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OPTIMAL MULTISERVER STOCHASTIC SCHEDULING OF 
TWO INTERCONNECTED PRIORITY QUEUES 

DIMITRIOS G. PANDELIS AND 
DEMOSTHENIS TENEKETZIS *University of Michigan 

Abstract 

A number of jobs on two interconnected queues are to be processed by m identical 
servers. The servers operate in parallel, so that every server can process any job. Jobs 
in queue i, i = 1, 2, incur an instantaneous holding cost Ci during the time they 
remain in the system. The service time for jobs in queue i, denoted by Xi, is a 
random variable with a general distribution. The interconnection process is indepen- 
dent of the service process. We establish sufficient conditions on the service times, 
the holding costs and the interconnection process under which the non-preemptive 
scheduling strategy that gives priority to queue 1 minimizes the total expected 
a-discounted cost. We call this strategy P1. We present counterexamples showing 
that if any of the sufficient conditions is not satisfied P1 may not be optimal, and that 
the optimal policy for the single-server problem is not necessarily optimal for the 
multiserver problem. 

MULTISERVER SCHEDULING; INTERCONNECTED QUEUES; STOCHASTIC ORDERING 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 93E05 

SECONDARY 90B35 

1. Introduction 

We consider two interconnected queues that are served by m identical servers. 
The servers operate in parallel, so that every server can process any job. The queues 
are interconnected in the following way: jobs that complete service in queue 1 join 
queue 2 with probability p, and leave the system with probability 1 -p. Jobs that 

complete service in queue 2 leave the system. We assume that the interconnection 

process is independent of the service process. Jobs in queue i, i = 1, 2, incur an 
instantaneous holding cost Ci during the time they remain in the system. The service 
time for jobs in queue i, i = 1, 2, denoted by Xi, is a random variable with a general 
distribution; we assume that the service times are independent and X1 has 

non-decreasing likelihood ratio. There are no arrivals, so we are concerned with the 

Received 27 July 1992; revision received 21 December 1992. 
* Postal address for both authors: Department of Electrical Engineering and Computer Science, 

University of Michigan, Ann Arbor, MI 48109-2122, USA. 

258 



Multiserver scheduling of interconnected queues 

scheduling of jobs initially present in the system. We seek to determine a 

non-preemptive scheduling strategy zr that minimizes the total expected a- 
discounted holding cost given by 

(1.1) J'(YI, Y2) = E [t C, exp (-at) dt + C2exp (-a) dt 
j=l tI 

+E \C2exp(-at)dt}, 
j=1 

where 

(1.2) Yi, i = 1, 2, is the length of queue i at time 0; 

(1.3) tj, j = 1, 2, ... , y, is the time the jth job in queue 1 is completed, 

(1.4) lj, j = 1, 2, ... , y, is the time the jth job initially in queue 1 is completed in 

queue 2 (lj = tj if that job does not join queue 2 after being processed in queue 
1), 

(1.5) sj, j = 1, 2, * *? , Y2, is the time the jth job in queue 2 is completed; 

(1.6) lj, j = 1, 2, ... , y, is the indicator random variable taking the value of 1 if the 

jth job completed in queue 1 joins queue 2, and taking the value of 0 
otherwise. 

To the best of our knowledge, this is the first attempt to determine optimal 
strategies for multiserver scheduling problems in interconnected queues. Most of the 
work on optimization in multiserver scheduling up till now has concentrated on 
parallel queues, where the jobs have equal priorities, that is, all jobs incur the same 
cost or reward. Two strategies appear almost exclusively in the literature achieving 
optimality for various performance criteria, SEPT (the strategy that processes jobs 
in increasing order of expected service time) and LEPT (the strategy that processes 
jobs in decreasing order of expected service time). For results when the service times 
are exponentially distributed see the work of Glazebrook and Nash (1976), 
Glazebrook (1979), Weiss and Pinedo (1980), Bruno et al. (1981), Van Der Heyden 
(1981), Weiss (1982), Coffman et al. (1987), and Lehtonen (1988). When the service 
times have a monotone hazard rate, see the work of Weber (1980), (1982). Weber et 
al. (1986), whose approach we follow in this paper, considered the problem of 
scheduling jobs with service times that are stochastically ordered, when an 
instantaneous reward which is a convex decreasing function of time is earned upon 
each service completion. They proved that the strategy SEPT maximizes the total 
expected reward. The results on scheduling of jobs with different priorities are 
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relatively few. For jobs with exponential service times and two servers Ross (1983) 
showed that, when the LEPT strategy and the cA/-rule result in the same order, 
the c,u-rule minimizes the expected weighted sum of completion times. Kampke 
(1987), (1989) extended the result to m servers given that, if ci - cj, then ci,ti - C cjj. 
Chang et al. (1991) showed that for exponential service times and two classes of 
jobs the optimal policy is of threshold type. Asymptotic results on multiserver 
scheduling of jobs with priorities can be found in Whittle (1988), Weber and Weiss 
(1990), and Agrawal et al. (1990) in the context of multi-armed bandits. Finally, 
Xu et al. (1990) studied the scheduling of multipriority jobs on two heterogeneous 
servers. They proved that for each priority class the non-preemptive sche- 
duling strategy that minimizes expected flowtime is of the threshold type. In this 
paper we establish sufficient conditions on the service times and the holding 
costs under which the non-preemptive scheduling strategy that gives priority to 
queue 1 minimizes the total expected a-discounted holding cost. We call this 
strategy P1. 

The rest of the paper is organized as follows. In Section 2 we prove the optimality 
of strategy P1. In Section 3 we provide counterexamples illustrating the following 
points: (i) if any of the sufficient conditions of Theorem 1 is relaxed the optimality of 
P1 is not guaranteed; (ii) when the conditions of Theorem 1 are satisfied but the 
queues are interconnected in the opposite way strategy P1 may not be optimal; (iii) 
the conditions of Theorem 1 are sufficient but not necessary for the optimality of P1; 
and (iv) the index rule that describes the optimal policy in the single-server problem 
is suboptimal in the multiserver problem. 

2. Sufficient conditions for the optimality of strategy P1 

The discounted holding cost problem stated in the introduction can be studied in 
terms of the following equivalent reward problem. A job completed in queue i, 
i = 1,2, at time t incurs a reward gi(t), where g(t) = (C1 -pC2)exp(-at), 
g2(t) = C2 exp (-at). The expected reward due to a strategy lr is then 

R'(y,, Y2) = E [(C - pC2) exp (-atj) + C2 exp (- ) C e, 
j=1 j=1 

where Yi, i = 1, 2, tj, j = 1, 2, * * y, lj, j = 1, 2, *y , sy , j = 1, 2, * * , Y2, and lj, 
j = 1, 2, - . , yi, have been defined by Equations (1.2)-(1.6). We show that the 

policy that minimizes the total expected a-discounted holding cost maximizes the 

260 



Multiserver scheduling of interconnected queues 

total expected reward. This can be seen as follows: 

J'(Y, Y2) =E{ [JC1 exp(-at)dt + C2 exp (-at) dt 
j=l t 

+ E f C2 exp (-at) dt 

j=l o 

+ E C2 exp (-at) dt - lj C2 exp (-at) dt 

+ j C2 exp (-at) dt - C2exp (-at) dt. 
+[| C2 exp (-at) dt - C2 exp ( -t) dt] 

Since lj and tj are independent we get that 

rr00 A r 
E{ljf C2 exp (-at) dt = pE C2 exp (-at) dt. 

Therefore J'(yI, Y2) can be written as 

J'(Y1, Y2) 

1 Yl Y2 

= K --E Pj [(Ci ) -pC2) Cexp(-at+ C2exp )] + sexp(- ) 
a j=i j=l 

=K - R'(yl, y2), 

where K is some constant. Thus, if a policy r* maximizes R'(y1, Y2), the same policy 
minimizes Jr(yl, Y2). 

Let rz, T2, . , Tm be the times at which the servers become available. Time ri, 
i = 1, 2, . * , m, may be the time server i initially becomes available or the time at 
which server i completes the processing of some job. We define the random variable 
r(Tl, T2, * , Tm; y, Y2; il, i2, ' ', ik; r) as the reward obtained under policy n when 
the servers become available at times Tl, T2 , T* , the total number of jobs to be 

processed in queue i, i = 1, 2, is yi, with k out of Y2 jobs in queue 2 coming from 
interconnections from queue 1 at servers il, i2, *, ik at times i,, T,i, * * *, Ti,. Note 
that {i1, i2, , ' ik} ' {,2,..., m}. We define the random variable ri(TZ, T2, 
.. ' m;Yl, Y2; il, i2, ' ' ', ik; 1), i = 1, 2, * , m, as the reward obtained on server i 
when the reward function in queue i, i -1,2, is gi(t). Finally, R(.), Ri('), 
i = 1, 2, ,m, denote the expected values of r(.), ri(), i = , 2, , m, 
respectively. To define r,(.) and Ri(.) without ambiguity we adopt the following 
conventions: 
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(Al) If server i becomes available at the same time as one or more other servers, 
we assume that it becomes available at a slightly later time. 

(A2) If at some time t server i completes the processing of some job (say ji) in 
queue 1 and this job joins queue 2, then server i is guaranteed to process a job 
at the time t of the interconnection. That is, if j, is the only unassigned job at t, 
server i processes job jl. 

(Al) is the same as in Weber et al. (1986); (A2) implies that once a server idles 
because of lack of jobs, it remains idle. 

The reward problem we have formulated can be seen as an extension of the work 
of Weber et al. (1986), where the rewards obtained are the same for all jobs and 
there are no interconnections between queues. Our basic result is given in the 
following theorem. 

Theorem 1. Suppose that (i) X1 st X2 (where -st indicates stochastic ordering- 
see Ross (1983), p. 251), (ii) Xl has non-decreasing likelihood ratio, and (iii) 
(C1-pC2) C2. Then the non-preemptive scheduling strategy P1 maximizes the 
total expected reward within the class of non-preemptive strategies. 

The proof of the theorem requires the use of four lemmas. 

Lemma 1. For any scheduling strategy r 

dR(Tl, I2, * * , m; Yl, y2; il, i2, 
' 

, ik; ) 
dri 

= Ri(t1, 2, , Z,* * , Yl, 2; i1, i2, *, ik; 7r), i = 1, 2, ? ? , m, 

where dR(')/dTi is the right-hand derivative of R(.) with respect to ri. 

Proof. Let {AT,, n = 1, 2, * * } be a sequence of positive real numbers such that 

A,, > 0, and 
n-xoo 

Yn = {r(Tl, ? ? , ri + ATn, ' ? ', Tm; Yi, Y2; il, i2, , ik; z) 

- r('l, ? ? ?, ti, * * Yl, Y2; il, i2, * * ik; 7r)}(A~n)-1 

When server i becomes available AT, time units later, in the worst case all jobs are 
delayed by An, time units. Therefore this case provides an upper bound for the 
numerator of IYnl. Let tl, t2, . be the service completion times when server i 
becomes available at time Ti. Then 

(Kj exp (-atj) - Kj exp (- a(tj + ATJ))) 

Kj exp (- ) = ar(, ...m; Y 2; i i,, ik; 

- a E Kj exp (-atj) = ar(Tl, * * *, T, r;* * Y, T Y2; ii2, ,* * *, ik; ), 

J 
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where Kj = C1 - pC2 when the jth completion is at queue 1 and Kj = C2 when the jth 
completion is at queue 2. Taking expectations we get 

(2.1) E IYnl aR(T1, * * , Ti, . , m; Yl, Y2; ii, i2,', ik; 7) < o. 

For any sample path of service times and interconnections, and for n sufficiently 
large (AT, sufficiently small), all jobs are processed by the same servers when server 
i becomes available at times Ti and Ti + Ar,. Therefore, with tl, t2, * * denoting now 
the service completion times at server i when it becomes available at time Ti, we 
have for n sufficiently large 

5 (Kj exp (-a(tj + An,,)) - Kj exp (-atj)) 

AT',, 

where Kj = Cl - pC2 or C2 depending on the queue the jth completion takes place. 
Taking limits we get 

(2.2) Yn > - aKj exp (-atj) = ri(Tz, , T , i,. Tm;Y l, Y2; il, i2, , ik; i). 

From (2.1), (2.2) and the dominated convergence theorem we obtain 

EYn n > E[ri(Ti, * *, Ti, * * *, m; Yl, Y2; i, i2, * , ik; r)] 

= 
Ri(T1, ' , ', i , T'; y, Y2; il, i2, * * , ik; r). 

Since this is true for any positive real sequence AT, for which AT , >0, we 

conclude that 

lim E{r(T,, ?* * , + AT, * *, Tm; Y,i Y2; il, i2, ' , ik; r) 

- r(T,, T, , ,, * , Tm; y", Y2; ii, i2, , ik; ,)}(AT)-1 dR()= R (). 
dri 

The result of Lemma 1 is very important for our development. In essence, Lemma 
1 allows us to convert an m-server problem into m one-server problems. 

Lemma 2. Suppose strategy P1 is employed. Then 
(a) R1(T1, t2, * *, Tm; Yl, Y2; 1, i1, i2, , ik; P1) - R1(T, T2, *, 'Tm; Yl, Y2; i1, 

i2, ' ' ', ik; P1), 

(b) Ri(Ti, T2, * * *, Tm;Y, Y2; 2, i1, i2, .* * ik;Pl)> Ri(Ti, T2, * * *, Tm; Y Y2;i1, 

i2, 
' ' 

', ik; P). 
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Proof 
(a) Without loss of generality, let T2 = miniol Ti. If T1 < T2, the inequality is 

satisfied as an equality, so we only have to consider the case T T Z2. The proof is by 
induction on yl. We first prove the result for y, = 0 and any Y2 by induction on Y2. 

For y = O, y2= 1, R1(rl, T2, * * , Tm; 0, 1; -;P1) is zero because the job in queue 2 
is served by server 2, while R1(zT, T2, * * , Tm; 0, 1; 1; P1) is negative. We assume 
that the result is true for y, = 0, Y2 = 1 - 1, and prove it for y, = 0, Y2 = 1. 

Consider R1(Tl, T2, * ', Tm; 0, ; 1, il, i2, ' ', ik; P1). Notice that r1 is an inter- 
connection time. If server 1 is the first to process a job, then the rest of the jobs 
come from interconnections after T1. In that case R1(Tz, T2, , m; 

0, I; 1, i1, i2, , ik; P1) < 0 and R1(Trl,, 2, * * *, Tm; , 0 i, 1 i2* ik; P) = be- 
cause of (A2). If server i, i 7 1, is the first to process a job, then 

Rl(T'i, T2 X, , Tm; 0, 1; 1 il, i2, ' * , ik; P1) 

= E{Ri(Tl, * * , Ti + X2, * * m; 0, I 
- 1; 1, il, * * ik; P1)} 

- E{Ri(T, * * * , Ti + X2, ", vTm; 0, 1 - l1; i, , ik; P1)} 

= R1(T1, T2, , Tm; 0, ; il, i2, ' , ik; P1), 

where the inequality follows from the induction hypothesis. 
We now assume that the result is true for y, = - 1 and any Y2, and prove it for 

y, = I and any Y2. Since server 2 processes a job in queue 1, we have 

Ri(rl, , T, Tm; , y2; 2 1, i, i2, * * *, ik; P1) 

= E{pR1,(T, T2 + Xl, * * *, Tm; / - 1, Y2 + 1; 1, 2, il, i2, * * *, ik; P1) 

+ (1-p)R1(TI, T2 + X1, - * *, Tm; -1, 2; 1, iD, i2 , i; PI)} 

_ E{pRi(rT, T2 + X1, * * *, Tm; I - 1, 2 + 1; 2, i1, i2, i, ik; P1) 

+ (1 -p)R,(Tr, T2 + X1, * * *, rm; - 1, Y2; il, i2, * * *, ik; P1)} 

= R1(,l2,T2, ' ' , Tm; 1, Y2; il, i2, , ik; P1), 

where the inequality follows from the induction hypothesis. 
(b) Notice that if T2 = min, Ti, the inequality is satisfied as an equality. We assume 

that T2 7 min, Ti. We use the same induction scheme as in part (a). For y, = 0, Y2 = 1, 
Ri(l, T2,' , Tm; 0, 1;2;P1) is zero because the job in queue 2 is processed by 
server 2, while R1(Tl, T2, * * *, Tm;0, 1; -; P1) is non-positive. We assume that the 
result is true for y, = 0, Y2 = 1 - 1 and prove it for y, = 0, Y2 = 1. 

Consider R1(T1, T2, * * *, Tm; 0, 1; 2, i1, i2, * * , ik; P1). For Tl - T2, if server 2 is the 
first to process a job, the rest of the jobs come from interconnections after T2. If 
there is no interconnection at time rl, 

Rl(Tl, r2, , Ti; 0, 1; 2, il, i2, ' ', ik; P1) 

= Ri(Ti, T2, ' ' , Trm; 0, 1; il, i2, ? ik; P1) = 0. 
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If there is an interconnection at time rl, this job is processed by server 1 and 

R,(Tl, T2, ?* . , Tm; 0, 1; 2, il, i2, * * ', ik; P1) 

= E{g2(Tl + X2) + R?(T, + X2, 2, * * , Tm; 0, I - 1; 2, il, i2, * *, ik; PI)} 

-E{2(Ti1 + X2) + R1(T1 + X2, T2, ', ; 0, T - 1; il, i2, * * *, ik; P1)} 

= R1(T1, T2, ' ' , Tm; O, I; il, i2, 
' ' , ik; P1), 

where the inequality follows from the induction hypothesis. If server i, i $ 2, is the 
first to process a job, Ti - T2 has to be true, implying i $ 1. Then 

RI(Tl, T2, ?, Tm; 0, l; 2, il, i2, ' ' , ik; P1) 

= E{R1(T1, T2* * *, ' T + ' , * * *? , Tm; 0, I - 1; 2, i,, i2, * ? , ik; P1)} 
> E{R1(T1, T2, * * , Ti + X2, ? ? , m; 0, - 1; i, i2, * * *, ik; P1)} 
= R1(T1, T2, * * , Tm; 0, ; il, i2, * * *, ik; P1), 

where the inequality follows from the induction hypothesis. 
For T < T2, if server 2 is the first to process a job, we get 

R,(Tl, T2, * * *, m; 0, 1; 2, i1, i2, * * *, ik; P1) = 0, since all other jobs come from 
interconnections after T2. If server i, i = 2, is the first to process a job, the result 
follows from the induction hypothesis in the same way as in the case Tl _ T2. 

We now assume that the result is true for y, = - 1 and any Y2, and prove it for 
y, = and any Y2. We prove the result using the induction hypothesis in the same 
way as in part (a). 

The intuition behind Lemma 2 is that, since the reward function gi(t), i = 1, 2, is 
negative, the reward obtained on a given server (server 1 without loss of generality) 
is not increased when there is at least one job for that server to process (job coming 
from an interconnection at time T1 in part (a)), and is not decreased when there is at 
least one job for some other server to process (job coming from an interconnection 
at time T2 in part (b)). 

Lemma 3. Suppose strategy P1 is employed. Then Ri(T1, *, Ti, ' T, Tm; 

Yl, Y2; il, i2 , ' ', ik; P1) is (a) non-decreasing in Ti and (b) non-increasing in Tr, j $ i. 

Proof Without loss of generality we prove the lemma for i = 1. The result (parts 
(a) and (b)) is trivially true for y, = 0, Y2 = 0. We assume that it is true for y, = 0, 
Y2 = 1 - 1 and prove it for y, = 0, Y2 = 1. We give the proof for part (a) only, since 

part (b) can be proved similarly. We assume that T2 = mini,1 Ti. If there is an 
interconnection at time Tr (T = Ti, for some j, 1 <j 

- 
k), we have 

R1(T1, T2, ? ?, Tm; 0, /; il, i2, ' , ik; P1) 

= E{g2(T1 + X2) + R1(T + X2, T2, * , Tm;0, I - 1; il, i2, ... i, ij+* * *, i*,; Pl)}, 
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and the result follows from g2(t) being non-decreasing and the induction hypothesis. 
If there is no interconnection at time T1 and all 1 jobs in queue 2 come from 
interconnections, then Ri(Ti, T2, ' , Tm; 0, ; ii, i2, * * , ik; P1) = 0. Consider the 
case when there is no interconnection at time rl and not all 1 jobs in queue 2 come 
from interconnections. Then for rl < T2, 

R1(T1, r2, * * , Tm; 0, 1; il, i2, ' ' , ik; P1) 

= E{g2(T + X2) + R1(T1 + X2, T2, * * *, m; 0, - 1; il, i2, * * ik; P1)}, 

and for rl > r2 

R1(Tr, T2, ?, Tm; 0, 1; il, i2, ' ik; P1) 

= E{Ril(i, T2 + X2' * , Tm; , ; 0, - 1; * *, i,' '', ik; PI)}. 

The result follows from g2(t) being non-decreasing and the induction hypothesis. It 
remains to be seen how R1(') changes when T1 passes through the value T2. This 

change is given by R1(T2+, T2, * * , Tm; 0, 1; il, i2, * , ik; P1) - R1(T2, T'2, ', Tm; 
0, 1; il, i2, * *, ik; P1). When there is a job to be processed by server 1 when T1 = T2, 
the difference is zero. When there is no job to be processed by server 1 when 
rT = T, the difference is non-negative because the first term is zero and the second 
is non-positive. 

We now assume that Lemma 3 (parts (a) and (b)) is true for y, = I - 1 and any Y2, 
and prove it for yl = 1 and any Y2. Again we give the proof for part (a) only, 
assuming T2 = mini, Tri. For T1 < T2, 

R1(T12,T2, ??, Tm; 1, Y2; il, i2, , ik; P1) 

= Eg,(Tl + X1) + pRl(T + X1, T2, * 
*, Tm; - 1, 2 + 1; 1, il, i2, **, ik; P1) 

+ (1 - p)R1(T + X,, T2, *, ; - , Y2; il, i2, i k, i; P1)}, 

and for T1 > T2, 

Rl(rl, r2, ? , Tm; 1, Y2; il, i2, , ik; P1) 

=E{pR,(rl, r2 + X, ? , * * ; - 1, y2 + 1; 2, il, i2, ?* * , ik; P1) 

+ (1 -p)R1(T1, T2 + X1, , Tm; - 1, Y2; il, i2, '' , ik; P1)}. 

The result follows from gl(t) being non-decreasing and the induction hypothesis. It 
remains to show that 

R1(T', T2, * , Tm; 1, Y2; il, i2, , ik; P1) 

(2.3) - R1(T2~2,T2, * * *, Tm ; il, i2, ik; P1). 

If there is a job in queue 1 to be processed by server 1 when Tr = T2, the two 
rewards are the same. If there is no job to be processed by server 1 when rT = T+, 
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R1(T, ,, 2, , m; l, Y2; i1, i2, ', ik; P1) is zero and the inequality is satisfied. If 
server 1 processes a job in queue 2 when T, = zT, we have 

R1(Tz, r2, T2, ,m; , Y2; il, i2, ?* * , ik; P1) 

(2.4) = E{g2(r2 + X2) + pRl(r2 + X2, T2 + X1, , rm; - 1, Y2; 2, il, i2, * * ik; P1) 

+ (1 - p)Rl(,T2 + X2, T2 + X, ? ?, ; * - 1, Y2 - 1; il, i2, ? ' , ik; PI)}, 

R,(T-, 2, T2, , Tm; 1, Y2; il, i2, * * , ik; P1) 

(2.5) = E{gl(T2 + Xl) + pRl(,T2 , + X2 , , m; I - 1, Y2 , Y2; il, i2, ,i; P1) 

+ (1 - p)R(T22 + Xl, T2 + X2, * *, Tm; I - 1, Y2 - 1; il, i2, * * *, ik; P1)}. 

From conditions (i) and (iii) in the theorem we get 

(2.6) E{g2(T2 + X2)} E{g,(T2 + X1)}. 

From condition (i) in the theorem (X1 st X2) and the induction hypothesis for parts 
(a) and (b) we get 

(2.7) E{Ri(T2 + X2, T2 + X1, , l ,; - 1, 2 - 1; il, i2, ', ik; P1)} 

- 
E{R1(T2 + Xl, T2 + X2, *? ? , Tm; I - 1, Y2 - 1; il, i2, * * *, ik; P1)}. 

Finally we have 

E{R1(T2 + X2, T2 + Xl, * ; 1 - 1, Y2; 2, il, i2, * * *, ik; P1)} 

E{R(T2 + X2, T2 + X1, * *, Tm; / - 1, Y2; i1, i2, * *, ik; P1)} 
(2.8) 

>-E{R1(T2 + X1, T2 + X2, * , Tm; l - 1, Y2; il, i2, , ik; P1)} 

> E{R1(T2 + Xl, T2 + X2, * * , Tm; 1 - 1, Y2; 1, i,, i2, * , ik; P1)}, 

where the first and last inequalities follow from Lemmas 2b and 2a respectively, and 
the middle one is (2.7) with Y2 - 1 replaced by Y2. Equation (2.3) follows from 

Equations (2.4)-(2.8). 

The intuition behind Lemma 3 is the following. When a server i becomes 
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available at a later time, it either processes fewer jobs or processes the same jobs 
later or processes jobs in queue 2 instead of queue 1. Since the reward function gi(t), 
i = 1, 2, is negative and non-decreasing, and the expected reward obtained in queue 
2 is greater than the expected reward obtained in queue 1 (see conditions (i) and 

(iii) in the theorem), the expected reward obtained on server i does not decrease. 

Similarly, when server j, j = i, becomes available at a later time, server i either 

processes more jobs or processes jobs in queue 1 instead of queue 2. Therefore, the 

expected reward obtained on server i does not increase. 
The final lemma states that when the reward function is gi(t), i = 1, 2, the 

expected reward obtained on a server that does not start first is greater when 

employing strategy P1 than when employing a strategy that is identical to P1 except 
that it assigns a job in queue 1 (if any) to that server. 

Lemma 4. Let r, # mini ri. If there is no interconnection at time r,, we have: 

(a) If not all jobs in queue 2 come from interconnections 

R1(, 2, * * *,2, Tm; 0, Y2; i1, i2, * * , ik; P1) 

(2.9) - E{2(T + X2) 

+ R(T,r + X2, T2, ? * * , Y2 - 1; il, i2, , ik; P1)}, Y2 - 1, 
(b) 

R1(r1, T2, *T, m; Yi, Y2; il, i2, . , ik; P1) E{gl(Z1 + X1) 

(2.10) + pR(,T + XI, T2, * * * , Tm; Yl - 1, Y2 + 1; 1, il, i2, * * *, ik; P1) 

+ (1 - p)R1(T1 + X, T2, *, ,Tm; Y - 1, Y2; i1, i2, . *, ik;P1)}, Yl- 1. 

Proof. Without loss of generality we assume that r2 = mini Ti. 

(a) We prove the result by induction on Y2. The result is true for Y2= 1 since the 
left-hand side of (2.9) is zero. We assume that it is true for Y2 = 1 - 1 and prove it for 

Y2 = 1. Because not all jobs in queue 2 come from interconnections we have 

R1(,r, T2, * * *, Tm; 0, 1; i1, i2, * , ik; P1) 

= E{R1(I, +X, 2 + 2 , * m; 0, l - 1; ii, * * , ik; P1)}. 

If all 1- 1 jobs in queue 2 come from interconnections, the last term is zero. If not, 
we can use the induction hypothesis to get 

R1(T1, T2, * * , Tm; 0, 1; il, i2, * * , ik; P1) 

- E{2(Tl + X2)+ R1(ZT + 2, T2 + X2, ..*, Tm; 0, - 2; il, i2, *, ik; P1)} 

= E{g2(T1 + 2) + R1(Tl + X2, T2 , , m; 0, - 1; il, i2, .. * ik; P1)}, 

where X2 is a random variable independent of and identically distributed to X2. 
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(b) The result is true for y, = 1, Y2 = 0 since the left-hand side of (2.10) is zero. 
For Y2 $ 0 we have 

Ri(Ti, T2, ' * , Tm; 1, Y2; il, i2, ? ? ?, ik; P1) 

= E{pRI(T, T2 + X1, , *, Tm; 0, Y2 + 1; 2, il, i2, * *, ik; P1) 

+ (1 -p)Rl(zT, T2 + X1, * * *, T; 0, Y2; i, i2, * , ik; P1)}. 

If all Y2 jobs in queue 2 come from interconnections, the last term is zero. If not, we 
can use part (a) of the lemma to get 

Ri(Tj, T2, ', Tm; 1, Y2; i1, i2, * * *' , ik; P1) 

- E{g2(T1 + X2) + pRi(Ti + X2, T2 + X-i, , Tm; , y2; 2, i1, i2, * *, ik; P1) 

+ (1 -p)Ri(Tl + X2, T2 + X1, * ; 0, T; 2 - 1; il, i2, ' , ik; P1)} 

> E{gl(Tl + X1) + pRI(zT + Xl, T2 + X2, ' ', Tm; 0, y2; 2, i,, i2, ' , ik; P1) 

+ (1 -p)R,(T1 + X1, 2 + X2, * * , Tm; 0, Y2 - 1; i1, i2, * * , ik; P1)} 

E{gi(,T + X1) + pR1(T1 + X1, T2 + X2, * * *, Tm; 0, Y2; 1, il, i2, ' * , ik; P1) 

+ (1 - p)RI(Tl + Xl, T2 + X2, * * *, Tm; 0, Y2 - 1; ii,, i, i; P1)} 

= E{i1(Tl + X1) + pR1(T1 + X1, T2, * , Tm; 0, Y2 + 1; 1, il, i2, * * , i; P1) 

+ (1 -p)Rl(T, + X1, T2, * ** 0, m Y2; il, i2, , ik; P1)}, 

where the first inequality follows from Lemma 3 and the second inequality follows 
from applying first Lemma 2b and then Lemma 2a. 

We now assume that the result is true for yi = I- 1 and any Y2 and prove it for 
Yl = I and any Y2. We have 

Rl(Tl, T2, ' ' , Tm; 1, Y2; il, i2, , ik; P1) 

= E{pR,i(l, '2 + Xl, ? ? ?, Tm; l - 1, Y2 + 1; 2, il, i2, * *, ik; P1) 

+ (1 - p)Ri(T,, T2 + Xl,, T* * m -, Y 12; i1, i2, , ik; P)} 

E{gl(T + X,) 

+ p[pRi(lT + X1, T2 + X, , Tm; 1 - 2, Y2 + 2; 1, 2, i1, ? , ik; P1) 

+ (1 -p)RI(T, +X1, T2 + X, *, Tm; -2, 2 + 1;2, i,, 2, * , ik; P)] 

+ (1 -p)[pR,(T1 + X, , 2 + X, , Tm; l - 2, y2 + 1; 1, i, i2, * ? , ik; P1) 

+ (1 - p)R,i(T + X1, T2 + X1, ? ? ?, Tm; - 2, Y2; il, i2, ? ? , ik; P1)]}, 
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where the inequality follows from the induction hypothesis. Rearranging terms, the 
last expression can be written as 

Egl((1 + X1) 

+ p[pR,( + X + , 2 * * *, ? ? , Tm; - 2, 2 + 2; 1, 2, il, i2, * * *, ik; P1) 

+ (1 
- 

p)R,(,+l + X1, 2 + Xl * * *, Tm; 1 - 2, Y2 + 1; 1, il, i2, * * *, ik; P1)] 

+ (1 - p)[pR,(,l + X1, T2 + X, * * *.., T; - 2, Y2 + 1; 2, il, i2, * * *, ik; P1) 

+ (1 -p)R(zT1 + X,, T2 + X1, ', * m;l - 2, Y2; il, i2, ' ' ', ik; P1)]} 

= E{g1(z1 + X1) +pR1(Tl + X1,2, ? ? , Tm; - 1, Y2 + 1; 1, il, i2, , ik; P1) 

+ (1 - p)R1,(1 + Xi2, 2 , Tm;- 1, Y2; il, i2, , ik; PI)}, 

where X1 is a random variable independent of and identically distributed to X1. 

Proof of Theorem 1. The proof is by induction on the total number of jobs. The 
result is trivially true (i.e. strategy P1 is optimal) when there is one job to be 

processed (y, = 1 or Y2 = 1). We assume that it is true when y, + Y2 = I - 1 and prove 
it for Yi + Y2 = . We also assume that there exists at least one job in each queue at 
the time the first server becomes available, because otherwise there is nothing to 

prove. Let S2 be a strategy that starts with a job in queue 2. By the induction 

hypothesis it is optimal to follow P1 afterwards. We construct strategy S1 as follows: 
S1 starts with a job in queue 1, then processes a job in queue 2, and follows P1 
afterwards. We need to show that 

A = R(1, T2, ' * ', rm; Yl, Y2; il, i2, '... , ik; S1) 
- R(T1, r2, ' ', m; Yl, Y2; i, i2, ', ik; S2) - 0. 

After we prove that A ? 0, repeated application of the same exchange argument will 
establish that P1 is the optimal policy, that is 

R(T1, T2, , rm;yi Y2; i, i2, , ik; P1) 
>- R(T1, , T2 y, Tm ; Yl , Y2; i , ik; S), 

for any policy S. 
To show that A __ 0 we proceed in two steps. 

Step 1. We prove that 

A(r) = E{r(r1, T2, * , Tm; Yl, Y2; il, i2, * , ik; S1) 

- r( T, T2, , y , Tm; Y, Y2; i, i * * , ik; S2) I X2 = T} 

is non-decreasing in T. Assuming the result of Step 1 is true we have by X2 > t X1 
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and Proposition 8.1.2 of Ross (1983) that A = E[A(X2)] E[A(X1)], where X1 is a 
random variable independent of X1, X2 and identically distributed to X1. 

Step 2. We prove that E[A(X1)]- 0. 
We proceed now to prove the claims made above. 

Proof of Step 1. Without loss of generality we assume that T - Tz2 ' * * * ' Tm. We 
consider two cases. 

Case 1. T > T2- T1. 

A(T) = E{1(X, < T2 - T1)[gl(T1 + X,) + g2(T1 + X1 + T) 

+ pR(l + + X , + T2, * * *, z T, ? 
' 

', 'm; Yl - 1, Y2; il, i2, * , ik; P1) 

+ (1 -p)R(+ X + X + T, T2, ' ' , m; i - 1, y - 1; i1, i2, ? , ik; P1)] 

+ 1(X, - T2 - T)[gl(Tl + X1) + g2(2 + r) 

+ pR(T, + X, z2 + z, ?* ? , Tm; Yl - 1, Y2; 1, il, i2, , ik; P1) 

+ (1 - p)R(Tl + Xl, T2 + T, ? ? , Tm; Yl - 1, Y2 
- 

1; il, i2, ' ' , ik; P1)] 

- 
g2(T1 + T) -g1(T2 + X) 

- pR((T + z, T2 + X1, ? ? , Tm; Yl - 1, Y2; 2, il, i2, ' ' , ik; P1) 

- (1 - p)R(TI + T, T2 + Xl, * * ? , Tm; Y - 1, Y2 - 1; il, i2, ? ? *, ik; P1)}. 

Differentiation of the above and Lemma 1 give 

dAT) = E{1(X < T2 - T1)[g2(T, + X, + T) dT 

+ pRl(T, + X, + T, T2,* * * , Tzm; y - 1, Y2; il, i2, ** * , ik; P1) 

+ (1 -p)R,(Tl + X1 + , T+ , T , m; Yl - 1, Y2 - 1; il, i2, , ik; P1)] 

+ l(X, ' T2 - T1)[g2(T2 + T) 

+ pR1(T2 + T, T1 + X1, * * * , Tm; Yl 
- 1, Y2; 2, il, i2, , ik; P1) 

+ (1 -p)R1(T2 + , T1 + Xl, * * *, Tm; Yl - 1, Y2 - 1; il, i2, * , ik; P1)] 

- g2(T1 + T) - pRa(T, + T, T2 + X1, * * *, Tm; y - 1, Y2; 2, il, i2, * * *, ik; P1) 

- (1 - p)Rl(Tl + T, T2 + Xl, * * * , Tzm; y - 1, Y2 - 1; il, i2, ' ', ik; P1)}. 
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Since TI ? XI + T T2 we have 

Having observed this we can apply Lemma 3 to get that the expression over which 
the expectation is taken is non-negative. Therefore dA('r)IdT:- ?0 for z ?-,r -rl. 

Case 2. T < T2 - Tl. Conditioning on the value of X1 we get 

A(,r) = E[A(zr) IXl < T2- TljPr (Xi < r2 -T1 

(2.11) +EAT l~r ,I r(,~ 2-T) 

where 

E[A(Tr) IXl <r2 - Tl]= E{g (,r, + X1) ? g2(,r1 + X, ? r) 

(2.12) -g92(TI + T) -gl(Tl+ ?Xl + Tr) 

- (1 - p)R(T1+ Xl + r, T, M 

and 

E[A(T) IXl i?: r2 - T,= E{R(Tr2, T2, Tm; ly Y2; i1 1? i, ik; P1'I) 

g 2(T1 + T) - R(T2 + T, T2, , Tm; Yli Y2 1; il, i2, , ik; Pl")}, 

where P1' is a strategy that assigns a job in queue 1 requiring service time Z1 to 
server 1 (Zl is the remaining service time for a job in queue 1 that has completed 

T2- Tj units of service), a job in queue 2 to server 2, and is identical to P1 
afterwards, and P1" is a strategy that assigns a job in queue 1 requiring service time 
Z1 to server 1, and is identical to P1 otherwise. Thus 

E[A(z) IXl1- 'r - rl] = E{g{(r2 + Z1) + g2(z2 + 1r) 

(2.13) + (1 -p)R(T2 + ZI, r2 + T, - , Tm; Y, - 1, Y2 - 1; il, i2, . ik;Pl) 

- 92(TI + T) - gl(T2 + T + ZI) 

-pR(T2 + Tr + Zl, T2, , Tm;YI -1l, Y2; 1,4, ilj2,9 . .. iik;PO) 
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From Equations (2.11)-(2.13) and Lemma 1 we get 

dA(T) = Pr (X1 < r2 - T1)E{g2( + X1 +1 T) dr 

+pRl(Ti + X1 + T, T2, * *, Zm; Yi - 1, Y2; il, i2, , ik; P1) 

+ (1 -p)Rl(Tl + X1 + T, 2, ' ' ', m;YlI- 1, Y2- 1; il, i2, ik; P1) 
- 

g2(T1 + T) 
- 

gl(T1 + X1 + T) 

-pRi(Tl + X, + z, *2, T, rm; yi-1, Y2; 1, i1, i2, * , ik; P1) -(1 -p) 

X R,(Tl + X1 + T, T2, 
' ' 

, Tm; Yl - 1, Y2 - 1; il, i2, * * ', ik; P1) | X < T2 - 1} 

(2.14) + Pr (X1 T2 - T1)E{g2(T2 + T) 

+ pRI(T2 + r, T2 + Zl, '* * , m; Yl - 1, Y2; 2, il, i2, * * , ik; P1) 

+ (1 -p)R,(T2 + T, r2 + Z1, * , Tm; - 1, y2 - 1; il, i2, * , ik; P1) 

-g2(1 + T) - gl(T2 + T + Z1) 

- pR1(r2 + + Z1, T2, * * , Tm; Yl - 1, Y2; 1, il, i2, , ik; P1) 

- (1 -p)Rl(2 + T + Z, , " ', * * Tm;Yl -1, 2- 1; i, i2, , ik; PI)}. 

The expression over which the first expectation is taken is non-negative because of 
Lemma 2a and g2(T1 + T) being negative. Since X1 is a random variable that has 

non-decreasing likelihood ratio, Z1 ,st X. Thus, according to Lemma 3, replacing 
Z1 by X1 in Equation (2.14) we obtain 

dA(T) > Pr (X1 T2 - Tz)E{g2(T2 + T) 
dr 

+ pRl(T2 + T, T2 + X1, ? ? , Tm;y - 1, Y2; 2, i1, i2, *? ? , ik; P1) 

+ (1 -p)Rl(T2 + T, T2 + X1, ? ? , Tm; yi - 1, Y2 - 1; , i2, ' i 2 , ik; P1) 
- 

g2(TI + ) - gl(T2 + T + X1) 

-pRl(T2 + T + Xl, T2, * ' ', Tm; Y --1 Y2; 1, il, i2, ik; P1) 

(2.15) - (1 -p)R(T2 + T + X, T2, *, Tm; Y - 1, Y2 - 1; i 2, , i; P1)} 

> Pr (X1 T2 - Tz)E{g2(T2 + r) 

+ pRl(T2 + T, T2 + X, ? ? ?, Tm; y- 1, Y2; 2, il, i2, * *, ik; P1) 

+ (1 - p)R(T2 + +, X + * 1 , ; Y - 1, 2 - 1; ii, i2, * * *, ik; P1) 

- g2(T1 + ) 

- R1(T2 + Z, T2, * , ,; Yl, Y2 
- 1; il, i2, , ik; Pl)}, 
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where the second inequality follows from Lemma 4b. We have 

RI(r2 + r, ':2, ' ' ' , m; yl, Y2 - 1; il, i2, ?' , ik; P1) 

(2.16) = E{pR('r2 + r, r2 + XI, ? ? ', rm; y, - 1, Y2; 2, il, i2, ' ' ', ik; P1) 

+ (1 - p)R ('2 + 'r, z'2 + X, ? ?.., rm; yx - 1, Y2 - 1; il, i2, ' ' , ik; Pl)}. 

Therefore, after substitution of (2.16) into (2.15) we obtain 

dA(r)> Pr (X' = r2 - rl)[g2(r2 + r) - g2(r1 + 1)] 0, 
dr 

and the proof of Step 1 is complete. 

Proof of Step 2. 

E[A(X,)] = E{gI(r1 + XI) + g2(r1 + X1 + X1) 

+pR(r1 + Xi + X1, r, ', m; yi - 1, Y2; il, i2, , i; P1) + (1 -p) 

X R(r1 + X + Xl, T2, , , r,; y - 1, Y2 - 1; il, i2, ik; P1) I X1 < T2 - Tl 

x Pr (X1 < T2 - T1) + E{g1(T2 + Z1) + g2(r2 + XI) 

+ pR(T2 + Z 1, r2 + X 1, ? ', ; y, - 1, y2; 1 , i2,Y li, i,i; Pl) 

+ (1 - p)R(T2 + Zl, r2 + Xi, "', Tm; yi - 1, Y2 - 1; il, i2, ', ik; PO)} 

(2.17) X Pr (X1 ~ T2 - T,) - E{g2(TI + X1) + gl(Tl + Xl + X1) 

+pR(rI + X + X1, 2, ? ? , rm; y - 1, Y2; 1, il, i2, ? , i,; P1) + (1 -p) 

X R(r1 + X1 + XA1, r, , m; Yl - 1, Y2 - 1; il, i2, ik; P1) A'1 < 2 - Tl 

X Pr (Xl < *2 - T,) - E{g2(T2 + Z1) + gI(T2 + X1) 

+ pR(T2 + Z1, r2 + XI, ? ? ', z'; Y, - 1, Y2; 2, il, i2, ' ' ', ik; P1) 

+ (1 -p)R(r2 + ZI, r2 + X,', Tm; Y, ; y2 - 1;i, i2, 2, ik; P1) 

X Pr (X1 > r2 - TI), 

where Zl, Z1 are the remaining service times of jobs having service times XA, XA 
after completing T2 - T, units of service. Note that ZI, Z, are independent and 

identically distributed, and Z, <stA X1, because XA has non-decreasing likelihood 
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ratio. 

E{g,(l, + X1) + g2(TI + X1 + X1) I X1 < T2 - T} 

- 
E{g2(T, + X1) + gl(T + X, + X1) I X1 < T2 - T} 

(2.18) = E{(C1 - pC2) exp (-a (Tl + X1)) 

+ C2 exp (-a (T + 1 + +X1)) X1 < T2 - Ti} 

-E{C2 exp(-a (, + X1)) 

+ (C1 - pC2) exp (-a (Tz + X, + X1)) I X1 < T2 - , 

= E{[(C1 -pC2) - C2](exp (-a(TZ + X,)) 

-exp (-a(Tz + X, + X1))) | X, < T2 - 1} -0, 

because of condition (iii) in the theorem. 

E{g,(T2 + Z1) + g2(T2 + X1)} - E{g2(2 + Z1) + gl(T2 + X1)} 

(2.19) = E{(C1 -pC2) exp (- a (T2 + Z)) + C2 exp (- a (T2 + X1))} 

- E{C2 exp (-a (T2 + Z,)) + (Cl - pC2) exp (-a (Z2 + X1))} 

= E{[(C1 - pC2) - C2](exp (- a (T2 + Z1)) - exp (-a (T2 + X,)))} 0, 

because of condition (iii) in the theorem and Z1, -s Xl. 
We can show by a sample path argument that 

(2 20) E{R(rl + X, + Xl , r2, *. ' , rm; yl - 1, Y2; il, i2, , ik; P1) I X1 < T2 - Tl} 

( E{R(T1 + X1 + X1, 2,' , Tm;Y- 1,Y2; 1, i, i2,', ik;P1) X < T2- t. 

This is true for the following reason. The conditional distributions of T1 + X1 + X1 

given X1 < T2 - T1 and T, + X1 + X1 given X1 < T2 - m1 are identical. We observe 
that the right-hand side and left-hand side of (2.20) have the same number of jobs in 
both queues. However, when considering the right-hand side we note that one of the 

jobs in queue 2 results from an interconnection at server 1. Consequently, the 

corresponding job on the left-hand side of (2.20) may be available at an earlier time, 
thus, yielding a larger reward under policy P1. Using a similar sample path argument 
we can show that, for x _ y, 

(2.21) R(y, x, ? ? , Tm; Y - 1, Y2; 1, i, i2, . , ik; P1) 

_ R(y, x, ? ? ', Tm; Yl - 1, Y2; 2, i1, i2, * ' ', ik; P1). 

(The reason for (2.21) is the following. Considering the right-hand side of (2.21), 
one of the jobs in queue 2 results from an interconnection at server 2, whereas the 

corresponding job in the left-hand side of (2.21) results from an interconnection at 
server 1 at an earlier time.) 
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Moreover, 

(2.22) R(y, x, ?, r; y - 1, Y2; 2, il, i2, , ik; P1) 

= R(x, y, ', Tm; Yl - 1, Y2; 1, il, i2, * * *, ik; P1). 

Let Z, X be independent random variables identically distributed to 2 + Zl, 
T2 + X1 respectively. Since Xl has non-decreasing likelihood ratio, we have 
Z -LR X. From (2.21), (2.22) and Proposition 8.4.2 of Ross (1983) we get 

R(Z, X, ? ?, m;Yl - 1, Y2; 1, il, i2, * * , ik; P1) 

=st R(X, Z, ? ? ? , m;l - 1, Y2; 1, i, i2, * , ik; P1) 

= R(Z, X, ? ? , Tm; Yl - 1, Y2; 2, il, i2, * * , ik; P1). 

Consequently, by Lemma 8.1.1 of Ross (1983) we get 

E{R(T2 + Z,, t2 + X,, ? ?, ; y - 1, Y2; 1, il, i2, * * *, ik; P1)} 

(2.23) 
= E{R(Z, X, ? ?, m;Yl - 1, Y2; 1, ii, i2, , ik; P1)} 

(2.23) 
E{R(Z, X, * * *, rm; y - 1, Y2; 2, i,, i2 , ik; P1)} 

= E{R(T2 + Zl, T2 + Xl, * * * , - 1, Y2; 2, i,, i2, * * *, ik; P)}. 

From Equations (2.17), (2.18), (2.19), (2.20), and (2.23) we get E[A(Xi)] 0, and 
the proof of Step 2 and the theorem is complete. 

3. Discussion 

We have considered multiserver scheduling in a system of two interconnected 

queues with jobs completing service in queue 1 joining queue 2 with a certain 

probability. We have shown that when jobs in queue 1 require a stochastically 
smaller service time and yield a higher reward than jobs in queue 2 (conditions (i) 
and (iii) of the theorem), the strategy that gives priority to queue 1 maximizes the 

expected reward. In this section we present counterexamples showing that if any of 
the sufficient conditions under which strategy P1 is optimal is relaxed, the optimality 
of P1 is no longer guaranteed. We also present a counterexample showing that 

policy P1 is not optimal when conditions similar to (i)-(iii) of Theorem 1 are true 
but the queues are interconnected in the opposite way, i.e. jobs completing service 
in queue 2 (the queue with the smallest expected reward and stochastically larger 
service rate) join queue 1 with a certain probability. Finally, by example we illustrate 
the following points: (i) the conditions of Theorem 1 are sufficient but not necessary; 
and (ii) the index that describes the optimal policy in the single-server problem is 

suboptimal in the multiserver problem. 
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We first present counterexamples showing that strategy P1 is not necessarily 
optimal when one of conditions (i) and (iii) in the theorem is not satisfied. Jobs from 

queue 1 join queue 2 with probability 1. Service times are exponential with rates u 1, 
,u2. We take yi = 1, y2 = 2, and two servers (m = 2). Strategy P1 initially assigns one 
server to each queue, whereas strategy P2 assigns both servers to queue 2. A 

straightforward but tedious calculation shows that the expected rewards under 

strategies P1 and P2 are 

R(P1) = (C, - C2) L 
+ 1 cu CA2 

p l 
-2 + 1 + a + L (a + .L2)(a + /.LJi) (a + 2.,2)(a+ Ll, + /2) 

+/,2(a 
+ 2/2) _ 1/ 22 + 1 Al 2 

+ -- + 

(3.1) (a +/t2)2 (a+ b2)2 (a +t 1+/L2) (a + 2)(a +t1 +/2) 

+_^ ^~1y2 1 

(a + 2)(a + 2'2)( +1 + 12) 
' 

R(P2)= (C1 - C2) + /1)( 2 

/3.2)^ ~ (a + Az)(a + 2/ 2) 

2[ 2 2tL 2 2 L 22 
+ C2+ 2 

+ 
2 

a + 2t2 (a ( + 2)( + )( 2) ( 2)(a + 2tA2) 

Counterexample 1. The condition on the service times is not satisfied. We take 
1 = 1, i2 = 2, C1 - C2 = C2 = 1, and a = 1. Substituting these values into (3.1) and 

(3.2) we get R(P1) = 2 - 30, R(P2) = 2, hence strategy P2 does better than P1. 

Counterexample 2. The condition on the rewards is not satisfied. We take 

/z1 = /.2 = a = 1, Cl - C2 = 1, and C2 = 2. Substituting these values into (3.1) and 

(3.2) we get R(P1)= 9, R(P2)= 2, hence strategy P2 does better than P1. 

We now give a counterexample to show that when the interconnection is from 

queue 2 to queue 1, and jobs in queue 1 require a stochastically smaller service time 
and yield a higher reward (g1(t) g2(t) for all t) than jobs in queue 2, the strategy 
that gives priority to queue 1 need not be optimal. Jobs from queue 2 join queue 1 
with probability 1. We take service times to be exponential with rates / 1, /12, , = 2, 
Y2 = 1, and two servers (m = 2). Note that the expected rewards under strategies P1 
and P2 are given by (3.2) and (3.1) respectively with C1 - C2 replaced by C2 - C1, 
C2 replaced by C1, A,l replaced by 2, and /x2 replaced by /1. Taking 
1 = 2 = C = 1, C2- C1 = 1, and C1 = 11 we get R(P1) = 1616, R(P2)= 1-63, 

hence strategy P2 does better than P1. 
Next we present an example illustrating the following points: (i) the conditions of 

Theorem 1 are sufficient but not necessary for P1 to be optimal; (ii) the optimal 
policy for the single-server problem is not necessarily optimal for the multiserver 
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problem. Consider the example given at the beginning of this section. Take /U = 2, 
L2 = 1, P = 1, C1 - C2 = 0-99, C2 = 2 and a = 1. Define 

(C1 -pC2)E(exp (-aX1)) 
Vl= 1 - E(exp (-aX1)) 

C2E(exp (-aX2)) 
1 - E(exp (-aX2))' 

for exponential service times with rates tu1, /L2, 

V = (C1 -pC2)Il, 

V2 = C2/A2 

Note the following facts: (1) the optimal policy for the single-server problem is 
described by the following rule: priority is given to queue 1 if v1 ' v2 and to queue 2 
otherwise; (2) the conditions of Theorem 1 are not satisfied (C1 - C2 < C2). For this 
example the rewards for policies P1 and P2 are R(P1) = 2-91 and R(P2) = 2-88. For 
the single-server problem policy P2 is optimal since C21u2 = 2 > 1.98 = (C1 - C2)L1. 

Finally consider N queues interconnected in the following way. Jobs that complete 
service in queue i, i = 1, 2, * * *, N - 1, join queue j, j > i, with probability pij, and 
leave the system with probability 1 - j>,iPij. Jobs that complete service in queue N 
leave the system. Consider a cost criterion similar to (1.1). We conjecture that if 
X1 -st X2 st' * * st XN, X1, X2, ' , XN-1 have non-decreasing likelihood ratio 
and 

(C - pC) ? (c2 - 
S p2,Cj) .. CN, 

j >l j>2 

the optimal strategy serves the queues according to the priority list 1, 2, * *, N. 
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