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Abstract: A rate distortion lower bound of minimum mean 
square error is presented for a special class of discrete time 
nonlinear filtering problems which have measurements that 
can be expressed as a memoryless nonlinear function of a 
Gaussian distributed space process with additive Gaussian 
noise. The lower bound is exactly and practically computable 
for a large class of nonlinearities and is proved to be asymptot- 
ically tighter than Cramrr -Rao  type bounds in the limit of low 
signal-to-noise ratio. 
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1. Introduction 

The Cramrr -Rao  method [1-4] is an example 
of a successful approach to bounding optimal 
performance in nonlinear estimation problems. 
The approach applies to a large class of problems, 
it can be computed exactly and is relatively easy 
to compute in many cases, and it gives practically 
useful performance estimates in many cases. How- 
ever, the method is not perfect. The Cramrr -Rao  
method tends to underestimate the minimum 
square error in nonlinear estimation problems with 
low signal-to-noise ratio (SNR). This defect of the 
Cramr r -Rao  approach has led many scientists to 
investigate other techniques for estimating nonlin- 
ear estimation performance. 

Several previous authors [5-12] have studied 
the use of rate distortion theory or related infor- 
mation theory methods to analyze the average 
error in estimation problems. This previous work 

either makes restrictive assumptions about the 
estimation problem or requires difficult computa- 
tions (such as Monte Carlo simulation) to obtain a 
lower bound on the estimation error. This paper 
studies a simple rate distortion approach to analyze 
mean square error for a special class of nonlinear 
estimation problems in which the state is Gaus- 
sian distributed and the measurement is a 
memoryless nonlinear function of the state with 
an additive Gaussian white noise. For  this special 
class of estimation problems we have obtained a 
rate distortion lower bound on the mean square 
error in estimating any component of the state. 
This bound is exactly and practically computable 
for a large class of measurement nonlinearities 
(including polynomial, exponential, and trigono- 
metric functions), and the bound is tighter (i.e., 
larger) than Cram r r -Rao  type bounds for the 
class of problems where the measurements depend 
nonlinearly on the component of interest and the 
noise covariance is sufficiently large. 

The paper is organized as follows. Section 2 
gives the necessary rate distortion theory and pre- 
sents the lower bound for the class of nonlinear 
estimation problems described above. In Section 3 
we theoretically analyze the lower bound and 
compare it to Cram~r-Rao type lower bounds for 
the same class of problems. Section 4 presents a 
discrete time nonlinear filtering example to il- 
lustrate the application of the bound. 

2. Rate distortion inequality 

Consider the problem of estimating a Gaussian 
random variable x in R s given the measurement 
y in R ~t for which 

y = C ( x )  + v. (1) 

Here v is a Gaussian random variable in R M and 
is independent of x, and C may be a nonlinear 
function of x. Let C ( x )  have a covariance matrix 
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F and let v have a covariance matrix R. If Pn  is 
the variance of the component  xl of x, then we 
will show 

d e t ( g )  
E{[xl-21(y)]2}>_PUdet(F+R) (2) 

for any estimator 21(Y) of x 1 which depends only 
on y. The right side of the inequality (2) is our 
rate distortion lower bound (RDB). Section 3 
compares this bound to the corresponding Cra- 
m & - R a o  bound for nonlinear estimation prob- 
lems and Section 4 discusses how to compute the 
RDB efficiently and presents a discrete time non- 
linear filtering example to illustrate the method. In 
the remainder of this section we prove inequality 
(2) using rate distortion theory. 

Proof of Inequality (2). Let D denote the mini- 
mum mean square error of estimating x 1 given y. 
Rate distortion theory [13] tells us that D is 
related to the mutual information I(x~; y) be- 
tween x I and y by 

R ( D ) < I ( x l ;  y) 

where R(D) is the rate distortion function of the 
Gaussian random variable x r If Pn  denotes the 
variance of x 1, then R(D) is given by 

1 [ P n  l 
R(D)= ~log[  - ~ -  ]. 

We cannot compute I(Xl; y) exactly for general 
nonlinear C, but we can approximate it as follows. 
Since x 1 is a function (i.e., component)  of x, we 
have 

I(x,; y ) < I ( x ;  y). 

We can express the mutual information I(x; y) as 
the difference 

I(x; y ) = h ( y ) - h ( y l x )  

of the differential entropy h(y) and the condi- 
tional differential entropy h(ylx).  We can com- 
pute h(ylx)  exactly as 

h(y l x )  = h(v) = ½M log(2~e[det R] 1/M) 

where M is the dimension of the measurement 
vector and R is the covariance of the measure- 
ment noise v. We cannot compute h(y) in gen- 
eral, but we can bound it as follows [13]: 

h(y)  < ½M log(E1re[cov(y)] l/M) 

where cov(y)  denotes the covariance matrix of the 
measurement vector y. Noting that cov(y)  = F + R 
and combining the results above gives the in- 
equality (2). [] 

3. Theoretical comparison of rate distortion and 
Cram6r-Rao bounds 

The C r a m 6 r - R a o  lower bound (CRB) for the 
estimation problem of (1) is given by 

E [ x - 2 ( y ) l [ x - 2 ( y ) ]  T ) > [ J + P  ' 1 -1 ,  

(3) 

see [1], where P is the covariance of x, and J is 
the information matrix defined by 

J=E{C ' ( x )TR-aC ' ( x ) } ,  (4) 

in which R is the covariance of the noise v in (2), 
C'(x) is the derivative of C(x) with respect to x, 
and the superscript T denotes matrix or vector 
transposition. The following result shows that in 
the case of scalar state and measurement, it is 
always true that RDB is larger than CRB with 
equality only in the case of linear functions C(x). 

Comparison of RDB and CRB in so lar  case. f f  
C(x) is continuously differentiable in x, and the 
expectations E{ C(x) 2 } and E(C'(x)  2 ) are both 
finite, then CRB < RDB with equality if and only if 
C( x ) = ax + b for some constants a, b. 

Proof. Assume first that x has 0 mean and vari- 
ance P, and define 

O ( x )  = [ C ( x )  - C(0)]2x -1 exp( -x2 /2P)  

for x ¢ 0 ,  and define O ( 0 ) = 0 .  Note that • is 
continuously differentiable and the derivative is 
given by 

a > ' ( x )  = ( 2 [ C ( x )  - 

- [ C ( x )  - c ( 0 ) ] 2 x  -2  

- [ C ( x )  - C(O)12/P ) e x p ( - x 2 / 2 p )  

for x ~ 0 and ~ ' ( 0 ) =  C'(O) 2. Given that both 
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E ( C ( x )  2 ) a n d  E { C ' ( x )  2 } are finite, we have 
that 

f oo O ' ( x )  d x =  lim [ O ( x ) - O ( - x ) ] = 0  
oO X ~ o o  

which gives 

E(C'(x) 2) 
= p - 1 E ( [ C ( x )  - C(O)] 2) 

+ E([C'(x) - ( C ( x ) -  

Let C =  E ( C ( x ) ) .  Then 

E ( c ' ( x )  = - c] 

+t , - ' [8-c(o)]  2 

+ E ( [ C ' ( x ) -  ( C ( x )  - C ( O ) ) / x ]  2} 

and it follows that 

E{C ' ( x )  2} >-* ' - 'E ( [C(x ) -C]  (5) 

with equality if and only if C = C(O) and 

C ' ( x )  = [ C ( x )  - C(O)]/x .  

This is possible if and only if C ( x ) =  ax + b for 
constants a, b. 

Let F denote the covariance of C(x)  and let J 
be as in (4). Then we have proven 

J . R > F . p  -1. 

Since 

CRB = [ J +  p - 1 ] - 1  

and 

RDB = [ F P - 1 R  -1 + p - l ] - 1 ,  

this proves that CRB < RDB, at least for the case 
of 0 mean. The general case follows easily. [] 

Simple examples show that the relation CRB < 
RDB is not true in the general vector case. How- 
ever, this relation is true if the signal-to-noise ratio 
is sufficiently low and the measurement is nonlin- 
ear in the component of interest. More precisely, 
consider the model of (1) and assume (without 
loss of generality) that the covariance matrix R of 
the noise is a constant multiple r of the M dimen- 
sional identity matrix I M. Consider the CRB of 
equation (3), (4) as a function of r. Let CRB(r)  
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denote the 1, 1 component of this matrix which is 
the Cram6r-Rao lower bound of the mean square 
error for estimating x 1. Let RDB(r )  be the analo- 
gous rate distortion bound of equation (2). Then 
we prove the following result. 

Low SNR comparison (r ~ oo). I f  C is continu- 
ously differentiable and if C and its partial deriva- 
tives have finite second moments, then 

CRB( r )  < R D B ( r )  + O( r  2) 

where O(r -2) is a term that vanishes like r -2 as 
r ~ 00. Furthermore, for sufficiently large r, 

CRB( r )  < R D B ( r ) ,  

unless there is a component x 2 of x which is inde- 
pendent of x l and such that 

C ( x )  = a ( x z ) x  , + b ( x2 )  

for some functions a and b of x 2. 

Proof. The proof of this result follows from the 
expansion of CRB(r)  and RDB(r )  in powers of 
r -~ and the scalar inequality (5). First consider 
the expansion of CRB(r) .  Let F c denote 

rc= E( C'(x)TC'(x)). 
The matrix lower bound of equation (3) has the 
expansion 

= P -  r - l P .  Fc. P + O(r  -2)  

where I N is the N dimensional identity matrix, N 
being the dimension of the state x, and O(r -2) 
denotes a generic term that vanishes as r -2 as 
r - ,  00. The 1, 1 component of this expansion of 
the matrix bound gives 

M 
C R B ( r )  = P l l  - r - l ( P l l )  2 E E ( [ C i , l ( X ) ] 2 }  

i=1 

+ O ( r  -2)  (6) 

where Ci, 1 denotes the partial derivative of C, (the 
i-th component of C) with respect to x 1. 

Now consider the expansion of RDB(r) .  Let F 
denote the covariance of C(x).  Then the right 
hand side of (2) can be expressed as 

R D B ( r )  = P,,  det([IM + r - ' F ]  - ' )  

= P , , d e t ( [ I M - r - ' e + O ( r - 2 ) ] ) .  
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Expanding the determinant above for large r gives 

R D B ( r )  

=P,, 1 - r - ' E E ( [ C i ( x ) - - E ( C i ( x ) } ]  2} 
i = l  

+ O ( r - 2 ) ) .  (71 

Let P1 be the column of the covariance matrix 
P corresponding to the component x~, and define 
X 2 a s  

X 2 = X - -  p ~ l .  P1 " xl '  

The random variables x~ and x2 are uncorrelated 
and therefore independent (because they are jointly 
Gaussian). In this case the variance of x~, namely 
Pll, is also the conditional variance of x~ given 
x 2, and the scalar inequality (5) proved above 
implies that 

E{[Ci,I(X)]2[X2} 

>_p 'e([Ci(x)-e(C(x)lx2}121x2}. (8) 
for almost all values of x 2. The inequality is strict 
for a value x2 unless C i is a linear function of xa, 
that is unless 

Ci(x ) = a / ( x 2 ) x  , + hi(x2) 

for all values of x 1. 
Rearranging the right side of the inequality (8) 

gives 

E([Ci,I(X)]2[X2} 

> p~II(E{[Ci(x)]21x2} -[E{Ci(x) lx2}]2). 
Averaging over x 2 and using Jensen's inequality 
g i v e s  

E([Ci.l(X)] 2} 

>_ P ~ ( E {  [ C ( x ) ]  2} - [ E ( C i ( x ) } ]  2) 

= p,11E([Ci(x)- E(Ci(x)}]2}. 
Summing both sides of this inequality over i from 
1 to M gives 

M 

~ E([CiA(x)]  2} 
i=l 

M 
> ~_,p~aE{[C,(x)-E{C,(x)}]2}. (9) 

i = 1  

Equality occurs in (9) only if equality occurs in (8) 
for each i and almost all values of x 2. Thus, the 
inequality in (9) is strict unless C(x) is a linear 
function of xl, that is unless 

C ( x )  =a(x2)x I +b(x2). 

Comparing the inequality (9) to the asymptotic 
expansions (6) and (7), we see that the order 
O(r -1) term of RDB(r )  is at least as large as the 
comparable term of CRB(r).  Thus, CRB(r)  can 
exceed RDB(r )  only by the order O(r -2) terms, 
that is 

CRB( r )  < R D B ( r )  + O ( r - 2 ) .  

Furthermore, unless equality occurs in (9), then 
the O(r -1) term of RDB(r )  is strictly larger than 
the corresponding term of CRB(r).  In this case, 
RDB(r )  must be strictly larger than CRB(r)  if r 
is sufficiently large. [] 

How low SNR needs to be for the results above 
depends on the specific measurement nonlineari- 
ties considered. In practice, the rate distortion 
bound will significantly improve upon the 
Cram6r-Rao type bound only when the measure- 
ment nonlinearities are significant. We will il- 
lustrate this by an example in the next section. 
However, in specific cases it is easiest to compute 
both bounds and choose the largest rather than try 
to predict which is better apriori. The next section 
explains how to compute the RDB efficiently for a 
large class of nonlinear estimation problems. 

4. Computation of rate distortion bound 

In this section we discuss how to compute the 
RDB efficiently for nonlinear estimation problems 
of the type defined in (1). The computational 
problem is one of computing the covariance F and 
then the determinants in (2). Computing F re- 
quires calculating the Gaussian expectations 
E(C(x)} and E{C(x)C(x)T}. These expecta- 
tions can be computed in closed form in terms of 
elementary functions if the nonlinearities in C(x) 
are sums of products of polynomial, exponential, 
sine, and cosine functions of the components of x. 

Computing the determinant of F + R requires 
the order of M 3 operations and is usually the 
most difficult calculation in obtaining the bound 



R.B. Washburn, Jr., D. Teneketzis / Rate distortion lower bound 285 

10 

1 

g 
~= .01 

.001 

.0001 

0 [ ]  [ ]  0 [ ]  [ ]  [ ]  [ ]  

-0- Variance 
-#-- RDB 

i i i i i i i i 

2 3 4 5 6 7 8 9 

Number of Measurements 

Fig.  1. S ine  senso r ,  r = 0.01.  

in (2). If the problem is derived from a discrete 
time filtering problem with measurement di- 
mension m and time periods s = 1, 2 . . . . .  t, then 
M = rot. In this case it is best to compute this 
determinant without pivoting as this allows one to 
obtain the bounds on the filter estimation error 
for each time s = 1 . . . . .  t using only one mt di- 
mensional determinant calculation. Note  that the 
lack of pivoting does not create a serious numeri- 
cal problem in this case because the matrix F + R 
is usually positive definite and well conditioned 
(e.g., R is large, positive definite, and block diago- 
nal). 

To illustrate the rate distortion bound and 
compare it to the Cram~r-Rao  bound, consider 
the scalar filtering problem defined by 

x( t  + 1) =Ax( t )  + w(t) ,  

y ( t )  = s i n ( x ( / ) )  + v(t) ,  

where E { x ( 1 ) ) = 0  and w and v are Gaussian 
white noise processes with variance q and r re- 
spectively. To compute the rate distortion bound 
we need only the formula 

E ( s in (x )  s in (y)}  

= e x p ( -  ½[P x + Py]).sinh(Pxy ) 

for 0 mean, jointly Gaussian random variables x 
and y with variance and covariance Px, Py, and 
Pxy. For comparison, we also compute the 
C r a m r r - R a o  bound for this class of problems, as 
described in [2] (see also [3,4]). 

We fix A = 1, q = 0.01, and  E ( x ( 1 )  2 } = 5, and 
vary the noise variance r from 1 to 10 -2. Figures 
1, 2, and 3 show the rate distortion bound and the 
C r a m r r - R a o  bound versus the number  t of mea- 
surements for values of r. In addition, we have 
plotted the variance of x(t)  in each figure as an 
upper bound on estimation error variance. 
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Fig .  2. s ine  Senso r ,  r = 0.1. 
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Fig. 3. Sine sensor, r = 1.0. 

Note  that the rate distortion bound in each 
figure is always greater than the Cramrr-Rao  
bound at time period 1. This is a theoretical 
consequence of the results of  Section 3. For vector 
states and measurements (in particular, for dy- 
namic filtering problems) the rate distortion bound 
need not exceed the Cramrr-Rao bound unless 
the signal-to-noise ratio is sufficiently low. In this 
example we see that a measurement variance of 
r = 10 -1 is required (Figure 2) before the rate 
distortion bound exceeds the Cramrr-Rao  bound 
at each time period between 1 and 10. 
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