is capable of diagnosing the same types of failures as the ones diagnosed using
the centralized diagnostic scheme of Sampath et al. (1995).

As is the case for any protocol that realizes the coordinated decentralized architecture,
we need to define the diagnostic rules at the local sites, the communication rules employed
by the local sites to communicate their diagnostic information to the coordinator, and the
decision rule used by the coordinator to infer the occurrence of failures. This is done in the
following three subsections.

4.1. Diagnostic Information at Local Sites

As is the case with Protocol 1, extended diagnosers are implemented at local sites.
Consequently, the diagnostic information available at each site is provided by the state of
the extended diagnoser. The state information is refined by the unobservable reach (cf.
Definition 9 in Debouk et al., 2000).

4.2. Communication Rules

The communication rules as defined for Protocol 1 are used for Protocol 1D.
Communication rule [CRi], i = 1,2, says that after the agent at site i observes an event
o €X,;, it communicates to the coordinator the corresponding state g, of its diagnoser G¢,,
its unobservable reach UR;(g;) with respect to X\Z ;, and a status bit, SB;, that takes the
values SB; = 1 when 6e€ X, je{1,2},j# i, or SB; =0 when o ¢ Z.
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4.3. Decision Rule
The coordinator’s decision rule is composed of the following three steps:

1. Store all incoming messages at the coordinator site, and sort out all possible orders in
which these messages may be generated by the local sites.

2. Apply the information update rule, as defined in Section 4.1.3 in Debouk et al. (2000),
to each and every possible sorted out order, and retain all orders that result in a non-
empty update (intersection).

3. Compare the failure properties of all surviving updates from step (2), and declare the
occurrence of a failure when all these updates are certain of the occurrence of the
failure.

These steps are discussed in detail in the following three sub-sections.

4.3.1. Sorting Out Possible Orders

All communication messages received at the coordinator’s site are stored until the instance
where all possible orders in which these messages are generated by the local sites can be
figured out. Determining the instance where all possible orders can be sorted out depends
on the messages received, namely which site observed an event and subsequently sent the
message. In general, one can continue sorting out (uncovering) all possible orders after
waiting for the arrival of at most three new messages at the coordinator’s site. This is a
direct consequence of the ‘‘one-step out of order’’ assumption and it is explained below.

Table 1 depicts the arrival of three new messages at the coordinator’s site. A message
with subscript i, i € {1, 2}, indicates it has been sent by site i. The left column in Table 1
describes the order in which messages are received at the coordinator’s site (left is
earliest), the middle column describes all possible orders that may have resulted in the
reception of messages by the coordinator, and the right column describes the orders sorted

Table 1. Sorting out possible orders at the coordinator site.

Messages Received Possible Orders Sorted Out Orders
X1Y222 X1Y22p OF yrX1Zp X1z Or yoXq

Y121 X2Y1Z1 OF y1XpZy XYy Or Y1 Xy

X122y X1Y221 OF ypX1Zy OF X121y, XYz O YoXy OF 1Z1))

Y122 X212y OF Y1 XpZy OF X525y X2y O Y1 Xy OF 525y
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out. The second column of the first row in Table 1 means the following: either the
reception order is the same as the one in which the messages are sent, or y, could have
been sent prior to x; (due to the ‘‘one-step out of order’’” communication delay). In both
cases z, is sent after y, due to preservation of local order. The third column of the first row
in Table 1 means the following: the sorted out (uncovered) orders are x,y, or y,x; and z,
needs to be stored until new messages are received to figure out the order in which it was
generated. The second row is the symmetric to the first and the last two rows are
interpreted in a similar way. Initially, the ‘‘order sorting’’ procedure is to wait for three
messages and afterwards uncover all possible orders of the first two messages while
keeping the third message for later consideration after new messages arrive. Later, in
Section 4.3.2, we will provide a more detailed description of how the sorting procedure is
implemented. Also, a brief discussion of the procedure under the assumption of at most
““n-step out of order’’ reception of messages appears in Section 6.
We conclude this sub-section with the following remarks.

Remark 1: Under the ‘‘one-step out of order’’ assumption, some cases require to wait
for the arrival of only two messages to continue the sorting out procedure. For example, if
two consecutive messages x and y are received by the coordinator from the same site, say
site 1, then the coordinator is sure that message x was sent first, by the local order
assumption.

Remark 2: In the case of possible orders x,;z;y, and x,z,y, in rows three and four,
respectively, of Table 1, the order in which the three messages are sent is uncovered since
by the ‘‘one-step out of order’” assumption messages y, and y;, received at the
coordinator’s site prior to messages z; and z,, should have been sent directly after these
messages.

Remark 3: The above sorting procedure assumes that there are no events commonly
observed by sites 1 and 2. If there are commonly observed events by both sites these events
can be used as a synchronization mechanism as follows: once a message regarding a
commonly observed event is received at the coordinator, say from site 1, then under the
“‘one-step out of order’’ assumption the message regarding the same event from site 2
should either follow or could be delayed at most by one step; hence, the correct order of the
message regarding the commonly observed event is recovered (since local order is
preserved) and the same sorting algorithm can be applied to the remaining messages that
have been received but not yet sorted.

4.3.2. Application of the Update Rule

We briefly describe the update rule of Protocol 1 as defined in Table 1 of Debouk et al.
(2000). In order to do so we first review from Section 4.1.3 of Debouk et al. (2000) the
structure of the coordinator. In addition to the register C where the coordinator stores its
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current diagnostic information, eight supplementary registers are used for storing
messages and previous relevant values necessary for the update of its information. These
registers store the latest states and unobservable reaches of GY; and G¢,, the previous
coordinator diagnostic information, and necessary information (some status bits) to
compute the new coordinator diagnostic information. The update rule follows the
following logic: first, intersect the state of the diagnoser that observed the last event with
the unobservable reach of the other diagnoser, and then intersect the result with the
previous coordinator state. If the event is commonly observed by both sites then the first
intersection involves the states of both diagnosers. The reader is referred to Section 4.1.3
of Debouk et al. (2000) for an explanation of the rationale behind the information update
rule. At reset, registers are initialized with the initial states and unobservable reaches of
G¢, and G¢,. Before performing any update of the coordinator diagnostic information, the
current coordinator diagnostic information is saved into the register holding the previous
coordinator state for later use.

At any instant when all possible orders are sorted out the coordinator applies to each
order of them the information update rule of Protocol 1 (cf. Table 1 in Debouk et al.,
2000). For every possible order that survives the update rule (that is, it results in a non-
empty intersection), the coordinator uses the diagnostic register C to hold the new
diagnostic update, along with the other needed registers to hold corresponding states and
unobservable reaches and status bits. If a specific sorted out order results in an empty
intersection following the application of the update rule, it is rejected by the coordinator.
The same procedure as above is applied when new orders are sorted out as a
continuation of the already existing ones, and the new updates replace the old ones that
are discarded.

Having defined the information update rule, we now provide more details on how the
“‘order sorting’’ procedure introduced in Section 4.3.1 and the information update rule
are implemented. Initially, the coordinator waits until it receives three messages (as
depicted in Table 1) before sorting out the possible orders. At that instant orders
including only two messages are sorted out, and the information update rule is applied to
these orders. The registers for each sorted out order are updated to hold the two newest
diagnostic updates along with the corresponding states and unobservable reaches and
status bits. Also stored for each order is the third message (cf. Table 1). When two new
messages are received at the coordinator’s site, the coordinator sorts out the new
possible orders (out of the third message that was previously stored for each existing
sorted out order and the two new messages that have been received) as a continuation of
a previously uncovered order. To every new sorted out order, the coordinator applies the
information update rule. By successively applying the procedure just described, the
coordinator sorts out the possible orders after receiving two new messages, except for
“‘reset’’ steps where three new messages are needed. A ‘‘reset’” step is either the first
time the coordinator begins sorting out messages (discussed above) or when a previous
sorting attempt results in an uncovered order that contains all the received messages (cf.
the last uncovered orders in rows three and four in Table 1 and the explanation in
Remarks 2 and 3). In general, at any instant of time when the coordinator has received
2m + 1 messages, the orders of at least 2m messages are uncovered by the arguments
presented above.
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4.3.3. Diagnosing Failures

If all the information updates that result from applying the procedure described in Sections
4.3.1 and 4.3.2 are certain that a failure F has occurred, then the coordinator declares that F'
has occurred and broadcasts this information to the failure recovery module. Otherwise, a
diagnostic decision is postponed.

4.4. Diagnostic Properties of Protocol 1D

We prove that Protocol 1D performs as well as Protocol 1 under certain conditions on the
system structure. Thus, when the coordinator receives messages out of (global) order, we
have a degradation in the performance of Protocol 1.

To proceed with the analysis of Protocol 1D, we introduce the following concept.

DEFINITION 4.1 A trace s€ L(G) is said to be ambiguous with respect to the projections
P, and P, and the failure type F if there exist a set of traces S = {s,,$,, ...} in L(G) such
that s, S,, ... are arbitrarily long (Note 1), and the following is true:

1. Pi(s)=P(s), s€S,
2. Py(s) = Py(s), s €S,
3. P(s) #P(s), s€S,

4 ([ Ps) =1 () [l s€eS,

5. F;es,
6. and there exists s’ €S such that F; ¢ s'.

This definition says that the traces s and s, s' €S, are distinguishable and have the same
number of observable events under the projection P; however, these traces are not
distinguishable under the projections P and P,. Furthermore, a failure type F; is in s while
there exists an s'€S that does not have the failure type F,. The following example
illustrates the concept of ambiguous traces.

Example 4.1: Consider the system shown in Figure 2. The set of events is
¥ ={a,b,c,d,e,0}, and ¢ is the only unobservable and failure event. Let F; denote
the failure type of the event ¢. Define X, = {a,c,d,e} and X, = {b,d, e}. The trace
s = baca(de)", for a given integer n, is ambiguous because there exists a trace
s’ = abc(de)" such that: (1) P,(s) = P,(s') = ac(de)" (2) P,(s) = P,(s') = b(de)",
(3) P(s) = bac(de)" # abc(de)" = P(s'), (4) || P(s) ||=]|| bac(de)" ||=| abc(de)" ||=
|| P(s") ||, (5) o €F, belongs to s, and (6) F; & s'.

The main result concerning the performance of Protocol 1D is summarized by the
following theorem.
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Figure 2. System model for Example 4.1.

THEOREM 4.1 If L(G) is diagnosable with respect to Protocol 1, then Protocol 1D
eventually performs as well as Protocol 1 if and only if there are no ambiguous traces in
L(G) with respect to all failure types.

The proof of Theorem 4.1 is based on an important property of Protocol 1D that is
summarized by the following proposition.

PROPOSITION 4.1 Consider any possible uncovered ordering of messages, say w,
produced by the rule of Section 4.3.1 when seL(G) is executed. If w is not the correct
order in which messages are sent to the coordinator, then the update rule of Section 4.3.2
applied to w results in a non-empty intersection if and only if w belongs to P(L). The non-
empty intersection resulting from the application of the update rule of Section 4.3.2 on w
gives the state of the centralized extended diagnoser corresponding to w.

Proof of Proposition 4.1: Consider that the system is executing the trace syu;au,buszc
where aeX,;, beX ,, ceZ, (Note 2), and uy,u,,us;€%;,. Denote by x, y, and z the
messages generated by the occurrence of events a, b, and c, respectively. Without loss of
generality assume that the messages are received in the following order: x, y, then z. This
covers the case presented in the third row of Table 1 (the fourth row is the symmetric
case of the third row while by inspection one realizes that the cases presented in rows 1
and 2 are sub-cases of those presented in rows 3 and 4, respectively). Let g, and g5 be the
states of the diagnoser G, after the execution of the event a and c, respectively, and ¢,
be the state of the diagnoser G, after the execution of the event b. Denote by ¢4, q114
and ¢,,, the states of the diagnosers G§, GY,, and G¢,, respectively, following the
execution of sj.
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We have, from Table 1 and the sorting procedure presented in Section 4.3.1, at most
three possible continuations of the orders in which messages were sent. These orders are
Xy, yx, and xzy. One of them, xy (corresponding to the observation of ab), is the true one by
assumption. From Theorem 3 of Debouk et al. (2000) we know that the application of the
update rule of Section 4.3.2 to xy results in the state of the centralized extended diagnoser
following the observation of P(sy)ab. Hence, we need to check the result of the
proposition for the orders yx (corresponding to the sequence of observable events ba) and
xzy (corresponding to the sequence of observable events ach). In the remaining we do the
proof for the order yx, and by the same argument we can prove the result for the order xzy.
Denote by C, the coordinator state resulting from applying the update rule to the order yx.
We have the following (from Table 1 in Debout et al., 2000):

Ca = (QI mf URZ(‘]Z)) Ne Cb = C2 Ne Cb (1)
where
Cy = (UR\(qoiar) Mo @2) N Cotq =: C1 N Copg (2)

and C,,, is the state of the coordinator following the order P(s,). Equation (1) is derived
using the row DR1 in Table 1 of Debouk et al. (2000) since b the last observable event of the
order yx belongs to X, \X,,; the index R is used in the intersection operator NX since site 2
observed the event previous to the last (event a in the order yx). Equation (2) is derived
using the row DR4 of Table 1 of Debouk et al. (2000) since the last observable event
considered (event a) belongs to £, \Z,,; the index i is used in the intersection operator M,
to denote either L or R: if site 1 observed the last event in sy, i = L, otherwise i = R.

We prove the proposition by induction on the number of observable events (in X)) in s,.
We first present the proof of the induction step, and the proof of the basis of induction
follows from it by minor modifications.

e [Induction step. We assume that: (i) for any trace #, € L(G) with || P(z,) ||< n all possible
orderings (different from the correct one) produced by the rule of Section 4.3.1 when ¢
is executed result in a sequence of non-empty intersections if and only if the orderings
belong to P(L); and (ii), the coordinator state C following any of the possible orderings
belonging to P(L) is equal to the corresponding state of the extended diagnoser. We
want to prove that the same result is true for any trace t, € L(G) with || P(t,) ||> n+ 2
(Note 3).

Let t, = squ au,busc, where || P(sy) ||= n. We have from the induction hypothesis
that C,, is equal to the state of the extended diagnoser following the observation P(s),
that is,

Cota = 93(q0, P(50)) = Qoia (3)

Sufficiency (<). Assume P(sy)baeP(L) (we remind the reader that we prove the
proposition for the order yx corresponding to the sequence of observable events ba).
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Since P(sy)ba € P(L), we know from the results of Proposition 2 (Case 3-ii) in Debouk
et al. (2000) that applying the update rule for the order P(sy)ba results in the
corresponding state of the centralized extended diagnoser.

Necessity (=). To prove necessity we exploit (1), (2), and the fact that the intersections C,
and C,, are non-empty. Assume that the update rule of Section 4.3.2 applied to the order
P(s()ba results in a set of non-empty intersections. We want to prove that P (s, )ba € P(L).
The update rule applied to P(sy)ba gives (1). By assumption C, is non-empty;
consequently, C,, and C, are non-empty. Hence, by the definition of N/, (cf. Definition
15 in Debouk et al., 2000), C, is an extended diagnoser state, and it is of the form

Ci = {(omars Lotar)s Cnerts Luew1 ) -+ 5 (Kotars Lotar)s Kerrs Lnewsr) ) } (4)

Since C, is non-empty there exist traces in L(G) whose projection with respect to P,
equals P,(sy)b. Then by (2) we obtain

Cb = {((xoldm luldn)7 (Xnewna lnewn))) RS ((XoldrH loldr’)a (Xnewr’7 Znewr’))} (5)

where {n,...,r"}={1,...,r}, and

Xoidi €SP (Goia), 1=y, (6)

where SP(-) is defined in Section 4.1.1 of Debouk et al. (2000). We note here that
C, =C, and refer the reader to Example 6 in Debouk et al. (2000) for an example. From
(2), (5), (6), and the definition of the state of the extended diagnoser, we conclude that
there exist traces in L(G) whose projection with respect to P equals P(s,)b. Hence
P(sy)b €P(L), and

Cp, = 03(qoia»b) = 94(q0, P(50)b) (7)

by the results of Proposition 2 in Debouk et al. (2000).
Since by assumption C, in (1) is non-empty, C, in (1) is non-empty. But

C2 = {((yoldl ) koldl)) (ym’wl ’ knewl))a EE) ((yoldsa ko/ds)7 (ynews? knews))} (8)

Therefore, there exist traces in L(G) whose projection with respect to P; equals to
Py (so)a. By (1), (7), and (8)

Ca = {<<y01dn7 k()ldn)v (ynewm knewn))’ tet ((yolds/a k(zlds’)? (ynews” kn()ws’))} s C2 (9>
where {n,...,s'}={1,...,s}, and
yoldiESP(Ch)v i:n,...,s’ (10)

From (5), (7), (9), and (10) we conclude that there exist traces in L(G) whose projection
with respect to P equals P(s,)ba. Hence, P(s,)bae P(L), and consequently
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C, = 64(Cy,a) = 03(q o1, ba) = 95(qo, P(so)ba) (11)

by the results of Proposition 2 in Debouk et al. (2000). This completes the proof of the
necessity of the induction step.

® Basis of induction. The proof of the basis of induction is similar to that of the induction
step  with the minor change of letting sy, =¢  Consequently,
Cot = Qo = {(x,,N), (x9,N)} (x, is the initial state of G) in (3) by definition of the
protocol, and the rest of the proof remains as is. |

Remark 4: We note that by the sorting procedure described in Section 4.3.1, the sorted out
orders P(syba) and P(syach) in the proof of Proposition 4.1 result from the same set of
messages received by the coordinator when P(syabc) occurs. Hence the sorted out order
P(syba) (resp. P(syach)) leads to the diagnosers state ¢, and g, (resp. ¢; and g,), and the
following is true

P, (spab) = P,(syba)
Py(spab) = Py (soba)
| P(soab) || = || P(s,ba) || (12)

for the sorted out order P(syba), and

P, (spabc) = P, (spach)
P, (sgabc) = P,(spach)
I P(soabe) || = [| P(s,acb) | (13)

for the sorted out order P(syach). This fact is used in the proof of Theorem 4.1 which
follows.

Proof of Theorem 4.1: Suppose s€L(G) is executed, where s is arbitrarily long, and
F;es. According to Proposition 4.1, all possible orders of observable events that survive
the information update rule at the coordinator site as a result of the execution of s
correspond to some P(s'), where s' € L(G). Furthermore s and s’ satisfy Properties 1-4 of
Definition 4.1 (cf. Remark 4). Let §'(s) be the set of all such traces s' € L(G).

Sufficiency (<). Suppose L(G) has no ambiguous traces with respect to all failure types.
From the definition of ambiguous traces (Definition 4.1), we conclude that F; belongs to all
s'e8'(s). Consequently, since L(G) is diagnosable with respect to Protocol 1, F; is
diagnosed by the coordinator.

Necessity (=). Suppose Protocol 1D performs as well as Protocol 1 which by assumption
diagnoses all failure types. Since F; € s by assumption, then F; is diagnosed by Protocol
ID. Therefore, F; belongs to all traces s’ € S'(s). Hence, s is not an ambiguous trace with
respect to the projections P; and P, and the failure type F;. Since F; is arbitrary it
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follows that s is not ambiguous with respect to the projections P, and P, and all failure
types. |

Proposition 4.1 has a significant implication on the implementation of Protocol 1D.
Since the update rule only reconstructs states of the centralized (extended) diagnoser, the
maximum number, at one time, of surviving updates is bounded by the order of the state
space of the extended diagnoser. Although this is a very loose bound, it proves that the
implementation of the protocol requires finite memory.

5. Protocol 2D: A Second Coordinated Decentralized Protocol

In this section, we modify another protocol considered in Debouk et al. (2000) to account
for communication delays. We will refer to the modified protocol as Protocol 2D (where
2D stands for the fact that is a modification of Protocol 2 of Debouk et al., 2000 that allows
for communication Delays). A key feature of Protocol 2 studied in Debouk et al. (2000) is
the following: if the system has no failure ambiguous traces (Definition 18 in Debouk et
al., 2000; see Section 5.4 hereafter), and if the communicated messages are received in the
correct order by the coordinator, then the coordinator can identify exactly the same failure
types as the centralized diagnoser even when communication between the local sites and
the coordinator is not continuous (as is the case when only commonly observed events by
both sites are communicated (cf. Section 5.6) or when the coordinator polls the sites (cf.
Section 5.7)). The above feature is the key to understanding the performance of Protocol
2D. When communication between the local sites and the coordinator is continuous, but
messages are received out of order by the coordinator, the coordinator, as in the case of
Protocol 1D, should consider all possible orders according to which the messages may
have been sent. For each possible order, it uses the information update rule specified by
Protocol 2. A failure is diagnosed only when according to all possible sorted out orders it is
certain that the failure has occurred. We determine conditions under which Protocol 2D
performs as well as the centralized diagnostic scheme of Sampath et al. (1995).

The following sub-sections define Protocol 2D, namely, the diagnostic information
generated at the local sites, the communication rules used by the local sites, and the
decision rule used by the coordinator to infer the occurrence of failures. The memory
requirements for Protocol 2D and two modifications of the protocol, in the case of
commonly observed events and non-continuous communication between the local sites
and the coordinator, are also discussed.

5.1. Diagnostic Information at Local Sites

As in the case with Protocol 2, diagnosers are implemented at local sites. The diagnostic
information available at each site is provided by the state of the diagnoser, and is refined
by its unobservable reach (cf. Definition 19 in Debouk et al., 2000).
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5.2. Communication Rules

The communication rules of Protocol 2 are also used for Protocol 2D. Communication rule
[CRi], i = 1,2, specifies that after the agent at site i observes an event ceX;, it
communicates to the coordinator the corresponding state ¢; of its diagnoser G, its
unobservable reach UR;(g;) with respect to X\X;, and a status bit, SB;, that takes the
values SB; = 1 when c€ X, je{1,2},j# i, or SB; =0 when o ¢ X,.

5.3. Decision Rule
The coordinator’s decision rule is composed of the following three steps:

1. Store all incoming messages at the coordinator site, and sort out all possible orders in
which these messages could have been generated by the local sites.

2. Apply the information update rule, as defined in Section 5.1.3 in Debouk et al. (2000),
to each and every possible order, and retain all orders that result in a non-empty
update (intersection).

3. Compare the failure properties of all surviving updates from step 2, and declare the
occurrence of a failure when all these updates are certain of the occurrence of the
failure.

These steps are discussed in the following three sub-sections. The following analysis
assumes that there are no events commonly observed by sites 1 and 2. The case where
there are events that are commonly observed at both sites is briefly discussed in Section
5.6.

5.3.1. Sorting Out Possible Orders

Messages are stored and sorted out in the same way as Protocol 1D.

5.3.2. Application of the Update Rule

Before describing the information update rule of Protocol 2D, we first recall from Section
5.2.3 of Debouk et al. (2000) the structure of the coordinator. For every possible order that
is sorted out the coordinator has few registers, besides the register C that holds its
diagnostic information. The registers are used to store the latest states and unobservable
reaches of G, and G,. At reset, registers are initialized with the initial states and
unobservable reaches of G;; and G,. The information update rule of Protocol 2 consists of
intersecting the state of the diagnoser that observed the last event with the unobservable
reach of the other diagnoser and store the information in the register C.
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The coordinator applies the information update rule to each one of the orders that are
sorted out. For every sorted out order that survives the update rule, the coordinator keeps
the last update along with the corresponding states and unobservable reaches. This is
possible by definition of the update rule that only requires information from the last update
to generate the new one. If a specific order of messages results in an empty intersection, the
coordinator rejects that as an impossible order. The information is stored by the
coordinator until the next instant of time when new sorted out orders are extracted (as a
continuation of the already existing ones). Then the same procedure as above is applied to
these new orders and the new updates replace the old ones that are discarded. The
implementation of the sorting procedure and update rule follows closely those of Protocol
1D.

5.3.3. Diagnosing Failures

If all the information updates that result from applying the procedure described in Sections
5.3.1 and 5.3.2 are certain that a failure F has occurred, then the coordinator declares that F'
has occurred and broadcasts this information to the failure recovery module. Otherwise, a
diagnostic decision is postponed.

5.4. Diagnostic Properties of Protocol 2D

The decision rule discussed in Section 5.3 has the following two features: (1) In
comparison with Protocol 2, the memory requirements at the coordinator site may increase
considerably because the coordinator has to store all the information updates, discussed in
Section 5.3.2, and the corresponding diagnoser states and unobservable reaches. However,
the amount of memory required remains finite since the models used are finite-state
automata (cf. Section 5.5). (2) The coordinator identifies a failure only when that failure is
identified by all surviving information updates. Therefore, we expect that, in general, the
performance of Protocol 2D will not be the same as that of Protocol 2 where global order is
preserved. Interestingly enough, we prove next that the absence of failure-ambiguous
traces is a condition sufficient to ensure that Protocol 2D performs as well the centralized
diagnostic scheme of Sampath et al. (1995). We note that Protocol 2 in Debouk et al.
(2000) performs as well as the centralized diagnostic scheme of Sampath et al. (1995)
under the same condition. Thus, relaxing the assumption on global ordering of messages at
the coordinator’s site does not result in any performance degradation of the protocol (with
the notable exception of additional memory requirements). To proceed with the analysis of
Protocol 2D we first recall the definition of failure-ambiguous traces. We refer the reader
to Example 9 of Debouk et al. (2000) for an illustration of the concept.

DEFINITION 5.1 A trace seL(G) is said to be failure-ambiguous with respect to the
projections P, and P, and the failure type F; if there exist two traces, s' and s" in L(G)
such that s' and s are arbitrarily long, not necessarily distinct, and the following is true:
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1. Py(s) =P,(s') but P(s) # P(s'),
2. P,(s) = P,(s") but P(s) # P(s"),
3a. F;esbutF, ¢s.
3b. FyesbutF; ¢s".

4. s and 5" share the same failure properties, i.e., a failure of type F;, je{1,...,m},
J # i, belongs to s’ if and only if a failure of type F ; (not necessarily the same failure
event) belongs to s”.

The next theorem summarizes the main result concerning the diagnostic performance of
Protocol 2D.

THEOREM 5.1 Under the assumption that messages are received by the coordinator at
most ‘‘one-step out of order’’, Protocol 2D eventually identifies all failure types that are
detected by the centralized diagnostic scheme of Sampath et al. (1995) if there are no
failure-ambiguous traces (with respect to all failure types).

Proof of Theorem 5.1: Consider that the system is executing the trace
Soltyauybusc := susc where aeX |, beX ,, ceX, |, Fi€sy, and uy,u,,us X, . Denote
by x, y, and z the messages generated by the occurrence of events a, b, and c, respectively.
Without loss of generality assume that the messages are received in the following order:
X, y, then z. This corresponds to the case presented in the third row of Table 1 (the fourth
row is the symmetric case of the third row while by inspection one realizes that the
cases presented in rows one and two are respectively sub-cases of those presented in
rows three and four). Also assume that s is arbitrarily long, i.e., s cannot be a failure-
ambiguous trace. Let ¢, and g;, be the states of the diagnoser G, after the execution of
the the events a and c, respectively, and ¢, be the state of the diagnoser G, after the
execution of the event b. The correct order in which these messages are sent is xyz, and
from Table 1 and the sorting procedure presented in Section 4.3.1 we have that the
coordinator considers the following orders: xy, yx, and xzy. Denote by C,, C,, and C5 the
coordinator state resulting from applying the update rule to the orders xy, yx, and xzy,
respectively.
For the first order xy we have (from Table 3 in Debouk et al., 2000)

Ci =UR(q11) Nq» (14)

Since this is the correct decision then C; is not empty. Moreover since s is not failure-
ambiguous, C, is F;-certain by the results of Proposition 4 (Case 3) of Debouk et al.
(2000).

For the second order, namely yx, the coordinator considers results in
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C, = URy(q2) Nqyy (15)

from Table 3 in Debouk et al. (2000). Assume that C, is not empty. Then, there exist at
least two traces s; (ending with the event ¢ in X,;) and s, (ending with an event in X))
sharing the same failure properties such that

Py(s) = P(s) (16)
Py(sh) = Py(s) (17)
5(x07s/1) = 5()(0,_?/2) (18)

Since by assumption there are no failure-ambiguous traces then either P(s) = P(s))
(negation of condition 1 in Definition 5.1), or P(s) = P(s}) (negation of condition 2 in
Definition 5.1), or s, s/, s, share the same failure properties (negation of conditions 3a, 3b
in Definition 5.1), or combinations of these facts are true. Condition 4 in Definition 5.1
cannot be violated because then C, is empty. P(s) = P(s}) is impossible, as it contradicts
the fact that s} ends with the event a in Z,,;. If P(s) = P(s5) then necessarily s, s/, s, share
the same failure properties since the language is diagnosable with respect to 2, and the
failure partition, and hence C, is F;-certain. If s, s/, s share the same failure properties
then we have that C, is F;-certain.
For the third order, namely xzy, the coordinator considers results in

C3 = UR\(912) N> (19)
from Table 3 in Debouk et al. (2000). Assume that C5 is not empty. Then, there exist at

least two traces 7| (ending with an event in £,) and #, (ending with the event b in X ,)
sharing the same failure properties such that

P (7)) = Py (susc) (20)
Py(1) = Py(s) (21)
5()(072‘/1) = 5()(07/2) (22)

But suyc € L(G) and P, (susc) = P,(s); consequently,
Py(ty) = P,(susc) (23)

Since there are no failure-ambiguous traces, then either P(suzc)=P(f;), or
P(suzc) = P(ty), or susc, t), tp share the same failure properties, or combinations of
these facts are true. If P(suzc) = P(#)) then necessarily susc, ¢, #5 share the same failure
properties since the language is diagnosable with respect to X, and the failure partition,
and hence C; is F;-certain. P(suzc) = P(t,) is impossible as it contradicts the fact that 7,
ends with an event in X ,. If susc, 7], ¢, share the same failure properties then we have that
C; is F;-certain.
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From the above analysis we conclude that C;, C,, and C; are all F;-certain.
Consequently, the failure type F; is diagnosed by Protocol 2D. Since F; was arbitrarily
chosen, Protocol 2D can diagnose any failure type under the assumption that there are no
failure-ambiguous traces. Consequently Protocol 2D performs as well as the centralized
diagnostic scheme of Sampath et al. (1995). |

Note here that a trace that is not failure-ambiguous may contain prefixes that are failure-
ambiguous. Hence, the above proof holds true once the system has executed enough events
to overcome the failure-ambiguous sub-traces. Therefore, Protocol 2D identifies, under the
condition of this theorem, the same failures as the centralized diagnostic scheme of
Sampath et al. (1995) but with higher delay.

We conjecture that the result of Theorem 5.1 still holds even when messages are
received at the coordinator at most ‘‘n-steps out of order’’. We expect that the delays
associated with diagnostic decisions and the memory requirements at the coordinator’s site
will increase with n.

5.5. Memory Issues in Protocol 2D

In contrast to Protocol 1D where all non-empty updates (intersections) result in a state of
the centralized extended diagnoser, possible orders that are considered by the sorting
procedure used by step (1) of the decision rule of Protocol 2D may result in a non-empty
update (intersection) that is different from any state of the centralized diagnoser (Note 4).
Therefore, one may end up by having a considerably large number of possible updates to
be saved. To avoid that problem, we suggest to use some side information at the
coordinator’s site. All possible states of the coordinator, when global order is preserved,
following any possible legal behavior of the system are computed off-line and stored at the
coordinator site. This side information helps reducing the number of possible updates to be
stored: in case an update results in a state that does not belong to the side information this
update is rejected. By doing so we are only tracking legal behavior that is exhibited under
Protocol 2, and most importantly we only require finite memory to hold updates since
these updates are bounded by the order of the state space of G, where G, is a FSM
that generates, among other information, the states of the coordinator when global order is
preserved (cf. Section 5.4 of Debouk et al., 2000). As explained in the case of Protocol 1D,
the suggested bound is a loose one, nevertheless it proves that the implementation of the
protocol requires finite memory.

5.6. Procedure Using Common Events

As discussed in Remark 3, if there are events that are commonly observed by both sites
then these events can be used as a synchronization mechanism. Since local order is
preserved, the coordinator knows how to order the messages that are due to commonly
observed events. As a result of the information update rule at the coordinator’s site,
messages generated by commonly observed events need to contain only the states of the
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local diagnosers. Therefore, under the assumption that commonly observed events are
executed frequently along all traces, the protocol can be modified as follows: local sites
use the diagnosers to generate their diagnostic information; they communicate their
diagnosers’ states to the coordinator only after the occurrence of commonly observed
events, hence the communication is not continuous; the decision rule of the coordinator is
to apply the information update rule as specified in Table 1. Denote by Protocol 2D-C
(where C stands for commonly observed events) the above specified protocol. Then, we
have the following result.

THEOREM 5.2 If there are no failure-ambiguous traces (with respect to all failure types),
Protocol 2D-C eventually identifies the same failures as the centralized diagnostic scheme
of Sampath et al. (1995).

Proof of Theorem 5.2: Since local order is preserved, messages sent by distinct sites
regarding the same commonly observed event can be easily matched. By inspecting the
information update rule (Table 3 in Debouk et al., 2000), one realizes that the update
following a commonly observed event only requires information received by the messages
and no past information is needed. Then according to Theorem 7 in Debouk et al. (2000), if
there are no failure-ambiguous traces the update rule eventually results in an F;-certain
coordinator state following the execution by the system of an event that belongs to the
failure type F;. |

We note that the word eventually is also used in the statement of the theorem for the
same reasons explained after Theorem 5.1.

This variation of the protocol saves on communication, processing power, and memory
storage (the same memory storage as in the case of Protocol 2 is needed) at the expense of
delaying the diagnostic decision in the case where the frequency of occurrence of
commonly observed events is low. Note here that the ‘‘one-step out of order’’ assumption
is not needed as long as communication delays are bounded.

5.7. Polling Procedure

Another approach is to advise the coordinator to poll the sites requesting each site to
communicate its current state and unobservable reach plus the status bit specifying whether
the event that led to the current state is observed by the other site or not. Polling both sites is
either arbitrarily triggered or based on the coordinator’s current state. It is assumed that
there is a finite bound between two polling instances, that is, although communication is not
continuous enough polling instances occur to diagnose the failures. Denote this protocol by
Protocol 2D-P (where P stands for polling). Under the assumption that the system does not
execute a new observable event (in X)) between the instant the polling message is generated
and the instants it is received by the sites, we have the following result.

THEOREM 5.3 Under the assumption that the system does not execute a new observable
event (in X,) between the instant the polling message is generated and the instants it is
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received by the sites, Protocol 2D-P eventually identifies the same failures as the
centralized diagnostic scheme of Sampath et al. (1995) if there are no failure-ambiguous
traces (with respect to all failure types).

Proof of Theorem 5.3: Consider that the system is executing the trace syu,au,b where
a,beX,, F;esy, and u;,u,€X;,. Assume the coordinator polls the sites right after the
event b was observed. By assumption the polling message is received at the two sites
before the system executes a new observable event. Also assume that s is arbitrarily long,
i.e., s cannot be a failure-ambiguous trace. Since s is not failure-ambiguous we have from
the results of Theorem 6 in Debouk et al. (2000) that the failure F; is diagnosed. If b is a
commonly observed event then there is no need to sort out messages and the coordinator
just intersects the states of the two diagnosers. If both @ and b were observed by only one
site, then the correct order in which events were executed by the system is known and
consequently the coordinator applies the correct information update rule by intersecting
the state of the diagnoser that sent the message generated by the occurrence of event b with
the unobservable reach of the other diagnoser’s message. The only case where the
coordinator cannot figure out the correct order in which the events were executed by the
system is when aeX,; and beX,, or aeX , and beX,. Without loss of generality
assume that aeX,; and beX ,. Denote by x and y the messages generated by the
occurrence of events a and b, respectively. Without loss of generality assume that the
messages are received in the following order: x then y. Let g; and g, be the states of the
diagnosers G, and G, after the execution of the events a and b, respectively. The
coordinator considers the following orders: xy, yx. Denote by C, and C, the coordinator
state resulting from applying the update rule to the orders xy and yx, respectively.
For the first order xy we have (from Table 3 in Debouk et al., 2000)

C, =UR(q:) Nqy (24)
Since this is the correct decision then C, is not empty. Moreover since s is not failure-

ambiguous, C| is F;-certain by the results of Proposition 4 (Case 3) of Debouk et al. (2000).
For the second order, namely yx, the coordinator considers results in

Cy, = URy(q2) Ny (25)
from Table 3 in Debouk et al. (2000). Assume that C, is not empty. Then, there exist at

least two traces s| (ending with the event @ in X,;) and s5 (ending with an event in X,)
sharing the same failure properties such that

Py(s) = P(s) (26)
Py(sh) = Py(s) (27)
5(x07s/1) - 5()(0,_?,2) (28)

Since by assumption there are no failure-ambiguous traces then either P(s) = P(s))
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(negation of condition 1 in Definition 5.1), or P(s) = P(s5) (negation of condition 2 in
Definition 5.1), or s, s’1 s 5/2 share the same failure properties (negation of conditions 3a, 3b
in Definition 5.1), or combinations of these facts are true. Condition 4 in Definition 5.1
cannot be violated because then C, is empty. P(s) = P(s}) is impossible, as it contradicts
the fact that s} ends with an eventin Z ;. If P(s) = P(s}) then necessarily s, s}, s5 share the
same failure properties since the language is diagnosable with respect to X, and the failure
partition and hence C, is F;-certain. If s, s, s share the same failure properties then we
have that C, is F;-certain.

From the above analysis we conclude that C; and C, are all F;-certain. Consequently,
the failure type F; is diagnosed by Protocol 2D-P. Since F; was arbitrarily chosen, Protocol
2D-P can diagnose any failure type under the assumption that there are no failure-
ambiguous traces. Consequently Protocol 2D-P performs as well as the centralized
diagnostic scheme of Sampath et al. (1995). |

We note again that a trace that is not failure-ambiguous may contain prefixes that are
failure-ambiguous. Hence, the above-presented proof holds true once the system has
executed enough events to overcome the failure-ambiguous sub-traces. Therefore,
Protocol 2D-P identifies, under the condition of this theorem, the same failures as the
centralized diagnostic scheme of Sampath et al. (1995) but with higher delay.

Protocol 2D-P saves on communication and processing power and memory storage (a
comparable memory storage to the case of Protocol 2 is needed). It avoids as well the
delaying of diagnostic decisions when the frequency of occurrence of commonly observed
events is low. Also, the ‘‘one-step out of order’’ assumption is not needed as long as
communication delays are bounded.

6. Concluding Remarks

In this paper, we have extended the theory of diagnosability of decentralized discrete event
systems. We have presented two coordinated decentralized protocols, namely Protocol 1D
and Protocol 2D, that are capable, each under certain conditions, of diagnosing all failure
types diagnosed by the centralized diagnostic scheme of Sampath et al. (1995). The on-line
diagnostic process is carried through the diagnosers implemented at the local sites, i.e., the
scheme is indeed implemented in a decentralized fashion.

The key features of Protocol 1D are: (1) it achieves the same performance as the
centralized diagnostic scheme of Sampath et al. (1995) when there are no ambiguous
traces. Hence, the absence of global ordering of the messages received at the coordinator’s
site prevents the protocol from achieving the same performance as Protocol 1 of Debouk et
al. (2000) which achieves the same diagnostic performance as the diagnostic scheme of
Sampath et al. (1995) under no restrictions on the system structure. (2) The delay of the
diagnostic decision of Protocol 1D is higher than the delay of the centralized diagnostic
scheme of Sampath et al. (1995) and that of Protocol 1 of Debouk et al. (2000). (3) The
memory required at the coordinator’s site to implement the protocol is larger than that
required in Protocol 1 of Debouk et al. (2000).

The absence of ambiguous traces is a necessary and sufficient condition for Protocol 1D
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to diagnose all failure types. If the behavior of the system exhibits such traces, then
changing the observation spaces at the local sites can overcome the ambiguity constraint.
Algorithms to achieve that can be devised and are the topic of future research.

The key features of Protocol 2D are: (1) it achieves the same performance as the
centralized diagnostic scheme of Sampath et al. (1995) when there are no failure-
ambiguous traces. That is, the absence of global ordering of the messages received at the
coordinator’s site does not degrade this aspect of the protocol’s performance (compared to
Protocol 2 of Debouk et al., 2000). (2) The delay of its diagnostic decision is higher than
the delay of the centralized diagnostic scheme of Sampath et al. (1995). (3) The memory
required at the coordinator’s site to implement the protocol is larger than that required in
Protocol 2 of Debouk et al. (2000). The first feature of Protocol 2D is a bit surprising,
whereas its last two features are not unexpected.

Protocol 1D (as well as Protocol 1) requires continuous communication between the
coordinator and the local sites: the update rule at any instant of time requires information
from the previously updated coordinator state to generate the new coordinator state.
Therefore, interruption of communication is not feasible under Protocol 1D, and
consequently savings on communication cannot be achieved. On the contrary, in the case
of Protocol 2D (and Protocol 2 as well) savings on communication may be achieved since
interruption of communication is possible (either through only communicating commonly
observed events or polling). Two modifications of Protocol 2D, namely Protocols 2D-C
and 2D-P, result in communication and memory savings while maintaining the same
diagnostic performance. However, the diagnostic delays are further increased in Protocol
2D-C, whereas an additional assumption, that may be unrealistic in some cases, is required
by Protocol 2D-P.

The approach we used in this paper to account for communication delays in the case of
Protocol 1D and Protocol 2D requires a considerable amount of additional memory and
processing at the coordinator site. In contrast, if time stamps were available, Protocols 1
and 2 of Debouk et al. (2000) would work without any modifications. However, in that
case local clocks would need to be synchronized, and this requires additional processing
and memory storage at the local sites. Therefore, a tradeoff exists between these two
mechanisms to handle communication delays, and the type of application usually
determines the mechanism to use.

In this paper we only considered the ‘‘one-step out of order’” assumption for reasons of
simplicity and compactness. We conjecture that the same results should hold in the case of
““n-step out of order’” messages. The general sorting rule in such a case is to wait for the
arrival of n + 2 messages and then figure out all possible orders. By doing so the number
of these orders increases considerably, but most importantly it remains finite. Afterwards,
we apply the update rule for the first two messages in every possible order and we follow
the same procedure as in the case of the ‘‘one-step out of order’” assumption.
Consequently, the diagnostic decision is further delayed and memory requirements
increase drastically; nevertheless we believe the results presented here should hold.

Finally, although we considered the generic case of a coordinator with two sites, the
results are scalable to the case where there are m sites. By realizing that the ‘‘one-step out
of order’” assumption or even the ‘‘n-step out of order’’ assumption is not affected by the
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number of available sites, the extension to m sites could be justified in the same way it was
justified in Section 7.3 of Debouk et al. (2000) for the case where global order is preserved.
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Notes

1. Whenever we say that there exists a trace s of arbitrarily long length having a given property, we mean the
following: for all integers n, there exists s, such that the length of s is greater than » and s possesses the given
property.

2. The proof assumes there are no commonly observed events since this constitutes the general case. The proof
for the case where there are commonly observed events is a special case (cf. Remark 3) and can be replicated
using the same arguments.

3. Proving the result for the order yx requires considering a trace having n 4 2 observable events, while proving
the result for the order xzy requires considering a trace having n + 3 observable events. This is due to the fact
that the uncovered order in the case of yx includes two additional messages while that of the order xzy includes
three additional messages.

4. We note that these updates cannot create spurious diagnoses as the state of the coordinator is a superset of that
of the centralized diagnoser (cf. equations (24), (32), and (33) in Debouk et al., 2000) and they share the same
failure certainty properties as proven in Proposition 4 of Debouk et al. (2000).
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