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Abstract. We investigate the general multi-armed bandit problem with multi-
ple servers. We determine a condition on the reward processes su½cient to
guarantee the optimality of the strategy that operates at each instant of time
the projects with the highest Gittins indices. We call this strategy the Gittins
index rule for multi-armed bandits with multiple plays, or brie¯y the Gittins
index rule. We show by examples that: (i) the aforementioned su½cient con-
dition is not necessary for the optimality of the Gittins index rule; and (ii)
when the su½cient condition is relaxed the Gittins index rule is not necessarily
optimal. Finally, we present an application of the general results to the
multiserver scheduling of parallel queues without arrivals.
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1 Introduction

Models of dynamic allocation of scarce resources to competing projects have
been widely used and are of great importance. The multi-armed bandit prob-
lem is concerned with the dynamic allocation of a single resource among sev-
eral projects. The basic version of the stochastic multi-armed bandit problem,
formulated in discrete time, is the following. There are n independent projects
and one server. At each time t the server must work on exactly one project.
Let xi�t�, i � 1; 2; . . . ; n, be the state of project i at time t, and denote by
k�t� the project operated at time t. If k�t� � i, an immediate reward Ri�xi�t��
is obtained, and the state of project i changes to xi�t� 1� according to a
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stationary Markov rule. The states of the idle projects remain frozen. The
objective is to ®nd a scheduling strategy that maximizes an in®nite horizon
expected discounted reward R given by

R � E
Xy
t�0

b tRk�t��xk�t��t��
( )

;

where b, 0 < b < 1, is a ®xed discount factor.
This problem was ®rst solved by Gittins (see Gittins and Jones (1974)

and Gittins (1979)). Using a forward induction argument, he showed that
an index policy is optimal. Speci®cally, at each time t project i; i � 1; 2; . . . ; n,
is characterized by an index ni�xi�t�� that is a function only of its state. The
optimal strategy, called the Gittins index rule, operates the project with the
largest index. The Gittins index is given by

ni�xi� � max
t>0

EfPtÿ1
t�0 b tRi�xi�t��jxi�0� � xig

EfPtÿ1
t�0 b tjxi�0� � xig

; �1�

where the maximization is taken over all stopping times t > 0 of Fi���, where
Fi�s� is the s-®eld representing the information about project i after it has
been operated s times. The Gittins index rule result is very important because
it decomposes the n-dimensional problem into n one-dimensional problems.
This is because the optimal policy is determined by n numbers, each depend-
ing only on the state of an individual project.

A di¨erent proof of the optimality of the Gittins index rule was
provided by Whittle (1980). Gittins' original work has been extended in vari-
ous directions such as superprocesses (Gittins (1979)), arm-acquiring bandits
(Whittle (1981)), non-Markovian bandits (Varaiya et al. (1985)), and bandits
with switching costs (Asawa and Teneketzis (1996)). The optimality of the
Gittins index rule has also been shown for several variations of the multi-
armed bandit problem (see Kelly (1981), Glazebrook (1982), Karatzas (1984),
Mandelbaum (1986), Weber (1994), and Bertsimas and Nino-Mora (1996)).

It is known (see, for example, Ishikida (1992)) that the policy that
operates the projects with the highest Gittins indices is not in general the op-
timal allocation rule for multi-armed bandits with multiple servers (or, equiv-
alently, multiple plays) and an in®nite horizon expected discounted reward
criterion. The optimal solution of the aforementioned class of problems is not
generally known. Anantharam et al. (1987) and Agrawal et al. (1990) have
determined optimal allocation schemes for multi-armed bandits with multiple
plays and the ``learning loss'' or ``regret'' criterion. Asymptotic (in the number
of projects and servers) results for restless bandits with multiple plays appear
in Whittle (1988) and Weber and Weiss (1990). In this paper we investigate,
in discrete time, optimal strategies for the multi-armed bandit problem with
multiple plays and an in®nite horizon expected discounted reward criterion.
For both the deterministic and stochastic multi-armed bandit problems with
multiple plays we determine a condition on the reward processes su½cient to
guarantee the optimality of the strategy that operates at each instant of time
the projects with the highest Gittins indices. We call this strategy the Gittins
index rule for multi-armed bandits with multiple plays, or brie¯y the Gittins
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index rule. Furthermore, we show by examples that: (i) the aforementioned
su½cient condition is not necessary for the optimality of the Gittins index
rule; and (ii) when the su½cient condition is relaxed the Gittins index rule is
not necessarily optimal.

The paper is organized as follows: In Section 2 the deterministic multi-
armed bandit problem with multiple plays is formulated and analyzed. Its
stochastic counterpart is presented in Section 3. An application of the general
result to the multiserver scheduling of parallel queues without arrivals is
presented in Section 4. We conclude in Section 5.

2 The deterministic multi-armed bandit problem with multiple plays

2.1 Problem formulation

In this section we formulate, in discrete time, the deterministic version of the
multi-armed bandit problem with multiple plays. The problem, denoted by
P1, is the following.

Problem P1. We have a collection of n projects �n > 2� and m processors
�1 < m < n�. Associated with each project i; i � 1; 2; . . . ; n, is a deterministic
reward process fZi�l�gyl�0. At each time t each processor must work on
exactly one project; no more than one processors can work on the same proj-
ect at any time. We denote by ti�t�; i � 1; 2; . . . ; n, the number of times proj-
ect i has been operated during 0; 1; 2; . . . ; tÿ 1 �t i�0� :�0; i�1; 2; . . . ; n�. If
project i is operated at time t, a reward Zi�ti�t�� is received. Under the above
conditions we seek to determine allocation schemes that maximize the total
b-discounted reward.

As in the stochastic case, we can de®ne the Gittins index of each project.
Because the state of a project is determined by the number of times it has been
operated, the Gittins index of project i; i � 1; 2; . . . ; n, at time t is a function
of ti�t�, i.e., a function of the number of times project i has been operated by
time tÿ 1. The Gittins index is de®ned by

ni�l� � max
tVl�1

Ptÿ1
s�l b sZi�s�Ptÿ1

s�l b s
; i � 1; 2; . . . ; n; l � 0; 1; 2; . . . ; �2�

where the maximizer in (2) is given by

ti�l� � inffsV l � 1 : ni�s�U ni�l�g: �3�

In what follows we determine a condition on the reward processes under
which the Gittins index rule is optimal for problem P1. We proceed in two
steps. First, we de®ne an auxiliary problem, called P2, that has the following
characteristics: (i) for any allocation policy p, the corresponding total dis-
counted reward for problem P2 upper-bounds the total discounted reward for
problem P1 under the same policy; and (ii) under the Gittins index rule the
total discounted rewards for problems P1 and P2 are equal. Second, under a
certain condition on the reward processes we show that the Gittins index rule
is optimal for problem P2. Consequently, it is optimal for problem P1.
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2.2 Preliminaries

In this section we formulate an auxiliary problem, called P2, and establish its
relation to problem P1. We also formulate another auxiliary problem, called
P3, for which we determine an optimal strategy. Problem P3 is directly related
to problem P2; its solution allows us to determine a condition under which the
Gittins index rule is optimal for problem P2.

We begin by de®ning the concave envelopes of the reward processes
fZi�l�gyl�0; i � 1; 2; . . . ; n, as in Mandelbaum (1986) and Ishikida (1992). The
concave envelope fZi�l�gyl�0 of fZi�l�gyl�0 is given by

Zi�l� � min
sUl

ni�s�; l � 0; 1; 2; . . . �4�

Equivalently, the concave envelope is de®ned by

Zi�l� � ni�tk
i �; tk

i U l < tk�1
i ; �5�

where

t0
i � 0;

tk�1
i � inffs > tk

i : ni�s�U ni�tk
i �g; k � 0; 1; 2; . . . �6�

Problem P2 is the same as problem P1 with the reward processes replaced
with their concave envelopes. We denote by V1�Z1;Z2; . . . ;Zn; p� and
V2�Z1;Z2; . . . ;Zn; p� the total b-discounted rewards for problems P1 and P2,
respectively, when strategy p is employed and the original reward processes
are Z1;Z2; . . . ;Zn. The following results hold.

Lemma 1. The reward obtained under any policy p is not decreased when the
original reward processes are replaced with their concave envelopes, i.e.,

V1�Z1;Z2; . . . ;Zn; p�UV2�Z1;Z2; . . . ;Zn; p�; for any p: �7�

Lemma 2. The reward obtained under the Gittins index rule does not change
when the original reward processes are replaced with their concave envelopes,
i.e., with p� denoting the Gittins index rule, we have

V1�Z1;Z2; . . . ;Zn; p�� � V2�Z1;Z2; . . . ;Zn; p��: �8�

The proofs of Lemmas 1 and 2 are identical to the proofs of Claims 2 and
3 respectively in Ishikida (1992, p. 93), when only one project is to be operated
at each time, and are omitted here.

We now proceed to formulate problem P3.

Problem P3. We have N families of jobs �N > 2� and M processors
�1 < M < N� that operate in parallel. At each time instant a processor is
allowed to work on at most one job. Moreover, no more than one processors
are allowed to work on the same job at the same time. We denote jobs
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in family i; i � 1; 2; . . . ;N, by i1; i2; . . . : Job ik requires Xik time units of
processing; each time job ik is processed a reward Cik is received. The
following constraints are satis®ed:

(S1) In family i; i � 1; 2; . . . ;N, job ik�1; k � 1; 2; . . . ; must be processed
after the processing of job ik has been completed.

(S2) For jobs in family i; i � 1; 2; . . . ;N, Cik�1
< Cik ; k � 1; 2; . . . :

The objective is to determine a scheduling strategy in the class of preemptive
strategies that maximizes the total b-discounted reward.

Let V3�p� be the total b-discounted reward for problem P3 under policy
p. The following lemma presents a condition under which it is possible to
explicitly determine an optimal allocation policy for Problem P3.

Lemma 3. Consider Problem P3. Suppose that the reward processes satisfy the
following condition:

(C1) For any two jobs k, l that belong to di¨erent families

Ck�1ÿ b�VCl whenever Ck > Cl : �9�

Then, at each instant of time it is optimal to process the jobs that yield the
highest rewards.

Proof. Consider a policy p that satis®es precedence constraint (S1), but does
not always give priority to the jobs with the highest rewards. Let t1 be the ®rst
time instant where one of the jobs with the M highest rewards that are avail-
able for processing is not processed under p. Assume that this is job kr. This
implies that there exists time t2 > t1 such that job kr is processed at t2 under p.
We consider two cases.

Case 1. Not all M processors are busy at time t1. We construct policy p1 to be
identical to p except that it processes job kr at time t1 instead of t2. Then

V3�p1� ÿ V3�p� � Ckr
b t1 ÿ Ckr

b t2 > 0: �10�

Case 2. All processors are busy at time t1, i.e., some job lj with Clj < Ckr
is

processed at t1 under p (l 0 k because of precedence constraint (S1)). Let
sj�1; sj�2; . . . be the times jobs lj�1; lj�2; . . . are processed for the ®rst time

under p. We construct policy p1 as follows: p1 is identical to p except that it
processes job kr at time t1 instead of t2, job lj at time sj�1 instead of t1, and
job lp; p � j � 1; j � 2; . . . at time sp�1 instead of sp. Then

V3�p1� ÿ V3�p� � Ckr
�b t1 ÿ b t2� ÿ Clj �b t1 ÿ b sj�1�

ÿ
Xy

p� j�1

Clp�b sp ÿ b sp�1�: �11�
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Because of (11) and Clj > Clj�1
> � � � (see reward constraint (S2)) we have

V3�p1� ÿ V3�p�VCkr
�b t1 ÿ b t2� ÿ Clj b

t1 : �12�

Because of t2 > t1 and (9)

Ckr
�1ÿ b t2ÿt1� > Ckr

�1ÿ b�VClj : �13�

From (12) and (13) we get

V3�p1� > V3�p�: �14�

Therefore, in both cases policy p1 satis®es precedence constraint (S1) (by
construction) and yields higher reward than p because of (10) and (14). We
can now construct a modi®cation p2 of p1 in the same way p1 modi®es p, i.e.,
the ®rst time p1 does not process one of the jobs with the highest rewards,
p2 processes that job and yields a higher reward than p1. Repeating the
construction of such modi®ed policies we conclude that under condition (9) on
the reward processes it is optimal to process at each instant of time the jobs
with the highest rewards. 9

2.3 Optimality of the Gittins index rule

In this section we determine a condition su½cient to guarantee the optimality
of the Gittins index rule for deterministic multi-armed bandits with multiple
plays. We begin by noting that problem P2 can be formulated as a version
of problem P3 as follows. We have n families of jobs and m processors that
operate in parallel. The jobs in family i; i � 1; 2; . . . ; n, are denoted by i0;

i1; . . . : The processing time of job ik is tk�1
i ÿ tk

i . When processed, job ik
yields a reward ni�tk

i � per unit time. The following constraints are satis®ed:

(i) In family i; i � 1; 2; . . . ; n, job ik�1; k � 0; 1; . . . ; must be processed after
job ik.

(ii) ni�tk�1
i � < ni�tk

i �; i � 1; 2; . . . ; n; k � 0; 1; . . . :

Constraints (i) and (ii) correspond to constraints (S1) and (S2), respectively, in
problem P3. Consider now the following condition:

(R1) For any i 0 j and k; l such that ni�tk
i � > nj�t l

j � we have

ni�tk
i ��1ÿ b�V nj�t l

j �:

Note that (R1) corresponds to the reward condition given in (9). The main
result of Section 2 is given in the following theorem.

Theorem 1. Assume that the reward processes fZi�l�gyl�0; i � 1; 2; . . . ; n, are
such that condition (R1) is satis®ed. Then the Gittins index rule is optimal
for problem P1, that is, at each instant of time it is optimal to operate the m
projects with the highest Gittins indices.
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Proof. Let p� be the policy that for problem P2 operates the m projects that
yield the highest rewards. Note that, because of the way the concave envelopes
of the original reward processes were de®ned, policy p� is equivalent to the
Gittins index rule. Then, because condition (R1) is satis®ed, Lemma 3 implies
that the Gittins index rule is optimal for problem P2, i.e., for any policy p

V2�Z1;Z2; . . . ;Zn; p�UV2�Z1;Z2; . . . ;Zn; p��: �15�
From (7), (8), and (15) we get that for any policy p

V1�Z1;Z2; . . . ;Zn; p�UV1�Z1;Z2; . . . ;Zn; p��:
Therefore, under condition (R1) the Gittins index rule is optimal for problem
P1. 9

When the rewards become identically equal to zero after a ®nite time for all
arms, the result of Theorem 1 holds under a condition weaker than (R1). Let
li; i � 1; 2; . . . ; n, be ®nite integers such that Zi�l� � 0 for all l > li. From (2)
and (4) we get that the concave envelopes become identically zero as well, that
is, Zi�l� � 0 for all l > li, or equivalently (see (5)), there exist ®nite integers
ki; i � 1; 2; . . . ; n, such that ni�tk

i � � 0 for all k > ki. Then, the Gittins index
rule is optimal when the following condition is satis®ed:

(R2) For any i 0 j and k; l such that ni�tk
i � > nj�t l

j � we have

ni�tk
i ��1ÿ b�V nj�t l

j ��1ÿ b
Pn

i�1
t

ki�1

i �:

2.4 Discussion

The essence of Theorem 1 is the following: The solution of the multi-armed
bandit problem with one server can be obtained by a forward induction
argument because decisions made at any particular stage are not irrevocable.
This, as pointed out in Gittins (1979), means that ``any bandit process which
is available for continuation at some stage, and which is not then chosen, may
be continued at a later stage, and with exactly the same resulting sequence
of rewards, apart from the discount factor. This (in turn) means there is no
later advantage to compensate for the initial disadvantage of not choosing a
forwards induction policy.'' Forward induction does not, in general, lead
to optimal allocation decisions in multi-armed bandits with multiple servers
because at each stage of the allocation process the optimal strategy does not
allocate the servers one at a time, thus, the previous arguments do not hold.
Consequently, the full e¨ect of future rewards has to be taken into account in
determining an optimal allocation strategy. However, if the Gittins indices of
di¨erent arms are su½ciently separated, the dominant factors in determining
an optimal allocation strategy become the reward-rate-maximizing portions
of each bandit process starting from its current state. In such a situation, an
optimal allocation strategy can be determined by forward induction and the
Gittins index rule is an optimal allocation strategy. Conditions (R1) and (R2)
present exactly a situation where there is enough separation among the Gittins
indices to guarantee the optimality of the Gittins index rule.
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We present two examples that highlight the nature of condition (R2).
Speci®cally, the examples show that: (i) if condition (R2) is not satis®ed, the
Gittins index rule is not necessarily optimal for multi-armed bandits with
multiple plays; and (ii) condition (R2) is su½cient but not necessary for the
optimality of the Gittins index rule.

Example 1. We have n � 3 projects, m � 2 processors, and rewards dis-
counted by a factor b � 0:9. The reward processes for each project are given
by

Z1�0� � 6; Z1�1� � Z1�2� � 1; Z1�l� � 0; l > 2;

Z2�0� � 5; Z2�1� � Z2�2� � Z2�3� � 3; Z2�l� � 0; l > 3; and

Z3�0� � Z3�1� � Z3�2� � Z3�3� � 4; Z3�l� � 0; l > 3:

Because the reward processes are decreasing, they are identical to their con-
cave envelopes. Note that condition (R2) is not satis®ed because 6 > 5 but
0:6 � 6�1ÿ b� < 5�1ÿ b11�F 3:43. Let p� denote the Gittins index rule,
which in this example is equivalent to the policy that operates at each instant
of time the projects with the highest rewards. We have

V1�Z1;Z2;Z3; p�� � �6�5� � �b�b2�b3��4�3� � b4�4�1� � b51: �16�
Consider now a policy p that is di¨erent from the Gittins index rule; it oper-
ates projects 2 and 3 at time 1, projects 1 and 3 at time 2, projects 3 and 2 at
times 3 and 4, projects 3 and 1 at time 5, and project 1 at time 6. This policy
yields a reward

V1�Z1;Z2;Z3; p� � �5� 4� � b�6� 4� � �b2 � b3��4� 3�

� b4�3� 1� � b51: �17�
From (16) and (17) we obtain

V1�Z1;Z2;Z3; p�� ÿ V1�Z1;Z2;Z3; p� � 2ÿ 3b � b4 Fÿ0:04:

Therefore the Gittins index rule is not optimal.

Example 2. We have n�3 projects, m�2 processors, and b�0:5. The reward
processes are given by

Z1�0� � 4; Z1�1� � 2; Z1�l� � 0; l > 1;

Z2�0� � 4; Z2�1� � 2; Z2�l� � 0; l > 1; and

Z3�0� � 3; Z3�l� � 0; l > 0:

Condition (R2) is not satis®ed because 4 > 3 but 2 � 4�1ÿ b� < 3�1ÿ b5�F
2:9. By computing the reward from all possible scheduling strategies it is
straightforward to show that the Gittins index rule is optimal.
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3 The stochastic multi-armed bandit problem with multiple plays

3.1 Problem formulation

In the stochastic multi-armed bandit problem with multiple plays, denoted by
P1 0, there are n projects �n > 2� and m processors �1 < m < n�. Project
i; i � 1; 2; . . . ; n; is characterized by the pair of sequences fZi�l�;Fi�l�gyl�0,
where Zi�l� is the random reward obtained when project i is operated for
the �l � 1�th time and Fi�l� is the s-®eld representing the information about
project i after it has been operated l times. Let F i :�4

l
Fi�l�; i � 1;

2; . . . ; n. We make the following assumptions:

(A1) Fi�l�HFi�l � 1�:
(A2) 4

l
s�Zi�l��4F i; i � 1; 2; . . . ; n, are independent.

(A3) At each instant of time each processor must work exactly on one project;
no more than one processors can work on the same project at any time.

Let ti�t�; i � 1; 2; . . . ; n, denote the number of times project i has been
operated during 0; 1; 2; . . . ; tÿ 1; ti�t� is called the ith project time at process
time t. Denote by k1�t�; k2�t�; . . . ; km�t� the projects operated at time t. When
k1�t� � i1; k2�t� � i2; . . . ; km�t� � im, the states xj of projects j; j 0 i1; i2; . . . ;
im, remain frozen. The states xil ; l � 1; 2; . . . ;m, of projects i1; i2; . . . ; im
change according to the rule P�xil �til �t� � 1� A ~Ajxil �1�; . . . ; xil �t il �t���, where
~A A F il �til �t� � 1�. Consider the decision at time, t � 0; 1; 2; . . . . This decision

is based on the available information

F�t� �4
i

Fi�ti�t��; t � 0; 1; 2; . . . :

F�t� is recursively de®ned as follows:

F�t� 1� �F�t�4G�t�;

where G�t� is the s-®eld generated by sets of the form fk1�t� � i1,
k2�t� � i2; . . . ; km�t� � img X fti1�t� � si1 ; t

i2�t� � si2 ; . . . ; tim�t� � simg X
�Ai1 � Ai2 � � � � � Aim�, with Ail A Fil �sil � 1�. A policy is any sequence of

decisions fu�t�; u�t� � �k1�t�; k2�t�; . . . ; km�t��; t � 0; 1; 2; . . .g, where u�t� is
based only on F�t�, and F�t� evolves according to the mechanism described
above.

The multi-armed bandit problem with multiple plays is to ®nd a policy p
that maximizes

V�p� :� E
Xy
t�0

b t
Xm

i�1

Zki�t��tki�t��t��jF�0�
( )

: �18�

The Gittins index of project i after it has been operated l times is de®ned to be

ni�l� � max
tVl�1

EfPtÿ1
s�l b sZi�s�jFi�l�g

EfPtÿ1
s�l b sjFi�l�g

; �19�

Multi-armed bandits with multiple plays 457



where the maximization is over all stopping times t; l � 1U t <y, of Fi���,
and ``max'' in (19) is to be interpreted as ``ess sup''. Under assumptions (A1)±
(A2) made in the problem formulation, there always exists a stopping time t
achieving the maximum in (19) (see Neveu (1975)).

Proceeding as in the deterministic multi-armed bandit problem with mul-
tiple plays we determine a condition on the reward processes under which the
Gittins index rule, i.e., the policy that at each instant of time operates the m
projects with the highest Gittins indices, is optimal for problem P1 0.

3.2 Optimality of the Gittins index rule

In this section we establish a condition su½cient to guarantee the optimality
of the Gittins index rule for stochastic multi-armed bandits with multiple
plays. We begin by de®ning problem P2 0 to be the same as problem P1 0 with
the reward processes replaced with their concave envelopes de®ned by equa-
tions (4)±(6) and (19). It can be shown (see Ishikida (1992)) that Lemmas 1 and
2 hold with V1�Z1;Z2; . . . ;Zn; p�, V2�Z1;Z2; . . . ;Zn; p� denoting the expected
total b-discounted rewards for problems P1 0 and P2 0, respectively, when
strategy p is employed and the original reward processes are Z1;Z2; . . . ;Zn.
That is,

V1�Z1;Z2; . . . ;Zn; p�UV2�Z1;Z2; . . . ;Zn; p�; for any p; �20�

V1�Z1;Z2; . . . ;Zn; p�� � V2�Z1;Z2; . . . ;Zn; p��; �21�

where p� denotes the Gittins index rule.
Problem P2 0 can be formulated as a version of problem P3 as follows: For

every realization o of problem P2 0 we have n families of jobs and m processors
that operate in parallel. The jobs in family i; i � 1; 2; . . . ; n, are denoted by
i0; i1; . . . : The processing time of job ik is tk�1

i �o� ÿ tk
i �o�. When processed,

job ik yields a reward ni�tk
i �o�;o� per discounted unit time. The following

constraints are satis®ed:

(i) In family i; i � 1; 2; . . . ; n, job ik�1; k � 0; 1; . . . ; must be processed after
job ik.

(ii) ni�tk�1
i �o�;o� < ni�tk

i �o�;o�; Eo; i � 1; 2; . . . ; n; k � 0; 1; . . . :

Consider now the following condition:

(R1 0) For each realization o of problem P2 0, for any i 0 j, and k; l such that
ni�tk

i �o�;o� > nj�t l
j �o�;o� we have

ni�tk
i �o�;o��1ÿ b�V nj�t l

j �o�;o�:

Based on this condition we can prove the main result of Section 3.

Theorem 2. Assume that fZi�l�;Fi�l�gyl�0; i � 1; 2; . . . ; n, are such that condi-
tion (R1 0) is satis®ed. Then the Gittins index rule is optimal for problem P1 0,
that is, at each instant of time it is optimal to operate the m projects with the
highest Gittins indices.
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Proof. Because of condition (R1 0) and Lemma 4 we get that the Gittins index
rule, denoted by p�, is optimal for problem P2 0, i.e., for any policy p

V2�Z1;Z2; . . . ;Zn; p�UV2�Z1;Z2; . . . ;Zn; p��: �22�

The optimality of the Gittins index rule for problem P1 0 follows from (20),
(21), and (22).

4 An application: Multiserver scheduling of parallel queues without arrivals

As an application of the results of Section 3.2 we consider the dynamic
multiserver scheduling problem of parallel queues without arrivals. We have,
in discrete time, a system consisting of N parallel queues and m; m < N,
identical servers. At each time each server must work on one queue, and no
more than one servers can work on the same queue at any time. Queue
j; j � 1; 2; . . . ;N, initially has qj customers �qj <y�. The service times sj of
customers in queue j; j � 1; 2; . . . ; n, are independent identically distributed
(i.i.d.) random variables with non-decreasing hazard rate; furthermore, for
all k; j; k 0 j, the random variables sk; sj are independent. Each customer
present in queue j; j � 1; 2; . . . ;N, incurs an instantaneous holding cost hj.
The objective is to determine a scheduling policy that minimizes the total
expected b-discounted �0 < b < 1� weighted ¯owtime of the customers initi-
ally present in the system, or, equivalently, to maximize the total expected
b-discounted weighted reward, where rewards are obtained by customer service
completions.

We can formulate the above scheduling problem as a multi-armed bandit
with multiple plays as follows: Queue j; j � 1; 2; . . . ;N, is associated with
bandit j where rewards are obtained only at customer completion epochs;
time intervals between successive customer completion epochs in queue j; j �
1; 2; . . . ;N, are i.i.d. random variables sj with non-decreasing hazard rate;
for all k; j; k 0 j, the random variables sj; sk are independent. The reward
obtained from bandit j; j � 1; 2; . . . ;N, when the service of a customer is
completed at time tÿ 1 is equal to �b thj�=�1ÿ b�. Thus, we have N bandits
with the reward structure described above, and m servers.

In the case of service times with non-decreasing hazard rates the Gittins
index is achieved at the next completion epoch. The index for bandit j is

nj�t� � hj
Efb s t

j g
1ÿ Efb s t

j g
; �23�

where t is the amount of service the current job has received and s t
j is the

remaining service time. Because of the non-decreasing hazard rate assumption
we have

nj�0�U nj�t�; Et: �24�

Therefore, the concave envelope for bandit j (cf. (4)) is constant for all real-
izations of the service times and equal to

nj � nj�0� � hjSj�1ÿ Sj�ÿ1; �25�
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where

Sj � E fjfb sjg �26�

and fj is the probability mass function of sj. Suppose that the following
condition holds.

(L1) Whenever

hjSj�1ÿ Sj�ÿ1 > hkSk�1ÿ Sk�ÿ1; �27�

then

�1ÿ b�hjSj�1ÿ Sj�ÿ1 > hkSk�1ÿ Sk�ÿ1: �28�

Under condition (L1), Theorem 2 implies that the optimal policy for the
scheduling problem formulated above is described by the following rule:
Serve the queues exhaustively in decreasing order of their indices, where by
an exhaustive policy we mean one that serves a queue until there are no
customers left in that queue.

5 Conclusions

We have presented a condition su½cient to guarantee the optimality of the
Gittins index rule for the multi-armed bandit problem with multiple plays.
The essence of this condition is the following: The requirement that the Gittins
indices of di¨erent arms be su½ciently separated implies that the dominant
factors in determining an optimal allocation strategy become the reward-rate-
maximizing portions of each bandit process starting from its current state.
This, in turn, implies that a forward induction argument that leads to the
Gittins index rule (as de®ned in Section 1) is optimal.

We have shown by example that the aforementioned su½cient condition is
not necessary to ensure the optimality of the Gittins index rule for the multi-
armed bandit problem with multiple plays. The discovery of a condition that
is both necessary and su½cient for the optimality of the Gittins index rule is
currently an open problem.
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