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Rg. 11.  Responses  of the position controller to a merging command  input 

The specific model presented applies to  one vehicle-a  1969 Plymouth 
powered by an  internal-combustion engine. However, the methodology 
employed and the general nature of the results obtained appear applica- 
ble to other  rubber-tired vehicles-provided that  the thrust is applied 
through  the wheels.’ In particular, nonnegligible nonlinear velocity de- 
pendencies are probably  inherent in the dynamics of such vehicles and 
must be considered in controller design. 
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marked velocity dependencies 
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INTRODUCTION 

A  common  occurrence in engineering systems is the presence of 
phenomena that naturally evolve in widely separated time scales. Some 
examples drawn from the fields of aerospace and power engineering will 
serve to illustrate this point. 

It is  well known [l]  that  the longitudinal dynamics of an aircraft are 
comprised of two distinct oscillatory modes-the phugoid and short 
period-f periods on the  order of I 0 0  and 1 s. A terrestrial inertial 
navigator  has Schuler oscillations of period 84 min and earth-rate 
oscillations with period 24 h [2]. A dual-spin satellite in synchronous 
orbit will be subject  to an orbital oscillation with a 24-h period and a 
nutation with period on the order of 1-10 s [3], [4]. These effects are 
often used in an ad hoc way in the design of filters and controllers, 
usually by assuming that the slow modes are constant if the fast modes 
are of concern, or by ignoring the fast modes when the slow modes are 
of interest. See [3], [5]-[8],  [28] for examples. 

Additional examples can be found in the field of electric-power 
systems. An electrical machine has  an oscdlatory mode involving stator 
fluxes that is invariable neglected in favor of the much slower electro- 
mechanical oscillations in stability studies [9]. A similar approximation is 
made in studies of a large number of interconnected machines, in which 
the  intermachine electromechanical swings are ignored when the much 
slower average  frequency behavior is of primary concern [IO]. 

In addition to these concrete examples, note  that  proponents  of 
hierarchical control often suggest that the task of controlling a large- 
scale system should be partitioned  into  subtasks by time scale. Thus the 
higher levels of the  control system are concerned with slower phenom- 
ena. and the lower levels  with faster phenomena [ I  IH14). It is difficult 
to point to any specific examples, with the possible exception of the 
interaction between automatic-generation control and economic dis- 
patch  on electric-power systems [Is]. 

The multiple time-scale phenomena just alluded to are conveniently 
modeled via perturbation theory [16]. There  are  a  number of possible 
approaches,  but we  will adopt the framework of singular-perturbation 
theory. This theory has been applied  to  a variety of control problems by 
a  number of authors [17]-(21].  [24]-[27], but the previous work most 
relevant to thls short paper is that of Kokotovic et  al. [18H20]  and 
Hadded [21]. This  short  paper is in the  spirit of [18]-[21], and moreover 
requires several of the  detailed results of these papers  concerning singu- 
lar  perturbations of Ricatti equations. 

Specifically, the work begins by analysis of singular perturbations  for 
linear  stochastic systems with two time scales. An approximating system 
is obtained with the  property that the  mean-square  error between the 
states of the  actual and approximating systems approaches zero as the 
separation of time scales becomes infinite. The usefulness of this result is 
demonstrated by application to the stochastic  optimal linear regulator 
problem. With the machinery properly set up, it is straightforward to 
identify  the asympototically optimal controller, using known results on 
singular perturbations of Riccati equations. The controller  has an inter- 
esting hierarchical structure, with the implication of reduced on-line 
computations. 

These new theoretical results are illustrated by application to  an 
important control problem. An asymptotically optimal two time-scale 
controller is developed for  the  longitudinal  dynamics of a jet aircraft. 
The two time-scale controller is compared  to  the  optimal controller, and 
it is demonstrated that there is negligible degradation in performance. 

An attempt is made  throughout  to relegate technical details  to  the 
Appendix, so that the work will be accessible to engineers interested only 
in the two time-scale design procedure. 

MAIN RESULTS 

Singular-perturbation theory is concerned with systems of the form 
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The basic  question is whether (2.3),  (2.4)  is an approximation to (2.1), 
(2.2) in the sense that 

hmx(r;c)=x(r;O), r > O  (2.5) 

l imy(r;E)=y(r;O),  r > O .  (2.6) 

Various technical assumptions  are required to obtain (2.5) and (2.6), but 
under these assumptions the degenerate system is a valid reduced-order 
approximation to the original system in the sense that for E sufficiently 
small the  solutions of the two systems are close. 

In the  stochastic case, the situation is more complex. Consider  the 
linear system 

f -to 

€+O 

where 

xI(0), x2(0) are independent of & ( r ) ,  t2(r), and all matrices are continu- 
ous in c at e - 0 .  Moreover, AU(0) is stable. 

An approximation to (2.7) is desired that is valid for small E and is 
simpler than (2.7). Note that  setting E = 0 in (2.7) is inadequate, since 

x ~ ( ~ ; O ) = - A ~ ~ ( O ) A ~ ~ ( O ) X ~ ( ~ ; O ) - A ~ I ( O ) L ~ ( ~ ) ~ ( ~ )  (2.12) 

has a white-noise component and, therefore, has infinite variance. Con- 
sequently, 

E { ( x ~ ( ~ ; E ) - - ~ ( ~ ; O ) ) ( X ~ ( ~ ; C ) - ~ ~ ( ~ ; O ) ) ~  } = +m (2.13) 

SO that X , ( r ; O )  is nor an approximation to x2(r ;E)  (in the mean square 
sense). 

Instead,  define the stochastic degenerate system associated with (2.7) to 
be the system 

3 i ~ d ( t ; E ) = A l l d ( ~ ) X l d ( t ; ~ ) + ~ l d ( ~ ) ~ ( t ) ,  x ~ ~ ( o ; E ) = x ~ ( o )  (2.14) 

~ X 2 d ( t ; ~ ) = ~ 2 l d ( ~ ) ~ l d ( t ; ~ ) + ~ 2 2 d ( o ~ Z d ( r : ~ ) + ~ d ( ~ ) ~ ( r ) ,  
x ~ ( O ; Z ) = X ~ ( O )  (2.15) 

where 

Notice that the stochastic degenerate system is of the same order as the 
original system, unlike  the  situation for deterministic singular perturba- 
tions. 

Theorem I 

Consider the  linear  stochastic system (2.m2.11)  and a corresponding 
stochastic  degenerate system (2.14),  (2.15). Assume that all matrices in 
the two systems are continuous in E at E = O ,  and that Au(0) and 
All(0)- A12(0)AG1(O)A21(0) are stable' (i.e., have eigenvalues in the 

matrix in I2.n is stable for all 0 < L < 6 1221. 
'Note that this assumption implies that  there exists an g > O  such that the system 

open  left-half complex plane). Then  the  stochastic  degenerate system is 
an approximation to  the original system in the sense that 

r-0 ~ ~ ~ ~ { ~ ~ , ~ ~ : ~ ~ - ~ l d ~ ~ ; ~ ~ ~ ~ x l ~ t : c ~ - ~ I d ~ r ; ~ ~ ) ~ j = ~  (2.20) 

E - 0  l i m ~ { ( x ~ ( r ; r ) - x , ( r ; ~ ) ) ( ~ ~ ( r ; ~ ) - ~ ~ ( t ; e ) ) ~ } = o  (2.21) 

uniformlyforO<r<cc. 

tions for 
Proof: The proof of the theorem is quite involved. Differential equa- 

z ~ ~ ( ~ ; E )  L E  { x l ( r ; e ) X ~ ( r ; E ) }  

E { ~ ~ l ~ z ; ~ ~ - - l d ~ t ; ~ ~ ) ( ~ I ~ r ; ~ ~ - x l d ~ ~ ; ~ ~ ~ r }  (2.22) 

X,(r ;c)  A E { i 2 ( r ; c ) X : ( z ; E ) }  

L E I ( ~ ~ ( r ; € ) - x ~ ( t ; ~ ) ) ( x ~ ( r ; r ) - x ~ ( r ; c ) ) ~ }  (2.23) 

are obtained, and  the limits are evaluated by (nonstochastic) singular- 
perturbation theory to establish (2.20) and (2.21).  See the Appendix for 
details. 

Remarks: 
1) Note that  the  stochastic  degenerate system is of the  same order as 

the original system, so that (2.21) is valid for r = O .  
2) Clearly, the assumption t i l l (0) -A,2(O)A~1(O)A~l(O)  stable is only 

necessary to ensure uniform convergence in (2.20), (2.21) on  the infinite 
interval. Without this assumption, a theorem of Tihonov 1161 can be 
invoked which insures uniform convergence in (2.20), (2.21) for  sets of 
the form [O, TI. 

3) Proof  is easily generalized to cover uniformly asymptotically stable 
time-varying systems at the expense of some  additional  notation. 

Consider now the system 

x ( r ; E ) = A ( E ) X ( r ; E ) + B ( E ) 1 I ( r ) + L ( c ) S ( t )  (2.24) 

with observations 

y ( t : e ) =  Cx(t:€)+e(t) (2.25) 

and cost 

where 

X' 

L= 

(2.26) 

e21 QU I >o, R>O 

[ A ( F ) , B ( E ) ]  [ A ( c ) , L ( c ) ]  controllable (2.27) 

[A(ej ,C1 [ A ( E ) , \ / Q  ] observable (2.28) 

are made, 0 < E < 6. 
As is well known, the  optimal  control  law is 

u ( ~ ; E ) =  - G ( c ) i ( t ; c )  

where 

G ( P ) = R - ' B ~ K ( C )  

(2.29) 

(2.30) 
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and K ( c )  satisfies 
O = - K ( ~ ) A ( ~ ) - A ' ( E ) K ( C ) - Q ( E ) + K ( C ) B ( E ) R - ' B ~ ( C ) K ( E ) .  

(2.31) 
The estimate satisfies the  equation 

I ( r ; c ) = A ( E ) X ( r ; c ) + H ( c ) ( y ( r ; c ) - C i - ( r ; e ) ) + B ( r ) u ( t ; r )  (2.32) 

where 
H(E)=X(€)C'O-I  (2.33) 

O=X(c)A  = ( € ) + A ( € ) ~ ( € ) + L ( r ) ; ' L ~ ( € ) - X ( € ) C ~ ~ - - ' C X ( e ) .  (2.34) 

and X(€) satisfies 

At this point, we are ready to apply Theorem 1 to  approximate  the 
controller (2.29),  (2.32) by a two time-scale controller. Because of Theo- 
rem 1, any system that  has a stochastic degenerate system in common 
with the  optimal closed-loop system will be asympotically optimal. The 
optimal closed-loop system can  be written 

Clearly, (2.41) is not the  stochastic  degenerate system of (2.35), but  has 
been constructed to have a stochastic  degenerate system in common with 
(2.35). 

Theorem 2 

Consider the LQG problem defined by (2.24H2.26). Assume that the 
controllability and_observability assumptions (227),  (2.28) hold and that 
( A 2 2 -  B2G2(c)- H2(c)CZ)-I exists, O <  r <  6. Then the  suboptimal 
closed-loop system (2.41) is asymptotically optimum in the following 
sense: 

e 4  ~ ~ { ( x ~ ~ r ; c ~ - - X , , ( t ; ~ ~ ) ( x ~ ~ r ; c ~ - - X ~ , ~ t ; ~ ~ ) ~ } = ~  

€+O ~ ~ { ~ ~ ~ ~ r ; c ~ - ~ ~ ~ ~ t ; c ~ ~ ~ ~ ~ ~ ~ ; c ~ - ~ ~ , ~ r ; c ~ ~ ~ } = ~  

C - t O  a m E { ( x , ( r ; c ) - x 2 , ( r ; c ) ) ( x 2 ( r ; r ) - - x 2 , ( r ; c ) ) ' } = ~  

€40 ~ m E { ( ~ 2 ( ~ ; c ) - ; , , ( ~ ; t ) ) ( X 2 ( t ; c ) - ~ 2 D ( r ; c ) ) ' } = ~ .  

- BIG2 (€1 1 

Note that  the  stochastic  degenerate system can be obtained by eliminat- 
ing x2, i2 from the equations  for xl. -3, using the a!gebraic relations that 
result when E is set equal to zero in the left-hand side of (2.35). Of 
course,  the resulting system cannot be implemented since the value of c 
in the x I  and x2 equations is not a design parameter. 

An  implementable system that has a stochastic  degenerate system in 
common with (2.35) is obtained as follows. Assume that (Az-  B2G2(~) 
- H2(c)C3-I  exists. Set c = O  in the left-hand side of only the x2 
equations of (2.35) to obtain 

~2=-(A22-B2G2(~)-~2(c)C2)~1[(A21-B2GI(~)-~2(c)Ci))il 

+ H2 (c)clxl+ IS, ( c ) ~ 2 X 2 +  H, cE)e]. (2.36) 

Substitute into the i, equation  to  obtain 

i l d ( r ; E ) = A I I , X l d ( l ; € ) + H I D y ( t ; € )  (2.37) 
where 
AIID(~)=AII-BIGI(E)-HI(E)CI-(AI~-BIG~(~)-HI(~)C~) 

.(A,-B~G~(~)-H~(€)CZ)-~(AZI--B~GI(E)-~~~(E)CI) (2.38) 

H I D ( ~ ) = H I ( E ) - ( A I ~ - B I G ~ ( ~ ) - H ~ ( E ) C ~ )  

.(A,-B2G,(e)-IS2(c)C2)-'H2(c) (2.39) - 
H ~ ( E ) = E H ~ ( c ) .  ( 2 . 4 )  

Based on t h s  analysis, the following suboptimal closed-loop system is 
obtained. 

Proof: As previously noted, (2.35) and (2.41) have a common 
stochastic  degenerate system which governs their behavior as c+O. 
Therefore, all that is required is the verification of the hypotheses of 
Theorem 1. 

The required continuity properties follow from [IS], [20]. Note  that 
under  the  stated controllability and observability assumptions  the degen- 
erate  and boundary-layer-system controllability and observability condi- 
tions required are satisfied [24]. The required stability properties are 
established as a consequence of the  stabihty of the closed-loop LQG 
design and a pre\iously  quoted result 1221. Full details can  he  found in 
1231. 

Remarks: 
1) Note  that these results are not  the  most general possible, since the 

time-varying and finite-horizon case could probably  also be solved. 
However, these results are of the greatest practical interest. 

2) Extension to more  than two time scales is straightforward [23]. 
3) Investigation of the  rather ad hoc assumption ( A ,  - B2(c)G2(c) - 

H2(c)CZ)- I exists for 0 < c G 6 would be of theoretical interest since 
verification is difficult. As a practical matter, this issue is less important, 
since invertibility for the value of c of interest is easily checked. The 
performance of the two time-scale controller can then be directly 
assessed. 

4) The proposed  suboptimal controller is illustrated in Fig. I .  Notice 
that there is a unidirectional  interface between the slow and fast filters. 
Thus there is opportunity  for  considerable reduction in on-line computa- 
tional effort, since the two sets of filter equations can  be numerically 
integrated in different time scales (i.e., with different step sizes). 
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TWO TIME SCALE 
SYSTEM observations 

A 

G I ( € )  
'Id 

I ,  

signols 
A 

G + € )  
'2d 

signak 

Fig. 1. A~pplotically optimal two time-scale controller 

f + a )  1 Horizontal - 
Fig. 2. Aircarft longitudinal variables 

5 )  The above development assumed, for simplicity, that the optimal 
gain matrices H ( e ) ,  G(E) were computed. In fact, by a  more  elaborate 
analysis, it is possible to show that only asymptotic  approximations  to 
H ( E ) ,  C(e) near E = 0 need to  be computed [22]. It is possible to compute 
these approximations by the methods extensively studied in [18H21], 
thus  obtaining  a  potential reduction in off-line as well as on-line com- 
putation. 

6) Notice  that it  is the two time-scale nature of the closed-loop system 
that is required. In the  above analysis. as c-0, the closed-loop system 
automatically  has fast and slow modes. In a physical system. E has a 
fixed, nonzero value. Consequently, it is possible that the open-loop 
dynamics can have fast and slow modes, but in the closed-loop these 
slow modes are eliminated. 

Two TIME-SCALE  CONTROL OF AIRCRAFT LONGITUDINAL 
D Y N A ~ C S  

The particular  problem  to be addressed in this section is the design of 
a feedback control system for  the  longitudinal  dynamics of an F-8 
aircraft. Specifically, the controller must produce elevator commands  to 
keep  the  aircraft in steady level flight in the face of wind disturbances. 
For simplicity, the wind disturbance is modeled as white. 

The equations of motion of an airplane  are  a set of coupled nonlinear 
equations in the  longitudinal and lateral state variables. If the  equations 
are linearized about nominal  state and control variables, then the result- 
ing linear equations are found to approximately decouple into separate 
sets for the  longitudinal and lateral  dynamics. See [I] for an excellent 
discussion of the modeling issues. 

The aircraft's longitudinal variables are 

where 

V horizontal-velocity deviation in feet/second; 
y flight-path angle in radians; 
a angle of attack in radians: 
q pitch rate  in radians/second; 
6, the elevator deflection in radians. 

The interpretation of these variables is  given  in Fig. 2. Table I gives the 

system matrices. It is assumed that velocity and pitch-rate measure- 
ments, both  corrupted by wide-band noise. are available. 

Figs. 3 4  show the system response to  an initial pitch t ? (O)=  lo, and  an 
initial velocity error V(O)= 100 ft/s  in the absence of the wind dis- 
turbance. The two time-scale behavior is  well illustrated here. Table 11 
gives the system's eigenvalues and eigenvectors. Note  that  the variables 
V.  y dominate the slower phugoid mode. and the variables a, q dominate 
the  faster short-period mode. The physical nature of these oscillations is 
beautifully described in [ 1, pp. 32&328]. 

From this discussion and inspection of the system A matrix, the 
equations  for Y and y are the logical candidates for the slow dynamics, 
and the equations  for a and q are suggested as the fas t  dynamics.  For 
determination of e, the following procedure is suggested. Note  that the 
state equations  can be written 

where x T = [ V y ] ,  x:=[aq]. For e=0.01,  the matrix 

d 2 2 [  10.012 0.0100 
0.090 1 0.0069 ] 

has eigenvalues comparable to those of A l l .  Determination of a value of 
E is actually not required for design of the two time-scale controller, but 
is useful for judging  the  appropriateness of the  approximation E = 0. 

Before proceedmg with the regulator design, a few remarks are in 
order. First, the  aircraft  longitudinal Variables more often  include  the 
pitch 0 instead of the flight-path angle y. It was only  after  considerable 
difficulty that the previous formulation, in which the choice of fast and 
slow variables is clear, was hit upon. Second, the extensive literature on 
singular-perturbation theory contains  almost no discussion of either the 
choice of fast and slow variables or the choice of c. But determination of 
these quantities is the first problem one  has to  face up  to in applications 
of the theory. 

An LQG controller was designed for the Q and R matrices, Q = diag 
[0.01,0,3260,3260], R = [3260], using standard routines [29]. Design goals 
were to achieve a damping  ratio 5 >0.707 for both modes, and to 
reduce the state variables response to the wind disturbance. Closed-loop 
eigenvalues and rms state variable and estimation-error standard devia- 
tions  are given in Table 111. As noted in remark 6 of Theorem 2, it is 
critical that  the  open-loop  separation of modes be present  also in the 
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TABLE I 
SYSTFM MATRICES 

- 
-1. 357x10-2 -3.22ox1o1  -4.630X101 0.000 

A =  1 1.2oox10-4 0.000 1.214 0.000 

- 1 . 2 1 2 ~ 1 0 - ~  0.000 -1.214 1.000 

5 . 7 0 0 ~ 1 0 - ~  0.000 -9.010 -6.696XlO-1 i 
0.0  0.0 0.0 

= [ 1.0 0.0 0.0 0.0 1 . 0  1 = [6.f359x10-4 0.000 0.000 
4.0O0X1O1 

97 - 
~ V, f t./sec 

9' i 
8 5 + . .  -. ~~~ 

0 2 4 6  

,105 
ttme,secs 

070 ' 
,.x Zrod  

160 1 

80 - I V, ft /sec. 

-80+--1-- . 
0 100 200 300 

time,secs 
.3l 

0 100 200  300 

023 ; 
tlme,secs 

.,004 1 L.-- 
0 100 200 300 

,025 3 

I 

time, secs 

0 2 4 6  
time,secs 

Fig. 3. Response in fast time scale. 

closed loop. From  Table 11, the  optimal design has this property. The 
closed-loop eigenvalues of the two time-scale controller and correspond- 
ing rms state variable and estimation-error standard deviations are also 
listed in Table 111. Note  the generally good  correspondance between the 
optimal and suboptimal designs. 

SUMMARY AVD CONCLUSIONS 

This short  paper  has considered the reduction in on-line computa- 
tional effort for an LQG design with fast and slow closed-loop modes. 
Together with the results of [18H21], this short  paper  demonstrates  that 
the  singular-perturbation  approach  to  the LQG problem offers the 
potential of near-optimal performance with reduction in both on- and 
off-line computation. 

The design procedure of t h ~ s  short  paper  has been applied to control 
of the  longitudinal dynamics of a jet aircraft. A two time-scale design 

0 I00 200 300 
tlme.secs 

Fig. 4. Response in slow time scale. 

was obtained with performance extremely close to that of the optimal 
design. Note  that recent proposals for adaptive flight-control systems 
require multiple Kalman filters running in parallel [30],  [31], so that 
reduction of on-line computation is of  definite interest. 

Several directions for future research are evident. First, procedures for 
systematically picking the fast and slow variables of a system with fast 
and slow modes, as well as for  determining explicitly e, would be highly 
useful in applications. Second, note that the design of Fig. 1  has an 
interesting hierarchical structure. In fact, as pointed  out in [14], if a 
system is composed of a  number of fast subsystems with a slow intercon- 
necting  equation,  a decentralized, hierarchical design is naturally  ob- 
tained. Therefore, the results of this short  paper are of potential interest 
in hierarchical systems theory. Finally, note that singular-perturbation 
theory is only one  approach  to  the multiple time-scale phenomenon. The 
results of Ramnath  and Sundri [32], for example, provide another 
approach that could be exploited in control theory. 
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TABLE I1 
OPEN-LOOP EIGENVALUES AND EIGENVECTORS 

eigenvalue  - .94 ? j.2.98 -.0075 f j.076 

Ip 

; v  
1 . 3  f j . 4 . 7   - 4 . 3 X d  F j l . lx102 

0" 
[ Y  - 5 ~ 1 0 - ~  T j .13 -.lS f j l . 0  

: a  .33 t j.10 -.02 F j.005 

.rl 8 s  

B 
-.21 f j l . 0  -.OB T j.02 

TABLE 111 
PERFORMANCE  COMPARISON 

E i g e n v a l u e s  
~ ~~ 

open  loop  -.94 f j2.98 -.075 f j0.76 

optimal  -2.9 * 2.0  -.20 t j .20  -3 .8 ,  -2.6 -.09 f j . 1 0  

two t i m e   s c a l e   - 3 . 1  f j 2 . 3  -.18 f j.16  -3.8,  -2.6 -.l f j.11 

R M S  D e v i a t i o n s  

open  loop 8.8 .0024  .0031  .0082 

optimal  3.3  .0018  .0026  .0065  2.6  .0013  .002 1 .0056 

two time s c a l e  3.4  .0018  .0026  .0065  2.6  .0015 .0021 -0056 
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~ 1 1 = ~ ~ , 1 ~ ~ ~ - ~ 1 2 ~ ~ ~ ~ , ’ ~ 0 ~ ~ , 1 ~ ~ ~ ~ ~ , ,  

+Z,,(AI,(O)-A,~(O)A,‘(O)A~,(O))‘. (A.32) 

Since All(0)-A12(O)A;1(O)A21(0) is stable, Hi and HOi are  satisfied. 

are  equal to the  solutions of (A.32) and (A.20). Since 
Thus by Hoppensteadt’s  Theorem, l imc+Jl1( t ;~)  and limc+J,(z;E) 

~ l ( o ; E ) ~ x l ( o ) - x l , ( o ) = o  (A.33) 

by  choice of the  initial  conditions of the  stochastic  degenerate system, it 
follows that  the initial conditions of (A.32) are 

X11(0;0)=0. (A.34) 

Thus 

limZll(t;e)=O. (A.35) 
E+O 

From (A.35),  (A.17), and (A.20) 

LimZ,( t ;E)=O.  (A.36) 
€-+O 

Note  that (A.30) is valid  at r = O  by choice of initial conditions. Equa- 
tions (A.34) and (A.36) are  the  desired  result. 
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