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Further Results on the Asymptotic Agreement 
Problem 

DAVID A. CASTARON, MEMBER, IEEE, AND DEMOSTHENIS TENEKETZIS 

Abstract-In this paper, we develop additional results on the problem 
of reaching a consensus of opinion between two decision makers provided 
with different information. Specifically, we study the problem where the 
two decision makers may have different underlying probability models. 
We develop results characterizing the likelihood of an agreement being 
reached eventually in terms of the nature of the inter-decision maker 
communications.. We also study the problem when the decision makers 
are aware of the possibility that they may have different models. In this 
case, the decision makers can reach a deadlock state where neither 
decision maker can learn additional information from the consensus 
process, and they cannot reach a consensus decision. This surprising 
result indicates that incorporating human uncertainty in probability 
assessment into the asymptotic agreement problem can lead to outcomes 
not anticipated i n  the general theory previously developed. 

I. INTRODUCTION 

NE of the most important practical problems in distributed 0 decision making is the problem of reaching a consensus of 
opinion among several decision makers provided with different 
information. This problem, called the consensus problem, con- 
sists of finding a decision, which, to each decision maker, is the 
correct decision according to a specific decision rule, given his 
information. Cine of the mechanisms suggested for reaching a 
consensus decision is to have decision makers exchange tentative 
decisions among themselves, thus exchanging part of their 
information. Through this process, the decision makers hope to 
exchange enough information in order to come to an eventual 
agreement on ;i consensus decision. The problem of asymptotic 
agreement is to determine conditions on this process which 
guarantee that a consensus decision is reached. 

In [1]-[7], a Bayesian framework was developed for analyzing 
the problem of asymptotic agreement. Under the conditions that 
all decision makers share a common prior probability model, 
Aumann [l], Borkar and Varaiya [2], Tsitsiklis and Athans [3], 
Geanakopoulos and Polemarchakis [4], and Washburn and Tene- 
ketzis [5] haw shown that decision makers would approach a 
consensus decision under mild regularity conditions on the 
communication pattern. However, the condition that all decision 
makers share ii common prior probability model restricted the 
applications of these results. 

In subsequent papers [6], [7], Teneketzis and Varaiya showed 
that relaxing the condition that all decision makers share a 
common probability model could lead to eventual disagreement. 
Specifically, they showed that, when the fact that each decision 
maker's probability model can be different is secret knowledge 
[12], the const:nsus process can reach a state of contradiction, 
thereby revealing that the underlying probability models were 
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different. However, they did not extend their analysis to show 
what would happen once a contradiction was discovered. 

In this paper, we examine in greater depth some of the issues 
raised by the results of Teneketzis and Varaiya [6], [7]. We limit 
our study to the case of two decision makers involved in the 
consensus problem. First, we study the question of how likely are 
the agreement or disagreement outcomes when the two decision 
makers have secret probability models. Our results establish that a 
contradiction outcome is likely to be reached, where the decision 
makers discover the existence of differences in their probability 
model. Then, we study the asymptotic agreement problem where 
each decision maker is aware of potential differences in probabil- 
ity models and uses an adaptive scheme to jointly identify the 
probability model of the other decision maker and determine his 
tentative decisions. Based on this assumption, we develop a new 
Bayesian formulation of the asymptotic agreement problem which 
is similar to the Bayesian formulation for games of incomplete 
information [8]. Using this formulation, we adapt the general 
framework of Washburn and Teneketzis [5] and Teneketzis and 
Varaiya [7] to study issues of convergence and agreement in this 
problem. The results of our analysis establish the existence of a 
new class of deadlock outcomes to the process of consensus, 
which is created by the ambiguities in possible probability models 
for each decision maker. The existence of these outcomes 
illustrates how differences in individual perception often result in 
deadlocks in bargaining situations, where progress cannot be 
made without the intervention of third parties. 

The rest of this paper is organized as follows. In Section 11, we 
describe the mathematical framework which is used to study the 
asymptotic agreement problem. In Section 111, we develop 
additional results on the problem studied by Teneketzis and 
Varaiya [6], [7]. In Section IV, we discuss the asymptotic 
agreement problem with multiple models. Section V contains a 
discussion of the results. 

11. PROBLEM FORMULATION 

Throughout this paper, we will use the following stochastic 
decision making model. We start with an underlying probability 
space, denoted by ( Q ,  5 ,  P). The a-field 5 represents the set of 
possible events in this space. For simplicity of exposition, we 
assume that 5 is a finite field (all results are valid for general 5) .  
In this case, 5 can be viewed as a finite partition of Q ,  where the 
atoms of 5 correspond to the equivalence classes in this partition. 
In the remainder of this paper, we will refer both to finite a-fields 
(partitions) and the atoms (equivalence classes) which generate 
them. For clarity of notation, a-fields will be called out in script. 

The stochastic model of the asymptotic agreement process starts 
with each decision maker (DM) receiving private information 
concerning the true event which occurs in ( Q ,  5 ,  P). This 
information is represented by an S-measurable function 

y '  : n- Y', i =  1, 2 (1) 

where the superscript notation will be used throughout the paper 
to represent quantities which relate to DMi. The functions y ' ,  i = 
1, 2, are finite-valued and induce a partition of Q which is coarser 
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than 5. The partition induced by y' is denoted as 9;. Without loss 
of generality, we assume that 5 = y ' V y 2  (the smallest a-field 
which contains both 'y I and y 2, and that P has nonzero measure 
on all atoms of 5. 

In addition to knowledge about the true event in (52, 5, P) 
described by y', each DM is assumed to have a personal 
probability distribution Pi on (Q, 5) (which may be different from 
P), and some information concerning the personal probability 
distribution of the other DM. Specifically, the personal probabil- 
ity distributions P' and P2 are assumed to be selected from a finite 
set {P i ,  i E Z} of probability distributions on (a, S), by a random 
lottery on Z x I; these distributions Pi are assumed to be 
absolutely continuous with respect to P. The lottery is assumed by 
each DM to be independent of (Q, 5, P). The information about 
the outcome of the lottery provided to DM 1 is described by 
subsets of Z x Z of the form 
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The consensus process can now be described. Each DM 
receives initially one measurement y'. Based on this measurement 
and his personal probability model, each DM computes a tentative 
decision according to (7) and communicates it to the other DM. 
Then, each DM sequentially interprets the other DM's decision, 
revises his own decision due to the acquired knowledge, and 
communicates his new decision to the other DM. This process 
creates a sequence of information a-fields S1(n) ,  S2(n).  The 
evolution of these information fields can be described (see [ 5 ] )  as 
a dynamical system on a lattice of sub-a-fields of 2, with lattice 
operations V and A, where a V 63 represents the coarsest a-field 
containing both a and 63, and a A 63 is the finest a-field 
contained in both a and 63. The relevant dynamics are: 

S' (o)=y 'xx '  (Sa) 

g2(o)=y2xx2 (8b) 

(9a) 

S 2 ( n +  1 ) = S 2 ( n )  v a(dl(S'(n)). (9b) 

S ' ( n +  l)=S'(n) v a(d2(S2(n+ 1)) 

Note the alternating nature of the evolution in (9). A different 
evolution would result if the DM's exchange information simulta- 
neously. All of the results in this paper can be extended trivially to 
that case by modifying (9) appropriately. 

Let ~ ' ( n )  (u2(n)) denote the value of the nth communication of 
DM 1 (DM 2), selected as a function of the information available 
to him according to his decision rule. For (U, i, j )  in Q x Z x Z, 
the DM's reach asymptotic agreement at (U, i ,  j )  if and only if 

hi' = { i }  x K; (2) 

where i is the index of the personal probability distribution used 
by DM 1, and Kj is the set of personal probability distributions 
which DM 1 believes are possible for DM 2 when DM 1's 
probability distribution is given by Pi. Similarly, the information 
provided to DM 2 is described by 

hZ=KjX { j }  (3) 

where j is the index of DM 2's personal probability distribution. 
Denote by X' and X2 the sub-a-fields of 2' x 2' generated by 
h';, i E Z and h l ,  j E Z, respectively. 

In order to complete the probabilistic description of the 
information available to each DM, we must specify the subjective 
probabilities used by each DM to model the above lottery. 
Specifically, DM 1 (2) models the above lottery as the selection of 
a pair of indexes (i ,  j )  E Z X Z with probability II'(i, j )  (I12(i, 
j ) ) ,  and assumes that this lottery is independent of (Q, 5, P). Note 
that the subjective models of the lottery can differ between DM's. 

The subjective probability models of the lottery and the 
outcomes of the original probability space of DM 1 (2) can be 
combined to form a subjective probability model on the product 
space (Q x Z x Z, 5 x 2' x 2') with measure Q' (Q2) defined 
as 

Q'U, i ,  j )=n ' (L  j ) P i ( f )  (4) 

Q 2 ( f ,  i ,  j )=n2( i ,  j ) P j ( f )  ( 5 )  

wheref E 5. The resulting Q' are probability measures on (Q x 
Z x I, 5 x 2' x 2'). Let 6 denote the a-field 5 x 2' x 2'on Q 
x z x z .  

The above formulation describes the initial information availa- 
ble to each DM. The class of consensus problems studied in this 
paper consists of selecting a decision from a set U in order to 
minimize a jointly measurable objective function J(w,  U ) ,  where w 
E Q, and U E U. We assume that U is compact, and that 

J :  nxv-[O, 00) (6) 

is a continuous function of U for each w E Q. Let g E 6 denote 
the available information to DM i ;  g is an atom of the information 
a-field available to DM i. The tentative decision of DM i given 
information g is defined by 

(7) d'(g) E arg min Eei{ J(w,  u)lg} 
U €  U 

where EQi denotes the expectation according to the probability 
distribution Q'. Note that multiple solutions to (7) can occur. 
Usually, there will be a tie-breaking procedure for selecting d'(g).  
As in [5], let a(d'(C2)) be the sub-a-field of 6 generated by the 
decision rule d' when the available information a-field is a (s 3 
a). 

lim u' (n )=  lim u2(n) .  
n-*m n+m 

For (w, i , j )  in Q x Z x Z, the DM's reach a contradiction at (U, 
i, j )  if and only if there exists an n and g' E S'(n), i = 1 , 2  such 
that either 

EQi{z [g  E S : d 2 ( g ) = u 2 ( n ) ] l g ' } = 0  (1  la) 

or 

EQ2{1[g E : d ' ( g ) = u ' ( n ) l l g 2 } = 0  (1  1b) 

where g' is the atom of S'(n) summarizing the information 
obtained by DM i up to time n.  Thus, a contradiction outcome 
results when a communication is received for which there is no 
possible (e.g., nonzero probability) explanation according to the 
receiving DM's subjective probability model. 

The above framework is an extension of the basic formulations 
of [1]-[7]. In [I]-[5], the common probability model formulation 
assumes that the set I is the singleton set { 1). In this case, the 
probabilities II', 112 are trivial, and the remaining probabilistic 
framework corresponds to the general framework presented in 
[5]. The formulation of [6] can be captured by selecting II I ,  112 to 
be purely diagonal measures, of the form 

and the selection of i, j is such that i # j .  In this case, each 
decision maker is convinced that the other decision maker will use 
the same probability model as he does. However, the initial 
models selected for each player are different. 

111. GENERICITY AND CONTINUITY OF ASYMPTOTIC AGREEMENT: 
THE SECRET MODEL PROBLEM 

In this section, we analyze the model of [6] to determine how 
likely are agreement or disagreement outcomes. We separate our 
results into two cases: the case when the decision variables are 
continuous, and the case when the decision variables are discrete. 
Throughout this section, let i denote the index of DM 1's personal 
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where f ' ( w )  is the atom of 5 '  containing w ;  EP represents 
expectation using measures on 5 ,  while E,  represents expectation 
using measures on 6. In order for a contradiction not to occur, 
DM 2 must be able to interpret U ' ( @ )  in terms of his own 
probability model; that is, 

u'(w)=u*'(w)= arg min E P j { J ( w ,  u ) i f 2 ' ( w ) }  

where f 2 ' ( w )  E F2' is DM 2's  perception of the information 
available to DM 1. Note that 5" is a finite field. Let U'' denote 
the following subset of U: 

u* '={u  E U/u=arg  min E " { J ( w ,  u ) ( b }  for some b E 5*', 

u E  U 

for some a-field F2' satisfying 5 2 5'' 2 y I }. 

Note that U2' is a finite set, since each a-field 5" is finite and 
there are only a finite number of a-fields satisfying the inclusion 
conditions. A necessary condition for the consensus process not to 
reach a contradiction is u ' (w)  E 12' for all w E Q .  Let w E g* in 
assumption A2; then, 

u 1 ( w ) =  arg min { E P ~ { E P , ( J ( w ,  u ) l T ) ) f ' ( w ) } }  

where the inner expectation denotes the expectation with respect 
to the atoms f of 5 which are contained in the set f ' (o) .  Define 
J o ( f ,  U )  for any atom f E A(5)  as: 

u E  U 

probability model, and j denote the index of DM 2's personal 
probability model. In order to specialize the formulation of 
Section I1 to the problems investigated in [6] and [7], we make the 
following assumptions. Let A ( 5 )  denote the atoms of 5 ;  then 

AI: There exists some atom g* E A ( 5 )  such that Pj(g*) # 
pj(g*). 

A2: The subjective models of the lottery (HI and 112) satisfy 
(12). 

Assumption A1 guarantees that the differences in the DMs' 
probability models are detectable with the available observations. 
Assumption A2 specifies that the knowledge that the models may 
be different is secret knowledge to each DM. 

A .  Continuous Decision Variables 
When the decision space U is a continuous space, we make the 

following additional assumption. 
A3: Uis a convex subset of R", and J(o, U) is a strictly convex, 

differentiable function of U for each w .  
Assumption A3 guarantees that there exist unique solutions to 

(7). Note that A1-A3 are satisfied by the model in [6], since the 
decision makers exchange the conditional probability of an event 
( X )  occurring given their information. In this case, 

J ( w ,  u ) = ( Z { w  E X } - u ) *  (13) 

so it satisfier, A3. The assumptions in [6] concerning the different 
probability rnodels of the decision makers correspond to A1 and 
A2. 

In order to characterize the likelihood of agreement or 
contradiction results, we need the following definitions. Let II be 
the space of all probability distributions on ( Q ,  5 ) .  Since 5 is a 
finite a-field, n is a simplex in R", where n is the cardinality of 
the atoms of 5 .  Alternatively, Il can be viewed as a subset of 
Rn-i with positive Lebesgue measure. 

Definition: A result is said to be generic in n if and only if the 
set {II E nl result is not true for II} has zero n-1-dimensional 
Lebesgue m'easure. 

Proposition 1: Let the personal probability model of DM I ,  
P,, be fixed. Under assumptions AI-A3, if for all b 3 g*, b E 6 
[as defined after (5)], either 

i) u'(w)= argminE,i{J(w, u ) J b }  E Uo, 
U €  U 

or 

ii) u 2 ( w ) =  arg minEQz{J(w, u) lb}  E U o  
u E  U 

where Uo is the interior of U ,  it is generic that, for w E g*, a 
contradiction will be reached in the process of consensus. 

Proof: Without loss of generality, assume that condition i) 
holds. Under assumptions AI and A2, for f E 5 ,  we have 

Q ' ( f ,  i ' , j ' ) = O  if i ' f i o r j ' f i  

= P , ( f )  i f i ' = i , j ' = i  

Q 2 ( f ,  i ' , j ' )=O if i ' # j o r j ' # j  

= P,( f )  if i '  = j ,  j '  = j .  

In this case, the uncertain information available to each DM 
consists only of information about the event w in (0, 5) .  Consider 
any instance when a tentative decision is sent from DM 1 to DM 
2. Denote that decision as U' ,  and the information a-field available 
to player 1 about the true event in Q as where 5 3 5 ' .  Then, 
U ' is an 5 '-measurable random variable satisfying 

u'(w)= arg minEQi { J ( w ,  u)lf'(w)} 

= arg minEP,{J(w, u ) l f ' ( w ) )  

u E U  

u E U  

Then, 

By assumption, the minimizing value is in the interior of U, a 
necessary and sufficient condition characterizing U ' ( U )  is 

/ € A ( * )  

Since ~ ' ( w )  must belong to UZ1, this means, for some a E U'', 
g' E 5 2 1 ,  

f E A ( 3 )  

For each a ,  g'  the set of PJ in n satisfying (14) has n-1 
dimensional Lebesgue measure 0, since (14) imposes a linear 
constraint on P,. Since there is a finite number of a in U*' and g '  
in F2', the set of PJ in II satisfying (14) for some a, g'  also has n- 
1 dimensional Lebesgue measure 0, which implies that a 
contradiction is generic for some w in g*. Q.E.D. 

The results of Proposition 1 can be understood in terms of the 
following example. 

Example I :  Let Q = [0, 21 x [0, 31. Let the u-field 9 '  be 
defined by the atoms { w l w  E a , } ,  { w l w  E a 2 } ,  and the a-field 
y2  be defined by the atoms { w l w  E b 2 } ,  { w l w  E b z } ,  and { y l w  
E b3 }, where a,, bJ are defined in Fig. 1. Define probability 
models PI, P2 as: 

P,(A)  = y(A)/6, where p is two-dimensional Lebesgue 
measure 
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example. 
Fig. 1 .  (a) Information fields for each decision maker. (b) Event X in the 

Pz(A) = p(A fl b1)/36 + p(A fl b2)/24 + 7p(A fl b3)/72. 
PI is uniformly distributed over Q, while P2 is uniformly 

distributed conditioned on bi, but has 

Pz(bl)= 1/6; P2(b2)= 1/4; Pz(b3)=7/12. 

Let i = 1, whilej = 2 ,  so that DM 1 uses probability model P I ,  
while DM 2 uses probability model Pz. The decision rule used by 
the DM’s is defined by (13), where the event is event X in Fig. 1. 

As noted in [6], when w E al n b3, and DM 1 communicates 
first, there is eventual agreement, although the DM’s have very 
different reasons for reaching that agreement. In order to illustrate 
that disagreement is generic, we will show that arbitrarily small 
perturbations to P2 result in disagreement. Specifically, let 

P2(bl) = (2 + € I ) /  12; Pz(b2) = (3 + €2)/12; 

&(b3)=(7 - € 1  - €2)/12. 

As in [6], DM 1’s first communication is U I  = 0.5. In order for 
this value not to be a contradiction, either 

or 

The two-dimensional Lebesgue measure of the set of all c l ,  €2 

satisfying (15) or (16) is 0, since it is the union of two lines. 
Hence, for almost all choices of e l ,  c2, a contradiction will be 
reached in the first communication. 

The reason for the genericity of disagreement in Proposition 1 

is that, although each DM can observe only a finite number of 
observation values, he can communicate a continuous number of 
decisions. This enables the other DM to detect differences in the 
probability models. Conditions i) or ii) in Proposition 1 guarantee 
that the announced decisions will vary with small differences in 
probability models. 

B. Discrete Decision Variables 

denote an atom of 5 .  We define a metric on II as follows. 
In this subsection, we assume that the space U is discrete. Let f 

For PI, P2 E II, 

d(P1, P2) = max I PI (f) - Pz(f)l. (17) 
/E F 

This metric is equivalent to the Euclidean metric on n. 
Definition: An agreement or disagreement result is said to be 

continuous in II at PI, P2 if agreement or disagreement continues 
to hold for all PI ’ , P2 ’ in a neighborhood of PI, P 2 .  

Assume the following. 
A4: For any f E 5 ,  there exists unique u I ,  u2 in U such that 

u l =  arg rninEQi{J(w, u)lo E f) 

= arg minEPi{J(u, u)lw E f} 

u2 = arg min EQz { J (w ,  u)l w E f} 

U €  U 

U €  U 

u € U  

= arg minEPj{J(u, u)lw E g}. 
U €  U 

With this assumption, we have the following characterization of 
agreement or disagreement outcomes. 

Proposition 2: Under assumptions Al ,  A2, and A4, if 
agreement occurs for Pi, Pi, it is continuous in II. If disagreement 
occurs for Pi, Pi, it is also continuous in II. 

Proof: Without loss of generality, assume that Pi, Pj result 
in agreement. Let S1(n)  (F2(n))  DM 1’s (DM 2’s) sequence of 
sub-a-fields of 5 generated in the consensus process according to 
(8), (9). For any time interval n, the atoms of 5 l (n )  and s2(n) 
are elements of 5 .  Let f denote an atom of 5 .  For any g E 5 ,  
define the function 

Pi (f) Jo (f, U) 
L(P;, g, U)= 

This is a continuous function in n. Because of assumption A4, 
we can find a 6’(g) such that, for d(Pi, P I )  5 6I(g), 

arg minL(P,, g, U)= arg minL(P1, g, U). 
u E  U u E U  

A similar result can be established in terms of S2(A) for DM 2’s 
decisions. Select 6 as 

6=min {S1(g), S 2 ( g ) } .  

This minimum exists because there are only a finite number of g in 
5.  This choice of 6 guarantees that the exchanged sequence of 
decisions and the a-fields inferred by the other DM are the same 
for all probabilities PI, P2 satisfying 

d(P;,  P1)56 

d(p,, f‘z)56, 

thereby completing the proof. Q.E.D. 
The result of Proposition 2 depends critically on assumption 

gEF 
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A4. However, an argument similar to the proof of Proposition 1 
establishes the following result. 

Proposition 3: If, for each atom f E 5 ,  

Jo(f, u)+J0(f,  U) if u f u ,  

then assumption A4 is generic in II. 
Proof: Let f denote the atoms of 5 .  If assumption A4 does 

not hold for PI,  there must exist a set g E 5 and U, U E U,  U # U, 
such that 

E P f { J ( W ,  U)\W E g } = E P i { J ( w ,  u) lw E g } .  

This implies that 

519 

Pf(f)JO(f, U)= Pf(f)JO(f, U). 

f a  f c g  
f €  4(5)  f E A ( W  

Since Jo( f, V I  # Jo( f, U) for any atom of 5 ,  this implies that the 
set of Pf which satisfy this equation has Lebesgue measure 0 in n. 
A similar argument for P, completes the proof. Q.E.D. 

y2, and X be defined as in 
Example 1. Define probability models P3,  P4 as 

Example 2: Let (Q, 5) ,  

P ~ ( A ) = ~ ~ ( A  n U 1 ) / 1 5 + p ( A  n az)/5 

where p is two-dimensional Lebesque measure, 

P ~ ( A ) = ~ ( A  n Uz)/5+4p(A n al n bl n x y 9 5  

+ 1 2 p ( ~  n a,  n b, n x 9 / 9 5 +  1 2 p ( ~  n b2 n a1)/95 

n U ,  n b3 n x y 9 5  

+ 1 2 F ( ~  n U ,  n b3 n x y 9 5  

where X' is the complement of X in Q. Rather than work with the 
unconditional probabilities, what is important is to evaluate the 
conditional probabilities of events given available information. 
Thus, P3 is uniformly distributed conditioned on a,, with 

&(al)=0.4; P3(uz)=O.6. 

P4 has the same distribution as P3 on a2, but differs on a l ,  as 

P4, (X(u l  0 bl)=0.25; P 3 ( X J a l  n bl)=0.5 (18a) 

( 18b) P ~ ( x \ u ~  n b z ) = ~ 3 ( ~ ~ ~ l  n b2)=o.75 

P , ( X ~ U ~  n b3)=0.50; P ~ ( X I U ~  n b3)=0.25 

P , ( x I ~ ,  17 (bz U b3))=o.6; P ~ ( x ~ u ,  n (bz  U b3))=0.5 

(184 

(1  8 4  

P ~ ( X ~ U , ) =  10/19; P3(Xlai)=0.5. (18e) 

Let U = (0 ,  I}. Let 

J ( w ,  0)=0.53 if w E X, 
= O  if w E X', 

J ( w ,  1)=0 if w E X, 
=0.47 if w E X'. 

With this definition of J ,  the optimal decision for DM 1 given an 
information set g E 5 is given by 

U , =  1 if Pl(w E Xlg)>0.47 

= 0 otherwise. (19) 

The same decision rule is optimal for DM 2, using the probability 

Assume i = 3, whilej  = 4, that DM 1 exchanges his decision 
first, and that the DM's alternate in exchanging decisions. As in 
Example 1, assume that w E a ,  f l  b3. From (18e) and (19), DM 
1's initial decision is 1. That is, U I (  1) = 1. If DM 1's information 
had been a2, his decision would have been U ,  = 0. Hence, 
according to DM 1, he has signaled w E a, to DM 2. According 
to DM 2's probability model, ~ ' ( 1 )  = 1 implies w E a,. Hence, 
DM 2 believes w E al fl b3. His optimal decision is ~ ~ ( 1 )  = 1, 
because of (18c). According to DM 2 ,  his decision has signaled w 
E b2 U b3, because of (18a) and (18b). 

Because of (18a)-(18c), DM 1 interprets ~ ' ( 1 )  = 1 to mean w 
E a, f l  (b, U bz). His optimal decision is ~ ~ ( 2 )  = 1. Hence, a 
consensus has been reached at ~ ' ( 2 )  = ~ ~ ( 2 )  = 1. However, they 
have reached this agreement for the wrong reasons, since DM 1 
believes w E al fl (b, U bz), whereas in actuality, w E a, fl b3! 
Note that any changes in either P3 or P4 which would change the 
numbers in (18a)-( 18e) by less than 0.02 would continue to result 
in agreement. 

Suppose that the order of communication is reversed, so that 
DM 2 communicates first. The optimal decision U*( 1) = 1. Note 
that P4(XIw E b2) < 0.45, P4(XIw E 6,) < 0.2. Hence, DM 2 
believes he has signaled w E b3. According to DM 1, he 
interprets ~ ' ( 1 )  = 1 to mean w E b3. Hence, he believes w E al 
fl b3. His optimal decision, according to (18c), is ~ ' ( 1 )  = 0. 
This decision cannot be understood by DM 2, because he expected 
~ ' ( 1 )  = 1 whether DM 1 knew a,  or a*. Hence, the DM's have 
reached a contradiction. Note that this contradiction will be 
reached even if P3 or P4 are modified by 0.02. Hence, the 
disagreement outcome is also continuous. 

The above results illustrate that, when the decision spaces are 
discrete, small discrepancies in the probability models of the 
decision makers will not affect the consensus process. They also 
show that the set of pairs of probability models for which 
consensus occurs has positive Lebesgue measure in n, unlike the 
result in the continuous decision case of the previous subsection. 
However, the set of pairs of probability models for which 
contradictions occur also has positive Lebesgue measure. Hence, 
contradictions are common phenomena in the consensus process. 

The question still remains: How does the consensus process 
proceed once a contradiction is encountered? Such a contradiction 
reveals that the basic assumption that nl(i, j )  = 0 (or n2(i, j )  = 
0) if i # j ,  is violated. In the next section, we present a plausible 
model for the continuation of the consensus process, and study its 
implications. 

Pj . 

IV. ASYMPTOTIC AGREEMENT WITH MULTIPLE PROBABILITY 
MODELS 

When the decision makers in the consensus process have 
different subjective views of the world, and these differences are 
secret knowledge, the results of the previous section and [6] ,  [7] 
show that a contradiction outcome is often reached whereby the 
existence of these differences becomes common knowledge. At 
this point, our model of how the consensus process proceeds is 
that each decision maker models statistically the types of 
probability models which the other decision maker may be 
employing, and acquires information through the consensus 
process concerning the possible models used by the other DM, 
and the uncertainty in the event spact Q .  Within this framework, 
we investigate convergence and agreement issues for two cases: 
when the statistics of the types of probability models are common 
knowledge, and when these statistics are secret knowledge. The 
analysis is based on the mathematical formulation developed in 
Section I1 where the probability distributions 111, n2 represent the 
statistics used by each DM. 

Initially, we will make the following assumption. 
A5: HI, n2 are common knowledge. 
Recall that nl, n2 are the subjective probabilities on the space 
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of possible model pairs ( i ,  j). Assumption A5 implies that the 
subjective statistical distribution of possible probability models for 
each decision maker is known to the other decision maker, and 
this fact is common information. Note that we do not assume that 
these distributions are equal. This allows DM 1 to believe he has a 
different range of possible decision models than DM 2 has, and 

Similarly, s ince j  = 1 in g, 

d 2 ( g ) =  arg minEQz{J(w, u)lg}  
U €  U 

= arg rnin {H2(1, I)EPl(J(w, u)lw E A } }  
U € U  

vice versa. 
The decision rules d' used by the DM's are described by (7). A 

decision rule d is said to satisfy the agreement condition if, for u- 
fields SI, 62 such that SI 2 S2 2 a(d(Sl)), then d(Sl) = d(62). 
In [5 ] ,  it was shown that such a rule satisfies the agreement 
condition. The agreement condition implies that, if a decision is 
based on information which is common to the information a-fields 
S2 and SI, then knowledge of either S2 or 6, would result in the 
same decision. 

Proposition 4: Under Assumptions A5 and A6, if i = j and w 
E Q is such that the consensus process reveals that i = j to both 
decision makers, then the decision makers reach a consensus for 

Proof: Without loss of generality, let i = j = 1. As in (8) 
and (9) let 6 ' (n)  (S2(n))  denote the information a-field available 
to DM 1 (2) at time n .  Because of A5, the evolutions indicated in 
(8), (9) are common knowledge. Note that these dynamical 
systems are evolving on a lattice of finite fields, and that they 
generate a strictly increasing sequence of a-fields. Hence, after 
some finite time t, a limit must be reached such that, for all s > t, 

w.  

Sl(s)=S'=S1 v fJ(d2(62)) (20a) 

92(s)=S2=S2 v u ( d , ( S , ) ) .  (20b) 

Equations (20) establish that the consensus process converges to a 
limit; that is, 

lim u l ( n ) = u ' * ;  lim u 2 ( n ) = u 2 * .  (21) 
n-m n-m 

In addition, (20) imply that 

S' 2 4d2(S2)) (224 

6 2  2 u(dl(S1)) .  (22b) 

Furthermore, the fields generated by a decision rule are contained 
in the information available for decisions. That is, 

S2 1 4 d 2 ( S 2 ) )  (234 

9' 1 o(d'(S1)). (23b) 

Hence, 

S2 1 S2 A 2 a(d2(S2))  (244 

S 1  2 S2 A 6' 1 a ( d ' ( 6 ' ) ) .  (24b) 

By assumption, the decision rules satisfy the agreement condition. 
Hence, by (24), 

d ' ( S ' ) = d ' ( S '  A S2) 

d 2 ( S 2 ) = d 2 ( S 1  A S2). (25) 

Select w E Q such that i = 1 = j is common knowledge. Since 
the a-fields are increasing, there is an atom g containing w in 6 I 

A S2 of the form g = (A, 1, I) ,  where Q 2 A. Since g is an 
element of both limiting fields S' and S2, it follows that 

d l ( g ) =  arg minEQi{J(w, u)lg} 
U €  U 

= arg min (H'(1, l)EP1{J(w, u) \w E A}}. 
U €  U 

where Epi is used to denote expectation with respect to the 
measure Pi on ( Q ,  5) .  The functions being minimized are simple 
multiples of each other. Thus, d2(g)  = d ' (g )  for all such g. 
Coupled with (25), this completes the proof. Q.E.D. 

According to the above proposition, even if the decision makers 
have the same probability model, consensus is not guaranteed 
unless it becomes common knowledge that i = j. On the other 
hand, the condition that w E Q is such that the consensus process 
reveals that i = j is sufficient but not necessary for reaching a 
consensus. These points are illustrated by the following example. 

Example 3: Let ( Q ,  5), % I ,  y2, X ,  P3,  P4, and U be defined 
as in Example 2. Consider the decision rule defined in (7). Let 

J ( w ,  0)=0.57 if w E X, 

= O  if w E Xc,  

J (w ,  1)=0 if w E X, 

=0.43 if w E X'. 

With this definition of J ,  the optimal decision for DM 1 given an 
information set A is given by 

u l = l  ifPi(w E XIA)>0.43 

= 0 otherwise. (26) 

Assume that i = j = 3 ,  so that both decision makers have the 
same probability model. Assume further that there exists a 
probability distribution R on (3 ,  4) such that 

n 1 ( i = r n , j = k ) = H 2 ( i = r n , j = k ) = R ( r n ) R ( k ) .  (27) 

That is, each decision maker believes that the other DM's decision 
model is selected independently from a known statistical popula- 
tion, where the set of possible models was {P3,  P4} .  Furthermore, 
the statistics of the selection are known identically to both decision 
makers. However, the precise model selected is private knowl- 
edge provided to each decision maker. 

Assume R(3) = 0.1. As in Example 2, we assume that the 
DM's alternate exchanging tentative decisions. As in Example 2, 
DM 1's first decision is ~ ' ( 1 )  = 1, and this signals that w E a, to 
DM 2. This decision does not reveal whether i = 3 or i = 4, 
because if i = 3 or 4, the same decision would be made. At this 
point in the consensus process, DM 2 knows that w E al n b3 
whether i = 3 or 4. Hence, by (7), since j = 3, the optimal 
decision is u2( 1) = 0. In order to identify the information signaled 
by this decision, we must examine the optimal decisions corres- 
ponding to the possible information sets that DM 2 could have, 
from DM 1's perspective. These decisions are: 

i f j = 3 ,  U E a, fl b,, then u z ( l ) = l  by (18a) 

i f j = 3 ,  w E al n b2, then uz ( l )= l  by (18b) 

i f j = 3 ,  w E al fl b3, then u 2 ( l ) = 0  by (18c) 

i f j = 4 ,  w E a, rl bl ,  then u2(1)=0 by (18a) 

i f j = 4 ,  w E al fl b2, then u2(1)= 1 by (18b) 

i f j = 4 ,  w E al f l  b3, then u2(1)= 1 by (18c). 

Hence, DM 1 knows that either; = 3, w E a, n b3 o r j  = 4, w 
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E al f l  bl .  According to (7 ) ,  his optimal decision is selected as 

u ' (2)=arg minEQi{J(w, u ) l F )  
! l € U  

= arg min (R(3)[(0.25)(0.53)Z{u=O) 
U E { O , I )  

+ (0.75)(0.47)1{~= I}] +R(4)[(0.5)(0.53)1{~=0} 

+ (0.5)(0.47)1{~= I}]} (28) 

where I {  } is the indicator function, and a constant scaling factor 
has been omitted. It is easy to see that, for R(3) < 0.12, ~ ' ( 2 )  = 
1. Note that, if i = 4, (28) becomes 

u 1 ( 2 ) =  arg min {R(4)[(2/3)(0.53)I(u=O) 
U € { 0 , 1 )  

+(2)(0.47)1{~= I}] +R(3)[(3)(0.53)1{~=0} 

+ (3)(0.47)1{~= l}]}. 

So, ~ ' ( 2 )  should be 0 if i = 4. Therefore, ~ ' ( 2 )  = 1 signals that i 
= 3 to DM 2. 

DM 2 now knows i = j = 3, and w E al fl b3. As before, his 
optimal decision is ~ ' ( 2 )  = 0. This decision does not convey any 
additional information to DM 1 ,  because the decision u2(2) = 0 
did not depend on the information i = 3. Since DM 1 obtains no 
additional information, his tentative decision continues to be U '(2) 
= 1, and the two decision makers agree that an agreement cannot 
be reached. The common information which forms the basis for 
this disagreement can be summarized in the atom of 5 x 2/  x SI 

given by 

{(U, i,, i2)I(w E al n b3, i l= i2=3) ,  

or (w E ai n b l ,  i ,  =3,  i2=4)}.  

Consider now the same problem, but assume that DM 2 
communicates first. Then, since w E b3 and P,(X/b3) = 0.55, 
then ~ ~ ( 1 )  = 1.DM 1 observes al and receives ~ ' ( 1 )  = 1; by the 
same argument as above, he concludes that DM 2 has observed 
either b2 or b! and uses either model 3 or 4. His decision is U I (  1) 
= 1. When DM 2 receives ~ ~ ( 1 )  = 1, he concludes that w E b3 
f l  (al U a2) and DM I uses either model 3 or 4. Thus, DM 1's 
decision did not convey any additional information to DM 2. 
Thus, u2(2) = 1 ,  which does not convey any information to DM 
1. Hence, ~ ' ( 2 )  = 1 and the DM's agree, even though the event w 
is such that the consensus process does not reveal that the DM's 
have the same model. 

The results 'of Example 3 are rather surprising. Unlike the cases 
studied in [6] or [ 7 ] ,  there is no unmodeled secret information 
present in this consensus process. Indeed, both DM's are actually 
using the same probability model; furthermore, they have 
identical probability distributions over the class of probability 
models, and this is common knowledge! Nevertheless, a disagree- 
ment outcome occurs due to deadlock. This implies that even 
admitting the possibility that the other DM can have a different 
subjective probability model than your own is sufficient to prevent 
reaching a consensus. The reason for this effect is the difference 
in the probability distributions used by each DM in (7)  when one 
DM is unable to identify the probability model used by the other 
DM. 

How likely is it that the conditions of Proposition 4 are met? 
Our analysis of the previous section can be extended to establish 
the following propositions. 

Proposition 5: Assume that the decision space U is continuous, 
and that Assumption A3 is true. Assume i = j .  Assume 
additionally that, for all g E S such that w E g, 

i) u'(w)=arg minEQi{J(w, u) lg} E Uo 

ii) u2(w)= a-g minEQz{J(w, u) lg}  E Uo 

U €  U 

U €  U 

where Uo is the interior of U .  Then, the outcome that the 
consensus process will reveal that i = j is generic in Hk, where k 
is the cardinality of I .  

Proposition 6: If the decision space U is discrete, i = j ,  and 
for any g E S there exists unique u l ,  u2 in U such that 

U'= arg minE,i{J(w, u ) l g }  

U'= arg minE,z{J(w, u ) J g }  

then the outcome that a consensus process reveals that i = j for a 
specific w is continuous in nk. 

The proof of these propositions follows directly the proof of 
Propositions 1 and 2, and will not be reproduced here. Essentially, 
Proposition 5 is based on the fact that the set of probability models 
for which a continuous decision fails to discriminate among a 
finite set of models has zero Lebesgue measure in the space of all 
possible probability models. Under the assumptions of Proposi- 
tion 6, one can show that the sequence of a-fields generated in the 
consensus process does not change with small perturbations in the 
set of individual probability models. 

When i # j ,  it is possible to show, by arguments similar to 
those leading to (19)-(24) that the sequence of decisions 
{d ' (6I (n) )}  and {d2(S2(n) ) )  will converge to d ' ( 6 ' )  and d2(S2), 
respectively. However, since the probabilistic models of DM 1 
and DM 2 are not the same, whether or not a consensus is reached 
depends on the event w E Q and the order of communication. If g 
is an atom of 6 '  A S2 containing w E Q ,  then a consensus will be 
reached if d'(  g) = d2( 8). 

The above results were based on assumption A5 that the 
underlying statistical models I I l  and n2 used by each DM are 
common knowledge. When these models are different, and this 
fact is secret knowledge, and the decision processes of DM 1 and 
DM 2 are consistent with their own beliefs, then the consensus 
process reaches one of three different outcomes after a finite 
number of communications: 

UEU 

U €  U 

1) A consensus is reached, 
2) DM 1 and DM 2 realize that their underlying statistical 

models are inconsistent, 
3) DM 1 and DM 2 agree to disagree because they cannot 

gather any additional information from the consensus process. 
In order to establish this, we must describe the evolution of the 

decision processes according to each DM's subjective decision 
model, and determine what each DM's model predicts. Then, we 
compare the predicted communications to the actual communica- 
tions heard. Let u"(n), ui2(n) denote the decisions of DM 1 and 
DM 2 at stage n according to DM 1's subjective decision model. 
Similarly, let u2'(n), ~ ~ ~ ( n )  denote the decisions of DM 1 and DM 
2 at stage n according to DM 2's subjective decision model. Then, 
according to DM 1's view, 

u " ( n ) = d l ' ( y ' ,  u'2(1), ..., u12(n- 1)) (294 

u12(n)=d'2(y2, u"(l) ,  . . . ,  u ' l ( n - I ) )  (29b) 

where d'' denotes the decisions formed by the decision rule d 
according to the probability measure Q'.  Similarly, according to 
DM 2's view, 

(304 

(30b) 

where d2J denotes the decisions formed by the decision rule d 
according to the probability measure Q2.  Equations (29) and (30) 
describe the evolution of the consensus process according to DM 
1's and DM 2's perception, respectively. 

To determine what DM 1 and DM 2 predict about the outcome 
of the decision processes in terms of their own perceptions, we 
define four sequences of information a-fields, representing DM 

u21(n)=d2'(y', U ' 2 ( 1 ) ,  . . . ,  u'2(n- 1)) 

u22(n)=d22(y2, u"(l) ,  . . . ,  u l ' ( n -  1)) 
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1's actual knowledge (GIl(n)), DM 1's belief of DM 2's 
knowledge (GI2(n)), DM 2's actual knowledge (GZ2(n)) ,  and DM 
2's belief of DM 1's knowledge (s2'(n)). These fields evolve 
under communications as 

S " ( n +  l ) = S l ' ( n )  v .(d'2(S12(n))) (3 1 a) 

S'Z(n+ 1)=6'2(n)  v a(d" (S" (n ) ) )  (31b) 

SZl(n+ 1)=62'(n) v u(d22(SZZ(n))) ( 3 1 ~ )  

SZZ(n+ 1)=S22(n) v a(d21(S2'(n))) (3 1 4  

with initial conditions 

S"(0) = S2'(0) = y ' x X' (314 

6 2 2 ( 0 )  = 6 12(0) = y 2 x X2. (310 

As before, these evolutions occur in a lattice of a-fields where the 
maximal element is a finite a-field. Hence, repeating the logic of 
the proof of Proposition 4 establishes that the consensus process 
will reach steady state after a finite number of iterations. Denote 
this finite number as T. 

To establish the type of outcomes possible, we must examine 
the consensus process closely. At stage 1 ,  DM 1's decision is 
u"(1) = d " ( y ' ) .  This message is transmitted to DM 2, who must 
interpret this message according to his own subjective decision 
model. That is, he must find realizations ( i ' ,  yi' )  of possible 
models and observation values such that ~ " ( 1 )  = d 2 ' ( y i  '). For a 
consistent interpretation, one must have 

P,{ (y"~u"( l )=d2 ' (~") ,  i = i ' } > O  for some i' E I. (32)  

If this is not possible, DM 2 will discover that the decision models 
are inconsistent, leading to outcome 2. Otherwise, DM 2 selects 

At this stage, DM 1 must interpret consistently the communica- 
tions heard from DM 2. As before, he must find realizations ( j ' ,  
y 2 ' )  of possible models and observation values such that u2'(1) = 
d12(y2' ,  u'I(1)). For a consistent interpretation, one must have 

u22(1) = dZZ(y2, u"(1)). 

P,{(y2'Iu22(1)=d'20J', u"( l ) ) ,  j = j ' }  > o  
for somej' E I. (33) 

Define P'(n, i ' ) ,  P2(n, j ' )  as follows: 

P i ( n ,  i ' ) = P i { ( y i ' I u L ' ( k )  

= d * I ( y l ' ,  @(I),  . - . ,  uz2(k)) ,  i = i ' ,  for all k < n }  

(344 

P2(n,  j ' ) = P i { ( y z '  

= d " ( y 2 ' ,  u " ( l ) ,  * e * ,  u " ( k ) ) , j = j ' ,  for all k < n } .  

(34b) 

Thus, P'(n, i )  is the probability, according to DM 2's personal 
probability model Pj, of the possible measurement values y '  
which would be consistent with DM 1's decisions if DM 1's 
personal probability model was PI.  P2(n, j )  can be interpreted 
similarly. It is easy to see that, for each i ,  j E Z, P'(n, i ) ,  and 
P2(n, j )  are monotone decreasing sequences in n. Since the 
consensus process reaches steady state after a finite number of 
communications (for n 2 T), there are three possible outcomes. 

1) There exist no i' or j '  such that both 

P l ( T ,  i ' ) n ' ( i ' , j ) > O  

P2(T ,  j ' )I12(i ,  j ' ) > O .  (35) 

2) There exist one i' and one j '  such that 

Pi(T,  i ' ) n ' ( i ' , j ) > o  

P ( T ,  j ')n2(i ,  j ' ) > O .  

3) There exist more than one i' o r j '  such that 

P' (T ,  i ' ) r I ' ( i ' , j ) > o  

P 2 ( T ,  j ' ) W ( i ,  j ' )>O.  (37) 

When (35) holds, the inconsistencies among the statistical 
models nl and n2 are detected in the consensus process. It is 
possible that the true probability model used by DM 1 was not 
considered possible in DM 2's subjective distribution. In this 
case, either dI2(T) # dZ2(T) or dz'(T) # d"(T). When (36) 
holds, either a consensus outcome will be reached for w E Q ,  or 
an inconsistency in the underlying probability models P, and PJ 
will be discovered. If i = j ,  this is the case analyzed in [ 1]-[5]; in 
this case, the results of [5] guarantee that d"(T) = dI2(T) = 
d2'(T)  = d22(T), so a consensus outcome is reached. If i # j, 
this is the case analyzed in [6] and [7]. In this case, two types of 
outcomes are possible: either dI2(T) # d22(T) or dz'(T) # 
d"( T), so that an inconsistency in models PI and PJ is detected, or 
both d"(T) = d2'(T) and d22(T) = dI2(T). For the second 
outcome, the results in [6] and [7] imply also that d"(T) = 
d22( T). 

When (37) holds, there is residual ambiguity in both the 
statistical models and the underlying probability models. As 
discussed in Example 3, it is possible to have d12(T) = d22(T), 
d2'(T)  = d"(T), and d"(T) # d22(T) for all n, in addition to 
the other two outcomes. In this case, no inconsistencies have been 
discovered between either the statistical models and U2, or the 
underlying probability models PI and PJ. Rather, the decision 
makers have reached a stage where no additional information will 
be exchanged in the consensus process. At this stage, the DM's 
agree that a consensus cannot be reached, and discontinue the 
process. 

The above discussion has established the following proposition. 
Proposition 7: Assume that the differences between I I l  and lT2 

are secret knowledge to both decision makers. Then, the 
consensus process will reach one of three possible outcomes after 
a finite number of communications. 

1) A consensus is reached, 
2) DM 1 and DM 2 realize that their underlying statistical 

models are inconsistent, 
3) DM 1 and DM 2 agree to disagree because they cannot 

gather any additional information from the consensus process. 
A result similar to Proposition 7 was obtained in [7]. However, 

when each DM considers a set of possible underlying probability 
models for the other DM, as is the case in this section, the 
consensus process can result in an outcome not predicted by the 
model of [7]; namely, the DM's can agree to disagree even though 
their underlying probability models have not been established as 
inconsistent with each other. This point is illustrated by the 
following example. 
Exarnple4:Let(Q,5),Yi,y2,X,Pl,P3,P4bedefinedasin 

Examples 2 and 3. Let J(w, U) be defined as in (12), and let U = 
[0, I]. Let I = { 1, 3, 4) be the set of possible probability model 
indexes. Consider the decision rule defined in (7). Assume that i 
= 1, and lT'(1, 1) = 0.3, U'(l ,  3 )  = O,nI(l, 4) = 0.3, so that 
DM 1 believes DM 2 is using either model 1 or model 4 with 
equal probability. Assume j = 4, and lT2(1, 4) = 0, n2(3 ,  4) = 
0.1, r12(4, 4) = 0.1, so that DM 2 assumes that DM 1 is using 
either model 3 or model 4 with equal probability. Assume that w 
E al fl b3 and DM communicates first. 

The first tentative decision of DM 1 is ~ " ( 1 )  = 0.5. According 
to DM 2, if DM 1 was using model P3,  then ~ ~ ' ( 1 )  = 0.5 when w 
E a', and 0.25 when w E a2. If DM 1 was using model P4, then 
~ " ( 1 )  # 0.25 for any w. Hence, DM 2 believes i = 3, and w E 
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a, f l  b3. According to his own model, P4, DM 2’s communica- 
tion is uZ2(1) = 0.5. In communicating ~ ” ( 1 )  = 0.5, DM 1 
believes that he has signaled that i = 1 and w E a l .  Hence, DM 1 
expects ~ ‘ ~ ( 1 )  = 0.5 i f j  = 1 and w E b,, or i f j  = 4 and w E b3. 
Consequently, DM 1 chooses 

when the decision makers bring human biases and inaccuracies in 
probability assessments into the consensus process, a consensus 
may not be reached even if the decision makers share the same 
probability model. The results depend explicitly on the Bayesian 
formulation for incorporating uncertainty concerning the other 

Since models P3 and PI have the same distribution conditioned on 
a,, it is also true that uZ1(2) = 0.375. Since DM 2 believes he 
already knows i = 3, and w E a, n b3, he learns no additional 
information, so his decision continues to be uZ2(2) = 0.5. This 
decision conveys no additional information to DM 1 ,  so the 
consensus process stalls at this point, and both decision makers 
agree that a consensus cannot be reached. 

V. CONCLUSION 

In this paper, we have studied the problem of reaching a 
consensus in a group of decision makers by exchanging tentative 
decisions using a Bayesian framework. When the decision makers 
have different probability models and the existence of those 
differences is secret knowledge, the results of Teneketzis and 
Varaiya [6], [7] characterized all possible outcomes of the 
consensus process into two types of outcomes: 

1) reaching a consensus decision for the group, 
2) reaching a contradiction. 
The results of Section III shed additional insight concerning how 

likely each of these outcomes is. By defining the concepts of a 
generic outcome and a continuous outcome, we have shown that, 
when the decision space is continuous-valued and some regularity 
conditions are met, reaching a contradiction is a generic outcome. 
In contrast, when the decision space is discrete-valued, both 
outcomes are continuous, so that small deviations in probability 
models result in the same outcomes. 

One of the limitations of the results of Teneketzis and Varaiya 
is their assumption that knowledge that probability models could 
be different is secret knowledge to the decision makers, although 
in fact the probability models are different. If the decision makers 
are humans, subject to various biases and inaccuracies in 
evaluating probabilities [9], knowledge that there can exist 
differences in probability models is best modeled as common 
knowledge. In Section IV, we developed a Bayesian framework 
whereby this knowledge is represented as common knowledge, 
and the specific individual probability models are represented as 
private information for each decision maker. In this framework, 
the consensus process serves both to reveal information concern- 
ing the probability model of each decision maker, as well as 
information concerning the problem uncertainty. A surprising 
result is that, even when the probability models of the decision 
makers are identical, and are selected independently from 
identical probability distributions, there are two possible out- 
comes. 

1) A consensus was reached. 
2) A point was reached where both decision makers, on the 

basis of common information, agree that a consensus cannot be 
reached. 

The second outcome has not been predicted by the previous 
formulations [1]-[7]. Indeed, it seems to contradict the title of 
Geanakopoulos and Polemarchakis [4], “We can’t disagree 
forever.” Our results in Section IV show that merely admitting 
the possibility that the probability models are different is sufficient 
to generate the second outcome. Again, we characterize how 
likely these outcomes are for both continuous-valued and discrete- 
valued decision spaces U. 

In conclusion, we have shown that, in our Bayesian framework, 

decision maker’s true probability model. A different formulation, 
similar to Kreps and Wilson’s formulation for sequential games 
[ 1 1 J ,  could be developed whereby each decision maker considers 
only the most likely interpretation of the results as the basis for 
selecting his tentative decisions. The merits of each formulation 
rest ultimately in its ability to provide insight into the behavior of 
humans in consensus decision making. 
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