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andits wi Switching alties 
Manjari Asawa and Demosthenis Teneketzis, Member, ZEEE 

Abstract- The multi-armed bandit problem with switching 
penalties (switching cost and switching delays) is investigated. 
It is shown that under an optimal policy, decisions about the 
processor allocation need to be made only at stopping times that 
achieve an appropriate index, the well-known “Gittins index” or a 
“switching index” that is defined for switching cost and switching 
delays. An algorithm for the computation of the “switching index” 
is presented. Furthermore, sufficient conditions for optimality of 
allocation strategies, based on limited look-ahead techniques, are 
established. These conditions together with the above-mentioned 
feature of optimal scheduling policies simplify the search for an 
optimal allocation policy. 

For a special class of multi-armed bandits (scheduling of 
parallel queues with switching penalties and no arrivals), it is 
shown that the aforementioned property of optimal policies is 
sufficient to determine an optimal allocation strategy. In general, 
the determination of optimal allocation policies remains a dimcult 
and challenging task. 

interchangeably) and one server. Let x,(t) denote the state of 
machine i at time t ,  where i = 1, 2, . . , N and t = 1, 2, . . .. 
At each time instant t ,  the server must select exactly one 
machine for operation (or service). Denote this machine by 
m(t). If m(t) = i ,  i.e., machine i is selected for operation at 
time t ,  an immediate reward R(t) := R,(z,(t)) is obtained, 
and the state of machine i changes to zt ( t  + 1) according 
to a stationary Markov transition rule. The states of the idle 
machines remain frozen, i.e., x3(t  + 1) = x 3 ( t ) ,  j # i .  The 
states of all machines are perfectly observed, and the objective 
is to schedule the order in which machines are to be operated 
so as to maximize an infinite horizon expected discounted 
reward E, given by 

I. INTRODUCTION where 0 < p < 1 is a fixed discount factor. 

ODELS of dynamic allocation of a scarce resource 
to competing projects have been widely used and 

are of great importance. The multi-armed bandit problem is 
concerned with the question of how to dynamically allocate 
a single resource among several alternative projects. It is 
important because it has found applications in several dis- 
ciplines, such as machine scheduling in manufacturing (see, 
for example, [1]-[3] and references therein), job search and 
labor market analysis in economics [4], search problems in 
oil exploration [5], target tracking [ 11, [6], resource allocation 
problems in communication networks [7], industrial research 
under budget constraint [l],  job selection [SI, [9], clinical trials 
[lo], etc. Furthermore, it is important from a theoretical point 
of view because it is one of the simplest nontrivial problems in 
the area of stochastic control where one must face the conflict 
between taking actions which yield an immediate reward and 
taking actions (such as learning about the system or preparing 
for the future) the benefit of which will come later [ll]. It 
is a classical problem in stochastic control that has witnessed 
major advances since 1972 when Gittins [12] first solved the 
problem. 

In the basic version of the stochastic multi-anned bandit 
problem, the& are N independent machines or projects (in 
the rest of this paper, machines, bandits, and projects are used 
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This problem has received considerable attention since it 
was first formulated in the 1940’s, but no substantial progress 
toward its solution was made until 1972 when Gittins and 
Jones [12], using a forward induction argument, showed that 
the optimal dynamic allocation policy for the aforementioned 
bandit problem is described by the following rule: To each ma- 
chine i attach an index vz(.) that is a function only of machine 
i ’ s  state and the information concerning machine a ;  at each 
instant of time operate the machine with the largest current 
index. This strategy is called the Gittins index rule. The Gittins 
index rule result is very significant because it converts the N -  
dimensional bandit problem into N one-dimensional problems. 
Hence, the implementation of the optimal policy involves only 
finding the maximum of N numbers and each of these numbers 
can be calculated individually by the corresponding machine. 

The index ut(.) (called the Gittins index or Dynamic Allo- 
cation index) was subsequently [13] shown to be 

E{ E;:; Pt&(z,(t)) I G(1) = G} 

E{C;:;Bt I G(1) = 2 , }  
Y,(x,) = max (1.1) 

r>l 

where the maximization is over the set of all stopping times 
7 which are greater than one. Gittins interpreted U,(.) as the 
maximum expected discounted reward per unit of expected 
discounted time. In the remainder of this paper, we shall use 
the term expected discounted reward rate to refer to expected 
discounted reward per unit of expected discounted time. 

In 1980, Whittle [14] came up with an elegant proof of the 
optimality of the index rule using dynamic programming (DP). 
He introduced the “retirement benefit option” (or “retirement 
reward”) and using that, he was able to decouple the original 
N-machine problem into N 1-machine problems, each one 
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concerned with the optimal operation of an individual machine. 
The idea of “retirement reward’ is very intimately related to 
the Gittins index. Subsequently, Gittins’ original work was 
also extended in various directions such as “superprocesses” 
[ 131, arm-acquiring bandits [ 151, non-Markovian bandits [ 161, 
and correlated bandits [17], [18]. Several variations of the 
multi-armed bandit problem in discrete or continuous time 
were formulated, and the optimality of an index policy was 

discussed. These extensions include bandit problems with 
switching delays. A summary of the paper’s main results and 
conclusions appear in Section VI. 

11. THE DETERMINISTIC TWO-ARMED 
BANDIT PROBLEM WITH SWITCHING COST 

A. Problem Formulation 
reported in [ 191-[25]. A considerable amount of effort was 
also made to calculate the index ([l], [lo], [16], and [26]) and 
to compute good suboptimal policies ([I], [27], and [28] and 
references therein). 

An assumption maintained in all of the above extensions is 
that the server can switch instantaneously from one machine to 
another. In reality, when the server switches between different 
machines, a new setup may be needed, and a delay and/or a 
cost is incurred. During the switching period no machine in 
the system is served, and this lack of service can be modeled 
either by a switching cost or a switching delay. Although it 
is often realistic to include a penalty for each switch made 
from one project to another, the inclusion of switching penalty 
drastically changes the nature of the bandit problem. As shown 
in [29], the optimal policy is not given by an index rule 
anymore. The resulting problem is difficult, and to the best 
of our knowledge only a very limited number of results 
are available so far. Agrawal et al. [30], [31] have solved 
the bandit problem with switching cost and a performance 
criterion that is described by the “learning loss” or “regret.” 
Van Oyen et al. 131 showed that for a system of parallel queues 
with switching penalties and no arrivals, optimal scheduling 
policies are characterized by an index-like rule. Glazebrook 
[32] showed that for stochastic scheduling with precedence 
relations and switching costs, it is enough to search for optimal 
policies among the class of nonpreemptive policies. 

The nature of optimal strategies for the general multi-armed 
bandit problem with switching penalty is not known. Optimal 
strategies can no longer be obtained by a forward induction 
argument, and it may be difficult to explicitly determine them. 
However, knowledge of properties of optimal policies can 
guide the search for an optimal policy. Hence, it becomes 
useful to discover some of the qualitative properties of optimal 
policies. The main contributions of this paper are i) the 
development of qualitative properties of optimal strategies for 
the multi-armed bandit problem with switching penalties and 
ii) the establishment of sufficient conditions for optimality 
of allocation strategies in multi-armed bandits with switching 
cost, based on limited look-ahead techniques. These results 
simplify the search for optimal allocation policies. 

This paper is organized as follows: In Section 11, the de- 
terministic bandit problem with switching cost is investigated. 
Attention is initially restricted to this problem for two reasons: 
i) to convey the main arguments used to derive qualitative 
properties of optimal policies and ii) to highlight how the 
properties of optimal policies combined with simple limited 
look-ahead techniques can simplify the search for optimal 
allocation strategies. Stochastic bandits with switching cost 
are discussed in Section 111. In Section IV, three possible 
extensions to multi-armed bandits with switching cost are 

There are two-deterministic machines, X and Y ,  and one 
server. Machine X [ Y ]  is characterized by its reward sequence 
{ X ( s ) , s  = 0, 1 , 2 , . . . }  [ { Y ( s ) , s  = 0 ,1 ,2 , . . . } ]  , where 
X ( s ) [ Y ( s ) ]  represents the reward obtained when machine 
X [ Y ]  is operated for the (s + 1)th time. We assume that 
CEO P’\X(t)I < 00, where 0 < p < 1 is a fixed discount 
factor, and that a similar condition holds for machine Y .  At 
each time instant exactly one machine must be operated. Thus 
t = tX + tY ,  where tz := tz ( t ) ,  i = X ,  Y is the number 
of times machine i is operated during time 0, 1, . . . , t - 1. 
Denote by m(t) the machine that is operated at time t. If 
m(t) = i ,  i.e., machine i is selected for operation at time 
t ,  an immediate reward of R(t) = i ( tz( t ) )  is obtained. The 
idle machine remains frozen and does not yield any reward. 
If m(t) # m(t - l), a switching cost C is incurred at time t. 

The deterministic two-armed bandit problem with switching 
cost is to determine the order of operation of the machines to 
maximize 

5 P t ( W  - I (m( t )  # m(t - 1))C) (2.1) 
t=O 

where I (m( t )  # m(t - 1)) is the indicator function of the 
event {m(t)  # m(t - l)}. A switching cost at t = 0 may or 
may not incur. 

The Gittins index rule is the policy that assigns the server 
to the machine with the highest Gittins index with ties broken 
arbitrarily. Unlike the problem without switching cost, the 
Gittins index rule is no longer optimal for the problem with 
switching cost. To see this, consider the following example. 

The two machines X and Y are characterized by reward 
sequences (20, 18, 0, O , . . . )  and (19, 17, 0, 0 , .  ..), respec- 
tively. Let C = 3 and p = 0.5. Then, the Gittins index 
policy operates machines in the order X ,  Y ,  X ,  Y and yields 
areward of (20-3)+(19-3)p+(18-3)p2+(17-3)P3 = 
30.5, whereas the policy that operates machines in the order 
X ,  X ,  Y, Y yields a reward of 32.125. 

As pointed out in the previous section, the solution to the 
deterministic two-armed bandit problem with switching cost 
is not presently known. In this section, we develop properties 
of optimal scheduling policies that guide the search for an 
optimal solution. 

B. Analysis 
To proceed with the analysis, define for machine X after it 

has been operated t times the following quantities: the Gittins 
index 
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and the “switching cost index” 

Suppose the maximum in (2.2) and (2.3) is achieved at time 
~ ~ ~ ( t )  and .rcz(t), respectively (in case of more than one 
maximizer, choose the smaller). Quantities similar to (2.2) and 
(2.3) are also defined for machine Y .  These quantities have 
the following intuitive interpretation: 

i) The Gittins index vgz( t )  represents the maximum dis- 
counted reward rate that can be obtained from machine 
X after it has been operated t times, when no switching 
cost is incurred at the time instant X is operated for the 
(t  + 1)th time. 

ii) The “switching cost index” vcz(t) represents the maxi- 
mum discounted reward rate that can be obtained from 
machine X after it has been operated t times, when a 
switching cost C is incurred at the time instant X is 
operated for the (t  + 1)th time. 

According to [24], the Gittins and switching indexes can 
also be interpreted as follows; suppose an operator has to pay a 
fixed charge each time it operates a machine and there are two 
possibilities: i) at the beginning of the operation, the operator 
has to pay an extra fee C to obtain the right to operate the 
machine; ii) the operator does not incur any extra fee at the 
beginning of the operation. The Gittins index vgz ( t )  represents 
the “fair charge” the operator has to pay to operate the machine 
with reward sequence { X ( t ) ,  X ( t  + l),...} in case ii). The 
switching index vcz ( t )  represents the fair charge the operator 
has to pay to operate the same machine in case i). The Gittins 
and switching indexes are related as follows. 

Lemma 2.1: For a given t 

vgz(t) > vcz ( t ) .  (2.4) 

Proof: Let ~ ~ ~ ( t )  and ~,,(t) be the stopping times that 
achieve the Gittins and switching indexes vgz(t)  and vcz( t ) ,  
respectively. Then, by the definition of vgz ( t ) ,  vcz(t), T~~ (t),  
and Tcz(t) ,  we have 

= vcz ( t ) .  0 

The following lemma characterizes properties of discounted 
reward rates received by the operation of individual machines 
and relates them to their Gittins and switching cost indexes 
and the stopping times that achieve these indexes. 

Lemma 2.2: For a given t 

b’t1 > t ,  t 5 c < ~ ~ ~ ( t )  (2.5) 

and 

b’ti > t ,  t 5 o < ~ ~ ~ ( t ) .  (2.6) 
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Proofi Inequality (2.6) is a standard result in multi- 
armed bandits [16]. Inequality (2.5) can be proved by similar 

Furthermore, the stopping times rgz(t) and .rcz(t) defined 

Lemma 2.3: For all t ,  ~,,(t) 2 ~ ~ ~ ( t ) .  

arguments. 0 

above are related as follows. 

Proof: Suppose the statement of the lemma is not true; 
then for some t ,  we have ~,,(t) < .rgz(t). By the definition 
of Tgz(*) 

. (2.7) 
= p ( t ) - l  z=t P l X ( l )  < x;z(+l bLX(l) 

T c z ( t ) - l  pi - -@t)--l pz 

CPt > CPt 
p + - l  pz -p$-l  pz ’ 

El=, l=t 

As P > 0, C > 0, and rcz(t) < ~ ~ ~ ( t )  

(2.8) 
z=t 

From (2.7) and (2.8) it follows that 

Also, by the definition of T,,(.) 

p+-l P“X(l) - cpt E;:; P“(l) - CPt = max I=t  

C;$t)-l pz T’t E;:; pi 
(2.10) 

Equations (2.9) and (2.10) are contradictory, hence ~ ,%( t )  < 
T g z ( t )  is not possible. Consequently, ~ ~ ~ ( t )  2 ~ ~ ~ ( t ) ,  Vt .  0 

To determine the qualitative properties of an optimal policy, 
we proceed via a series of lemmas. Suppose, that a policy n 
which plays machines in the following order 

X ( 0 ) ,  X(1) . . . X ( t l  - l), Y(0) ,  . . . Y ( s 1  - l), X ( t l ) ,  . . . 
X ( t 2  - l), Y ( S l ) , . ” Y ( S 2  - l ) ; ’ . , X ( t k - l ) , ’ . .  
X ( t k  - I), Y ( S k - l ) , . . . Y ( S k  - l ) ,  X ( t k ) , . . . ,  
X(Tz(0j - l ) , . . . X ( h + l  - I ) ,  Z(1), Z ( 2 ) , . . .  

is optimal, where 2 ( 1) , 2 ( 2 ) ,  . . . are an interleaving of reward 
sequences from x and Y from time t k+l  + S k  onwards and 
~ ~ ( 0 )  = ~ ~ ~ ( 0 )  or ~ ~ ~ ( 0 )  depending on whether or not the 
server has to pay a switching cost at t = 0. The time instants 
t k  and t k+ l  are such that t k  < .rz(0) 5 t k + l .  Let V(n)  denote 
the infinite horizon discounted reward obtained from policy T .  

Lemma 2.4: When T is optimal, we must have: 
i) a) If at t = 0 a switching cost is always incurred or 

never incurred, then 

b) If at t = 0 machine X does not incur a switching 
cost whereas machine Y does, then 

c) If at t = 0 machine X incurs a switching cost 
whereas machine Y does not, then 
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i) Consider policy 77 obtained from T as follows: policy 77 
operates machine Y for s1 units of time, then it operates 
machine X for tl units of time and follows T from time 
tl + s1 onwards. Assume that at t = 0 a switching 
cost is always incurred (the argument is the same when 
a switching cost is never incurred). Then, the rewards 
obtained from policies T and 77 are 

t ,  -1 

where A is the discounted reward earned from time 
s1 + t2 onwards, and 

S I - 1  tz--l  

V(77) = -c + PlY(1) - cpsl + psl PlX(Z) + a 
1=0 1 =o 

respectively. Consequently 

- /3lY(Z) - c - cpt1+31 (1 - P )  
EL1 P' (1 - Ps1)(1 - Pt l ) '  

Since, 7r is assumed to be optimal, we must have V ( T )  - 
V(77) 1 0, therefore 

CPtl+S1(1 - p) 
.O 

(1 - p ) ( l  - p") - L 

and the proof of part i-a) is complete. The proof of parts i- 
b) and i-c) follows from arguments similar to the above, 
hence it is omitted. 

ii) Consider policy 7r' obtained from T as follows: policy 
7r' follows T up to time t ,  + s, - 1, at time t, + s, it 
operates the machine Y for s,+1 - s, units of time, then 
it operates machine X for t,+l - t, units of time and 
follows 7r again from time t,+l + s,+1 onwards. 

Let a denote the discounted reward obtained until 
time t ,  + s, - 1 from policy T .  Then, the discounted 
rewards obtained from policies T and T' are 

ttt1-1 

V(T)  =a - CPS2+t% + p s t  c plX(1) - Cp+t t+ ]  
l=t, 

st+1-1 

l=s, 

+ Pta+l PlY(l> - Cps*tl+t~+l + A 

where A is the reward earned from time s,+1 + t,+l 
onwards, and 

s..L, -1 

l=s,  

t ,+1-1 

P I W )  + A - Cps,,I+t% + p . 1  

l=t, 

respectively. Therefore 

(V(T> - V(T'))(l - P )  
( p a .  - pS.+l)(pt% - pt%+l) 

p + l - l p q ( 1 )  l=t, 
CtZ+l--l pl 

- E;:;;-' PEY(Z) - 
c;:;-l pl 

- cpt% - cpt.+1 
- - 

l=t, 

2CpS%+l+t.+l (1 - P )  
( p s .  - p%+l)(pL - P"+l)' 

Since T is assumed to be optimal we must have, V ( T )  - 
V(7r') 2 0. Consequently 

@ X ( l )  - cpt. - CPtZ+1 plY(z) E = , ,  - 
y t 1 - 1  pl Et+? l=t p1 l=s, 

'2Cpt.+l+S.+1(1 - p) 
> O  2 ( p s .  - p"%+I)(pt% - P"+l) - 

should be true. 
iii) The proof is very similar to that of part ii) and is 

therefore omitted. 0 
Lemma 2.4 has the following intuitive interpretation: Sup- 

pose that along an optimal policy machine X ' s  (Y's) operation 
is interrupted at some time instant and machine Y ( X )  is 
operated for Z units of time. Then the discounted reward rate 
received by the operation of machine Y ( X )  must exceed 
the discounted reward rate received by the next operation of 
machine X (Y )  at least by a specific amount that depends on 
the switching cost C ,  I and the duration of the next operation 
of machine X (Y). 

Based on Lemmas 2.2 and 2.4, we can prove the following 
result. 

Lemma 2.5: Consider the policy T that is described at 
the beginning of this section and is assumed to be optimal. 
Construct a policy ii from 7r as follows: policy + follows 7r 

until time S k - 1  + t k  - 1, at time sk-1 + t k  it continues the 
operation of machine X for r,(O) - t k  units of time (recall 
t k  < r,(O) 5 t k + l ) ,  then it operates machine Y for S k  - s k - 1  

units of time, and again follows T from time r,(O) + s k  

onwards. Then, + is an optimal policy. 
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Pro& By assumption tk < ~ ~ ( 0 )  5 t k + l .  Let y denote 
the discounted reward obtained until time t k - 1  + s k - 1  - 1. 
Then, the discounted rewards obtained by policies T and ii 
are 

tl. -1 

L=Sk-1 

t k + l - l  
- CpT=(O)+sk + p s k  j?lX(Z) + s 

1=r8(0) 

respectively. The above relation is a strict inequality only when 
~ ~ ( 0 )  = tk+l; otherwise it is an equality. From the above two 
inequalities we get 

Since it is optimal to operate machine X at time S k - l  + t k - l  

and a switch is incurred at that time, by Lemma 2.4 [part ii)] 

E;;yh1l1 P"(Z) - Cptk--l - CPtk E2;k1-l P W )  
E;L;kl-l P1 E;& P1 ' 

2 

(2.17) 
There are two possibilities: 
i) A switching cost i s  incurred by the operation of machine 

X at t = 0. In this case, ~ ~ ( 0 )  = ~ ~ ~ ( 0 ) .  Because it is 
optimal to operate machine X at t = 0, we have from 
Lemma 2.4 [part i-a) or i-c)] depending on whether or not 
a switching cost is incurred by the operation of machine 
Y that 

Moreover, since it is optimal to operate machine Y at 
t = t l ,  from Lemma 2.4 (part iii) 

z;L;l PZY(Z) - c - COS1 x;2;11 P L - W .  (2,19) 
E;:;' Pl c;T.l PL 

By a series of arguments similar to those leading to (2.18) 
and (2.19) applied at times t = tz+sz-l, i = 2 , .  . . , k-1, 

and ti + si, i = 1, 2 , .  . . , k - 1, we obtain the series of 
inequalities 

From Lemma 2.2 

Combining (2.17), (2.201, and (2.21) we obtain 

E;z;l P W )  > E;zk:l O l W  

E;:tL1 PL E;2;k1-l Pl . 
(2.22) 

Because of (2.16) and (2.22), we conclude that V(?) 2 
V(T) .  Since T was assumed to be an optimal policy, ii 
is also an optimal policy. 

ii) No switching cost is incurred by the operation of ma- 
chine X at time t = 0. In this case ~ ~ ( 0 )  = ~ ~ ~ ( 0 )  and 
by arguments similar to those of case i), it can be shown 

The preceding lemmas can be used to prove the main result 
of Section 11-B. 

Theorem 2.I: An optimal scheduling policy for the de- 
terministic two-armed bandit problem with switching cost 
has the following property: Decisions about the processor 
allocation need to be made only at those time instants where 
the appropriate index (the Gittins index or the switching cost 
index) of the machine that is operated is achieved. 

- 

that is an optimal policy. R 

Remarks: 
In effect, the theorem states that after a machine is 
selected for operation, it is operated at least until the 
time instant that maximizes the discounted reward rate 
received by the operation, 
Based on the Gittins index solution, the result of Theo- 
rem 2.1 has the following interpretation: In the multi- 
armed bandit problem with switching cost, under an 
optimal policy, switches between machines occur only at 
times during which the Gittins or switching cost index 
of the currently active machine falls to a value below 
any it has achieved thus far (cf. Section 111-C and [14, 
Section 41). 

Proq? Without any loss of generality, assume that it is 
optimal to operate machine X at time t = 0 (an argument 
similar to the one that follows applies if at t = 0 it is optimal 
to operate machine Y). Consider a policy T of the form 

X(O), X ( 1 ) .  . . X ( t i  - l), Y(O), ' .  . Y(s'l - l), X(t \ ) ,  ' .  . 
X ( t i  - I ) ,  Y ( s ; ) ,  . ' .  Y ( s :  - l), . . ' , X ( & - ' ) ) .  . ' 
X ( &  - l), Y(sh_,) ,  . . . Y(sk - l), X(tL) ,  ' .  . 
X(tB+, - I), 2(1), 2 ( 2 ) , . ' .  

where Z(1), 2(2), . . . are an interleaving of reward sequences 
obtained from machines X and Y from time t',,, + s i  
onwards. At time 0 there are the following three possibilities: 
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i) There exists a k 2 1, such that the maximum discounted 
reward rate for machine X is achieved between time instants 
ti + s i  and ti+, + s i  - 1. In this case, repeated application of 
Lemma 2.5 at times tk + S L - ~ ,  t ipI + S L - ~ ,  . . . , ti proves that 
it is optimal to operate X up until ~ ~ ~ ( 0 )  - 1 (or ~ ~ ~ ( 0 )  - I); 
ii) The maximum discounted reward rate for machine X is 
achieved before ti .  In this case, we serve X up until T~~ (0) - 1 
(or ~ ~ ~ ( 0 )  - 1). At ~ ~ ~ ( 0 )  [or T , ~ ( O ) ]  we are faced with the 
same problem as at time t = 0; thus, it is optimal to serve 
the machine selected at ~ ~ ~ ( 0 )  (or ~ ~ ~ ( 0 ) )  until the maximum 
discounted reward rate obtained by its operation is achieved; 
iii) The maximum discounted reward rate for machine X 
is achieved at ~ ~ ( 0 )  = 00, and along policy T we have 
t k ,  s k  < 00, b’k 2 1. In this case, we construct a policy ii from 
T as follows: policy ii follows ?r until some time t k  + s k - 1 -  1 
for some finite k ,  I; 2 1; from time t k  + ~ k - ~ ,  ii continues the 
operation of machine X until its index is achieved. Denote by 
V(?) and V ( T )  the discounted rewards obtained by policies 
i? and T ,  respectively. Let a denote the discounted reward 
(including switching costs) obtained until time tk: + sk-1 - 1. 
Then 

03 

V ( % )  = ff + PSk--l P”(l> (2.23) 
Z=tk 

and 
S k - 1  

V(T)  = a - C p S k - - l + t k  + ,L?t& ,L?lY(Z) - C p + t k  + s 
l = S k - l  

(2.24) 
where 6 denotes the discounted reward obtained from policy T 

from time S k  + t k  onwards. Using Lemma 2.4 to upper bound 
the right-hand side of (2.24), we get 

(2.25) 
I = s k - 1  

Subtracting (2.25) from (2.23) yields, after some algebra 

slC-1 cz=sk-l PZY(1) - cp--1 - CPSk 
- . (2.26) 

Arguments similar to those leading from (2.16) to (2.22) in 
Lemma 2.5 give 

Right-Hand Side (R.H.S.) of (2.26) 2 0. 

Hence, V ( % )  2 V(?r). We can now modify policy ii according 
to case i) and show that it is optimal to operate machine X 
up until ~ ~ ~ ( 0 )  - 1 (or T,,(O) - 1). 

Repetition of the above arguments prove that along an opti- 
mal policy, decisions about the processor allocation need to be 
made only at time instants where the discounted reward rates, 

PZ 

resulting from the operation of the machines, are maximized. 
0 

The result of Theorem 2.1 can be intuitively explained as 
follows: If at a certain instant of time it is optimal to allocate 
the processor to a certain machine X ,  then it should be optimal 
to maximize the reward rate obtained from the operation of X 
during this allocation. Consequently, X must be operated until 
the time where the appropriate index is achieved, and at that 
time the next allocation must be decided. 

Theorem 2.1 does not specify how decisions are made at 
time instants where the discounted reward rates, resulting 
from the operation of the machines, are maximized. Thus, the 
determination of optimal decisions remains an open problem. 
The question that naturally arises is the following: Is the 
policy that operates the machines according to the highest 
appropriate index (the Gittins index or the switching cost 
index) optimal? If such a policy were optimal for the two- 
armed deterministic bandit problem with switching cost, the 
solution to this problem would be of the same level of 
complexity as the solution to the standard deterministic two- 
armed bandit problem. Unfortunately, the answer to the above 
question is negative as the following example demonstrates. 

Consider two machines X and Y with reward sequences 
20, 16, 0, 0 , .  .. and 19, 18, 0, 0, .. ., respectively. Let p = 
0.5 and C = 3, and assume that at t = 0 a switching 
(setup) cost is always incurred. Then, the policy that operates 
according to the highest appropriate index plays the machines 
in the order X, Y, Y,  X, and yields a reward of 31.125. The 
policy that operates the machines in the order Y,  Y,  X ,  X, 
yields a reward of 31.25. 

The point illustrated by the above example is in agreement 
with the result of [29] where it is shown that it is not possible 
to define indexes which have the property that the resulting 
index strategy is optimal on the domain of all multi-armed 
bandit problems with switching cost. 

However, the notion of indexes depending only on one 
machine and the knowledge of the arm that was operated at 
the previous instant is not entirely useless for the multi-armed 
bandits with switching costs. Theorem 2.1 demonstrates that 
along an optimal policy, an arm, once selected, is operated 
at least until its appropriate index is achieved. In the next 
subsection we show that if at a particular decision epoch the 
difference between (appropriate) indexes is greater than some 
amount, then it is possible to determine the machine that is 
optimal to operate at that epoch. 

C. Computational Considerations 

Theorem 2.1 reduces the search for an optimal policy 
to the determination of the optimal decisions at stopping 
times that achieve appropriate indexes (the “Gittins index” 
or the “switching cost index”). Still, the task of finding an 
optimal policy remains formidable. In this section, we present 
sufficient conditions under which it is possible to further 
simplify the search for an optimal strategy. These conditions 
are described in Lemmas 2.6-2.8 that follow. 

Lemma 2.6: Consider a decision instant t along an optimal 
policy for the two-armed bandit problem with switching cost, 
and assume that a switching cost C is incurred at t if we decide 
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to operate either machine.' Let T and s denote the amount of 
time machines X and Y have been operated, respectively, 
before time t. Let T,I + T and scl + s denote the times 
that achieve the switching cost indexes vCz(7) and U,,(.) for 
machines X and Y ,  respectively. If 

plx(l+ T )  - c - E;$ PlY(l+ s) - c 
E;:;-' pl E;:;-' Pl 

then at t it is optimal to operate machine X .  
Pro08 By Theorem 2.1 it is sufficient to restrict attention 

to the policies that possibly switch between machines only at 
stopping times that achieve the appropriate indexes. 

Consider a policy that proceeds with machine Y at t ,  
operates Y for se' + sg2 +. . . + S g k ,  IC = 1, 2 ,  . . . units of time 
(where s+s,l+.. .+sgz achieves v g , ( s + s , l + ~ ~ ~ + s g ~ ; - ~ ~ ) ,  
i = 2, 3 , .  . . , k , )  then operates machine X for T,I units of 
time and proceeds optimally afterwards. Call this policy Z. 
Construct the following policy called 7r'. Policy T' operates 
machine X at time t for r,l units of time, then switches to 
machine Y ,  operates it for s,1 + sg2 + . . . + sgk units of time, 
and follows policy ;i from time t + T,I + scl + sg2 + . . . + S g k  

onwards. Denote by V ( 5 )  and V(7r') the expected discounted 
rewards obtained by policies ii and d, respectively. Then 

si-1 

V(Z)  = a + pt -c + @Y(Z + s) [ 1=0 

7c1--1 1 
- CpsL pEX(Z+7)I  + A  (2.28) 

z=o 1 
where a denotes the discounted reward obtained until time 
t (including switching costs until time t),  s', = scl + s92 + 
. . . + S g k ,  and A is the reward earned from time t + s; + T , ~  

onwards; and 
r r", -1 

-c+ P Z X ( l  + 7 )  - 
L 1=0 

I S L - 1  

+ Prcl pzY(l + s) - CPSk+7c1 + A (2.29) 
z=o 

respectively. Subtracting (2.28) from (2.29) yields 

By the definition of stopping time scl, we have 

'For the two-armed bandit problem, the situation where a switching cost 
C is incurred if we decide to operate either machine may arise only at t = 0. 
However, the result of Lemma 2.6 is stated for general t because such a 
situation arises in the N-armed bandit problem (N > 2)  (see [33] )  in pairwise 
comparisons of machines not being operated at time t - 1. 

Since 0 < p < 1 and si 2 sc l ,  from (2.31) and (2.27) we 
obtain 

R.H.S. of (2.30) 2 0. 

Therefore V(T')  2 V(Z).  Thus, for any policy ii that pro- 
ceeds at t with machine Y (and plays it according to Theorem 
2.1), it is possible to find another policy 7r' that proceeds at t 
with machine X and does better than E .  Consequently, under 
the assumption given by inequality (2.27), it is optimal to 

171 
Lemma 2.7: Consider a decision instant t along an optimal 

policy for the two-armed bandit problem with switching cost, 
and assume that at t - 1 the server operates machine X .  Let T 

and s denote the amount of time machines X and Y have been 
operated before time t ,  respectively. Let ~~1 + T and 7,' + T 

denote the times that achieve the Gittins index v g z ( ~ )  and 
the switching cost index vCz(r )  for machine X ,  respectively. 
Further, let s,1 + s denote the time that achieves the switching 
cost index vcy(s) for machine Y .  If 

operate machine X at t. 

then at t it is optimal to operate machine X .  
Pro08 By Theorem 2.1, we only need to consider poli- 

cies along which switches between machines can possibly 
occur only at stopping times that achieve appropriate indexes. 
Consider any such policy ii that proceeds with machine Y at t ,  
operates Y for s,1+sg2+. . .+sgk, ( k  = 1, 2 , .  . .) units of time 
(where s + s , ~ + . . . + s ,  achieves v y v ( s + s , ~ + ~ ~ ~ + s g ~ z ~ ~ ~ ) ,  
i = 2, 3, . . . , S), then operates machine X for ~ , 1  units of time 
and proceeds optimally afterwards. Next, construct a modified 
policy 7r' that operates machine X at time t for ~~1 units of 
time, switches to machine Y ,  operates it for sc1+sg2+. . .+s,k 

units of time, then switches back to X and operates it for time 
T,I - T ~ I  (T,I 2 Tgl by Lemma 2.1) and follows policy ii from 
time t + T,I + se- + sg2 + . . + s g k  onwards. 

Let a denote the discounted reward (including switching 
costs) obtained until time t ,  s', := s,1+ sg2 + . . . + s g k  and A 
be the reward earned from time t + s', +T,I onwards. Then, the 
discounted rewards obtained by policies ii and 7r' are given by 

r s:-1 

V(ii) = a + pt -c + PZY(Z + s) - cps: 1 1=0 

and 

z=o 
1 

k T g 1  J 
(2.34) 
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respectively. The inequality in (2.34) can be explained as 
follows: Consider the case where T , ~  = ~~1 and at time 
t + s: +T,-, policy ii continues optimally by operating machine 

where s$ := sgl + sg2 + . . . + s g k .  Further, by the definition 
of stopping time sgl 

. (2.38) Y .  Then, at time t + s; + 7,. a switching penalty is incurred 
according to E ,  whereas d does not incur any switching 

E;ii1 + s )  < E;::-’plY(l+ s) 
- c;i;‘ pl E;::-’ p1 

penalty. In this case V ( d )  is greater than the right-hand side of 
(2.34). In all other cases, (2.34) is valid with equality. From Since 0 < P < 1 and S$ 2 sgl, (2.38) and (2.36) give that 
(2.33) and (2.34), we obtain 

By the definition of stopping time s,1 (see 2.31) along with 
(2.32) and (2.35), we get 

R.H.S. of (2.35) 2 0. 

Therefore V ( d )  2 V ( % ) ,  and under (2.32) it is optimal to 
0 

Lemma 2.8: Consider a decision instant t along an optimal 
policy for the two-armed bandit problem with switching cost, 
and assume that at t - 1 the server operates machine Y .  Let 
T and s denote the amount of time machines X and Y have 
been operated before time t ,  respectively. Let T , ~  + T and 
sgl + s denote the stopping times that achieve the switching 
cost index v,,(T) and the Gittins index vgY(s) for machines 
X and Y ,  respectively. If 

continue operation of machine X at time t .  

then at t it is optimal to operate machine X .  
Proofi Again, by Theorem 2.1, it is sufficient to restrict 

attention to policies that possibly switch among machines 
only at stopping times that achieve an appropriate index. 
Consider any such policy R that proceeds with machine Y 
at t ,  operates Y for sgl + sg2 + . . . + s g k  units of time (where 
s + sg1 + . . .  + sgz achieves vgv(s + sg1 + . . .  + S ~ ( ~ - I ) ) ,  
i = 2, 3 , .  . . , k ) ,  then operates machine X for ~ , 1  units of time 
and proceeds optimally afterwards. Now, modify this policy 
to obtain policy d, which operates machine X at time t for 
r,l units of time, switches to machine Y ,  and operates it for 
sgl + sg2 + . . . + S g k  units of time and follows policy ii from 
time t + ~,.1 + sgl + sg2 + . . . + Sgk onwards. The policy that 
starts with machine X at time t and proceeds optimally from 
t + ~ , 1  onwards, will do better than the policy d, hence if 
T I  does better than ?, then it is optimal to play machine X 
at time t. 

By calculations similar to those of Lemmas 2.6 and 2.7, we 
obtain 
(V(7rl) - V(?))(l - p)  > E;:;-1 @ X ( l +  T )  - c - cpTcl 
p t ( i  - p%)(i  - pl) - z;p pl 

- (2.37) 
- -& P’Y(l + s )  - 2CPTC1+4 

C;i,lpl (1 - P’.l)(l- p b )  

R.H.S. of (2.37) 2 0. 

Therefore V ( d )  2 V(2) .  Thus, when (2.36) is true, it is 
0 

To illustrate how Theorem 2.1 and the above lemmas reduce 
the complexity of the search for an optimal policy, refer to 
Figs. 1-3. Originally, without the result of Theorem 2.1, we 
have to make a decision at every instant of time, and hence 
we have to search for an optimal path in the dense binary tree 
of Fig. 1. Because of Theorem 2.1, we only have to find an 
optimal path in the tree of Fig. 2; this tree may be considerably 
sparser than that of Fig. 1. We may be able to further prune 
the tree of Fig. 2 by using the results of Lemmas 2.6-2.8 
(see, for example, Fig. 3, where condition (2.36) is satisfied at 
n b ) .  Thus, we may eventually be able to significantly reduce 
the computation required to determine an optimal allocation 
strategy. Nevertheless, determination of an optimal strategy 
still remains a difficult and challenging problem. 

The sufficient conditions provided by Lemmas 2.6-2.8 are 
simple. At any decision epoch, one has to compute the 
appropriate index and corresponding stopping time of each 
machine and determine whether the indexes satisfy a condition 
such as (2.27), (2.32), or (2.36) (depending on the situation). 
Thus, the search for an optimal strategy may be simplified by 
just “looking one branch ahead” (i.e., looking, at any decision 
instant t ,  as far ahead as the stopping time that achieves the 
next appropriate index) in the tree of Fig. 2. 

If the sufficient conditions of Lemmas 2.6-2.8 are not 
satisfied, then one has to look further into the future to simplify 
the search for an optimal strategy. Lemmas 2.9-2.11 that 
follow present sufficient conditions for optimality by “looking 
two branches ahead” in the tree of Fig. 3. The general idea 
behind these lemmas is the following. Consider the tree of 
Fig. 2, move forward in the tree, and prune this tree using 
the results of Lemmas 2.6-2.8 to obtain the tree of Fig. 3. 
Suppose that: i) at a certain node na of the tree of Fig. 3 
the conditions of Lemmas 2.6-2.8 are not satisfied; ii) at the 
next node nb, after we operate machine Y ( X )  the conditions 
of Lemmas 2.6-2.8 are satisfied, and it is optimal to operate 
machine X ( Y )  at nb. In this case, by “looking two branches 
ahead” in the tree of Fig. 3, it may be possible to obtain 
sufficient conditions that are satisfied at node na and allow 
further pruning of the three of Fig. 3 at node n,. These 
sufficient conditions are stated in Lemmas 2.9-2.11 and are 
tighter than the sufficient conditions of Lemmas 2.6-2.8. Thus, 
the combination of Lemmas 2.6-2.11 allows us to obtain 
conditions that simplify the search for an optimal scheduling 
policy by first employing a “one branch look-ahead” technique 
and following it by a “two branch look-ahead” method as 
described above, It is possible to extend the philosophy of 
Lemmas 2.6-2.1 1 to further simplify the search for an optimal 

optimal to operate machine X at time t. 
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t j - 0  1 2 3 4 5 6 7 t + - 0  I 2 3 4 5 6 7 

Fig. 1. Original decision tree 

policy by employing an “n branch look-ahead” ( F  > 2) 
technique. 

Lemma 2.9: Consider a decision instant t along an optimal 
policy for the two-armed bandit problem with switching cost, 
and assume that a switching cost C is incurred at t if 
we decide to operate either machine. Let r and s denote 
the amount of time machines X and Y have been oper- 
ated, respectively, before time t. Let r,1 + r and s,1 + s 
denote the stopping times that achieve the switching cost 
indexes vcz(7) and vcy(s) for machines X and Y ,  respec- 
tively. Further, let r s 2  + 7,1 + r denote the stopping time 
that achieves the Gittins index vgz(. + 7,l) for machine 
v 
A .  

Fig. 2. Decision tree after applying Theorem 2.1 ( ~ ~ ~ ( 0 )  = 3, ~ ~ ~ ( 0 )  = 2, 
Tgz(3) = Tcz(3) = 5, Tgg(2) = 4, Tcy(2) 5 ,  T g z ( 5 )  = 7, Tgy(4) = 8). 

Suppose that: 
i) The condition of Lemma 2.6 is not satisfied at time t for 

either machine; 
ii) If we operate machine Y at time t ,  then at time t + sC1 

it is optimal to operate machine X ;  
iii) 
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t * O 1 2 3 4 5 6 7  
Fig. 3. Decision tree after applying Lemmas 2.6-2.8 to the tree of Fig. 2. 

iv) 

Then, it is optimal to operate machine X at time t. 
Proof: We can restrict attention to policies that possibly 

switch between machines only at stopping times that achieve 
the appropriate index. Let s , ~ + s , ~ + s  denote the stopping time 
that achieves the switching cost index U,, (s+s,l) for machine 

the operation of machine Y at time t and is a candidate for 
being optimal, there are only the following two possibilities: 

a) Operate machine Y for s,1 units of time, then operate 
machine X for T,I units of time, switch back to machine 
Y and operate it for sCz units of time, and then proceed 
optimally from time t + s,1 + s,2 + 7,1 onwards. Call 
this policy iiyxy. 

b) Operate machine Y for sC1 units of time, then operate 
machine X for T,I + r Y 2  units .of time and proceed 
optimally from time t + s,1 + T , ~  + ~~z onwards. Call 
this policy iiyxcz. 

Now construct the following two policies called 7rXyy and 

Policy rzyy operates machine X for T,I units of time, 
switches to machine Y ,  operates it for s,1 + sc2 units 
of time, and follows policy i?yxy from time t + scl + 
s , ~  + ~ , 1  onwards. 
Policy rxZy operates machine X for T,I + ~~2 units of 
time, switches to machine Y ,  operates it for s,1 units 
of time and follows policy jiyzx from time t + s,1 + 
~ , 1  + 7y2 onwards. 

Then 

From condition iii), (2.39), we have 

R.H.S. of (2.41) 2 0. 

Hence, V(7rczyy) >_ V(iiyxy). Furthermore 

(V(7rxxy) - V(+yzx))(1 - P )  
pt(1 - p".1)(1 - ~ T ~ c ~ + T ~ z )  

(2.41) 

- c;:;-' p'Y(l+ s )  - c 
Pl 

(1 - PI (2.42) 
CpTci +Tgz+Sci - 

(1 - Pscl)(1 - P T c 1 + 7 g 2 )  

and using condition iv), (2.40), we get 

R.H.S. of (2.42) 2 0. 

Hence, V(rczzy) 2 V(%yzz). 
Therefore, under conditions i)-iv) of the lemma, for any 

policy ii that proceeds at t with the operation of machine Y ,  
it is possible to find another policy 7r that proceeds at t with 
machine X and does better than %. Consequently, it is optimal - .  

Y .  Because of condition ii), for any policy that proceeds with to operate machine X at time t. 0 
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Remark: If at t it is known that policy EyXy is better than 
policy ;;Tyzz, then (2.39) along with conditions i) and ii) of 
Lemma 2.9 are sufficient to guarantee that it is optimal to 
operate machine X at time t. This shows how knowledge 
of future optimal decisions along a subtree can relax the 
sufficient conditions that determine the optimal decision at t. 
Such knowledge of future optimal decisions along a subtree 
may be possible at any time t ,  if one initially uses Lemmas 
2.6-2.8 to prune the tree of Fig. 2. 

Lemma 2.10: Consider a decision instant t along an optimal 
policy for the two-armed bandit problem with switching cost, 
and assume that at t - 1 the server operates machine X .  Let 
T and s denote the amount of time machines X and Y have 
been operated before time t ,  respectively. Let ~~1 + T and 
~,1 + 7 denote the stopping times that achieve the Gittins 
index vgz (7)  and the switching cost index vex ( T )  for machine 
X .  respectively. Further, let s,1 + s denote the stopping time 
that achieves the switching cost index vcy(s) for machine Y .  
Assume the following at t :  

i) The conditions of Lemmas 2.7 and 2.8 are not satisfied 
at time t for either machine. 

ii) If we operate machine Y at time t ,  then at time t + sClr 
it is optimal to operate machine X .  

iii) 

Then it is optimal to continue operation of machine X at 
time t. 

Proo$ We consider only those policies that possibly 
switch between machines only at stopping times that achieve 
appropriate indexes. 

Because of condition ii) of the lemma, any policy that starts 
with machine Y at time t and is a candidate for being an 
optimal policy must operate machine Y for s,1 units of time, 
must switch to machine X at time t + scl, operate it for T , ~  

units of time, and proceed optimally from time t + s,1 + T,I. 

Call this policy ;;Tyx. Now construct the following policy called 
rzy. Policy rzy operates machine X at time t for ~~1 units of 
time, then switches to machine Y ,  operates it for s,1 units of 
time, then switches back to machine X ,  , and operates it for 
time T,I - T ~ I ( T , ~  2 ~~1 by Lemma 2.1) and follows policy 
F y z  from time t + r,l + s,1 onwards. By arguments similar 
to those of Lemma 2.7, we get 

By (2.43), we obtain 

R.H.S. (2.44) 2 0. 

Therefore V(rZy)  2 V(7Tyz). Thus, under conditions i)-iii), 
0 it is ontima1 to ouerate machine X at t. 

Lemma 2.11: Consider a decision instant t along an optimal 
policy for the two-armed bandit problem with switching cost, 
and assume that at t - 1 the server operates machine Y .  Let T 

and s denote the amount of time machines X and Y have been 
operated before time t ,  respectively. Let T,I +t and ~~2 +T,L +t 
denote the stopping times that achieve the switching cost index 
Y,,(T) and the Gittins index vgX(7 + 7,l) for machine X ,  
respectively. Further, let sgl + s denote the stopping time that 
achieves the Gittins index ugY (s) for machine Y .  

Suppose that: 
i) The conditions of Lemmas 2.7 and 2.8 are not satisfied 

ii) If we operate machine Y at t ,  then at time t + sgl it is 

iii) 

at time t for either machine. 

optimal to operate machine X .  

iv) 

Then, it is optimal to operate machine X at time t. 
Proofi Again by Theorem 2.1, it is enough to consider 

only those policies which possibly switch between machines 
only at stopping times that achieve the appropriate indexes. 
Let sc2 + sgl + s denote the stopping time that achieves the 
switching cost index vcy(s + sgl) for machine Y .  Because of 
condition ii), for any policy that proceeds with the operation 
of machine Y at t and is a candidate for being optimal, there 
are only the following two possibilities: 

a) Operate machine Y for sgl units of time, then operate 
machine X for T,I units of time, switch back to machine 
Y and operate it for sc2 units of time, and then proceed 
optimally from time t + sgl + sc2 + T,I onwards. Call 
this policy jiyzy. 

b) Operate machine Y for sgl units of time, then operate 
machine X for T,I + -rg2 units of time and proceed 
optimally from time t + sgl + ~,1 + r g 2  onwards. Call 
this policy jiyxx. 

Now construct the following two policies called xzyy and 

Policy rxyy operates machine X for 7,1 units of time, 
then switches to machine Y ,  operates it for sgl + s,2 

units of time, and follows policy jiyzy from time 
t + sgl + s,2 + rCl onwards. 
Policy xxxy operates machine X for ~ , 1  +  IT$^ units 
of time, switches to machine Y and operates it for 
sgl units of time, and follows policy Fyxr from time 
t + sgl + r,l + r g 2  onwards. 
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By calculations similar to those of Lemma 2.9, we can 
show that under condition iii), V(7rzyu) 2 V(gvZy) and 
under condition iv) V(7rzzy) 2 V(%,,z). Therefore, under 
the conditions of the lemma, it is optimal to operate machine 
X at time t. 0 

The results of Lemmas 2.6-2.11 can be used to do painvise 
comparisons of machines and simplify the search for opti- 
mal policies in the deterministic N-armed (N > 2) bandit 
problem. 

111. THE STOCHASTIC MULTI-ARMED 
BANDIT PROBLEM WITH SWITCHING COST 

A. Problem Formulation 
In the stochastic multi-armed bandit problem, there are 

N machines X1, X 2 , .  . . , X N  and one server. Machines 
are characterized by the pair of sequences { X i ( s ) ,  Fi(s)}, 
s = 0, 1, 2, . . . , where X i ( s )  is the (random) reward obtained 
when Xi is operated for the (s  + l)th time and Fi(s) is the a -  
field representing the information about machine X i  gathered 
after it has been operated s times. Let Fi = V,Fz(s),  where 
i E 1, . . . , N .  We make the following assumptions: 

Al)  F i ( s )  c Fi ( s  + 1). 
A2) V 3 a ( X i ( s ) )  V Fa, i = 1, 2 , .  . . N ,  are independent. 
A3) ECZ",o/3t1Xi(t)l < 00; where 1 5 i 5 N ,  and 

At each time instant t ,  exactly one machine must be 
operated. Thus, t = tl + t2 + . . . + t N ,  where ti := 
t i ( t )  is the number of times machine X i  is operated during 
0, 1, 2 ,  . e . , t -  1. ti is called the Xzth machine time at process 
time t. Let m(t) denote the machine operated at time t. If 
m(t) # m(t - l), t = 1, 2 , .  . . , then a switching cost C is 
incurred at time t;  this cost may or may not incur at t = 0. 

Consider the decision at time t ,  t = 0, 1,. . .. This decision 
must be based on the available information which is F ( t )  = 
V i 4  Fi(t i)) ,  and m(t - 1). F ( t )  = F ( t  - 1) V G ( t -  1) where 
G(t  - 1) is the a-field generated by the sets of the form 
{m(t - 1) = i} n {t i ( t  - 1) = S} n A,  with A E Fi ( s  + 1). If 
m(t) = Xi, then the states xj of machines X j ,  j # i ,  remain 
frozen, and the state xi of machine Xi changes according to 
the transition rule P(zi( t i ( t )  + 1) E A I xi(O), . . . xi(t"(t))) ,  
A E Fa( t i ( t )  + 1). A policy is any sequence of decisions 
{u(t):  u(t) = m(t), t = 0, 1, 2 , .  . .}, where u(t) is based 
only on F ( t )  and m(t - 1), and F ( t )  evolves according to the 
mechanism described above. 

The bandit problem with switching cost is to find a policy 
x that maximizes 

0 < P < 1 is a fixed discount factor. 

w 

V ( x )  := E{ Cp"xm(t) ( t ) )  
t = O  

- l(m(t)  # m(t - 1))C] F(0)  . (3.1) I >  
B. Analysis 

To proceed with the analysis,A for each t ,  t = 0, 1, . . .  
and 1 5 i 5 N ,  we define F z ( s )  := V Y z l l j f i F j ( t j ) ,  

where s := Cy=l,JZztJ, and we denote by T Z ( t )  the 
set of all stopping times T ,  t < T 5 00, of {Fz ( . ) } .  
For each machine X' ,  after it has been operated t times 
we define the following quantities: the Gittins index 
~ 1 3 1  

.{ EL; P l X V )  1 F W }  

7>t E{C;:; pl I F"t)} 

B{ E;:; P " Z ( l )  - cpt 1 F"t)} 

E{ c;:; Pl I F a }  

vgZ(t) := max (3.2) 

and the "switching cost in- 
dex" 

vcZ(t) := max (3.3) 
r>t 

where the maximization is over all stopping times 
T E T'(t) ,  and "max" in (3.2) and (3.3) as well as 
in the sequel is to be interpreted as "ess sup." Under 
Assumptions Al)-A3), made in the problem formulation, 
there always exist stopping times T and 7' achieving 
the maximum in (3.2) and (3.3), respectively (see 
1341). 

Define by T g 2 . ( t )  E Tz((t) and ~ , % ( t )  E T z ( t )  the stopping 
times that achieve vgZ(t) and vcZ(t), respectively. Then, the 
indexes v,, (t) ,  vg2 ( t )  and the stopping times r,, ( t )  and T~~ ( t )  
as defined above satisfy the following. 

Lemma 3.1: For any stopping times a E T 2 ( t )  

and 

a.s. Qtl > t. 

(3.5) 

2 
E { C : Z I P l  1 F W }  

We do not prove this lemma, as part i) is a special case 
of [16, Lemma 2.1(b)], and part ii) follows from arguments 
similar to part i). The stopping times ~ ~ ~ ( t )  and T,,(t) are 
related as follows. 

Lemma 3.2: For all t ,  -rcz(t) 2 ~ ~ ' ( t )  a.s. [ F z ( t ) ] .  
Proofi Suppose the statement of the lemma is not true. 

Then there exists a t ,  such that T , ~ ( C )  < ~ ~ ~ ( t )  on a set A s.t. 
P ( A  1 F z ( t ) )  > 0 a.s. We will show that in this case ~,,(t)  
does not achieve the maximum in the right-hand side of (3.3), 
thus reaching a contradiction. 

Define Tcz ( t )  as follows: 

~ , ; ( t )  on A" 
~ ~ ~ ( t )  on A. F & ( t )  = (3.6) 
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Then .icz(t) E TZ( t ) ,  .icz(t) 2 .rcz(t) a.s. and TcZ(t )  > .rcz(t) 
on A. To complete the proof of the lemma we only need to 
show that 

E{ - p ( t ) - - l  l=t P"Z(Z) - cpt 1 F" t ) )  

> a.s. (3.7) 

By the definition of Tcz( t ) ,  .vgZ(t) and Lemma 3.1-i) we have 

Combining the two inequalities in (3.8) we obtain 

(3.9) 

or equivalently 

a.s. (3.10) 2 E { L t  T c t ( t ) - l  pl I p y t ) }  

Since icz( t )  2 ~ , , ( t ) ,  a.s. .icz(t) > ~, , ( t )  on A, 
P ( A  1 F z ( t ) )  > 0, 0 > 0, and C > 0, it follows that 

COt 

Combining (3.10) and (3.1 1) we obtain (3.7). Q.E.D. 
To determine the qualitative properties of an optimal policy 

we proceed, as in Section 11, via a series of lemmas. Suppose 
that a policy 7r which plays the machines in the order 

X Y t k ( w ) - l , ( c d ) ,  U > , . . .  , X 1 ( t k ( " ) ( W )  - 1, U) ,  

Z ( S k ( W ) - l ( 4  U ) ,  . . . , 
Z ( S k ( w ) ( W )  - 1, U ) ,  X 1 ( t k ( w ) ( 4 ,  U ) , . . ' ,  

X 1 ( 4 4  w )  - 1, 4 - , X 1 ( t k ( w ) + l ( 4  - 1, U ) ,  

Y(tY(tlc(w)+l(4 + %(u)(4), U ) ,  

Y ( t Y ( t k ( w ) + l ( 4  + s k ( w ) ( w )  + 11, w ) ,  . . . 
for sample path w ,  is optimal, where (by some abuse o f  
notation) Z(0, w),  Z(1, w ) ,  Z ( 2 ,  U ) ,  . . . , Z(sz(w) ,  U ) ,  . . . , 
Z ( S ~ ( ~ ) ( W )  - 1, w )  are an interleaving of reward se- 
quences from machines X 2 ,  X 3 , . . .  , X N  (or a subset of 

S ~ ( ~ ) ( W )  + I), U ) ,  . . . represents an interleaving of reward 
sequences from machines X I ,  X 2 , . .  . , X N  from time 
tqw)+1(w) + s q W ) ( w )  onwards. Suppose the time instants 

and t+)+l are such that tqw) < ~ ( 0 ,  w )  I t+)+l, 
where ~ l ( 0 ,  U )  = ~ ,1 (0 ,  w )  or ~ ~ 1 ( 0 ,  w ) ,  depending on 
whether or not a switching cost is incurred at time t = 0. 

Lemma 3.3: Denote by A,, i = 1, 2, . . . , k ,  the discounted 
reward obtained in the time interval [t, + ~ ~ - 1 ,  t, + s, - I], 
(so := 0) excluding the switching cost incurred at t, + sz-l. 

i) a) If at t = 0 a switching cost is always incurred or 

it) and Y ( t Y ( t k ( w ) + l ( 4  + s k ( w ) ( w ) ) ,  U ) >  Y(tWk(u)+l  ( w )  + 

never incurred, then we must have 

b) If at t = 0 a switching cost is incurred when 
machines X 2  or X 3  or . . . X N  are operated, but 
no switching cost is incurred when machine X1 is 
operated, then 

c) Let X J  be the machine operated at time tl according 
to policy T ,  and suppose that no switching cost 
would be incurred at t = 0 if machine X j  were 
operated at time 0. If a switching cost is incurred 
according to policy T at time t = 0, then 
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ii) At t = s; + t;+l, we must have 

iii) If (according to T )  the machine operated at t, + s, - 1 is 
different from the machine operated at time t;+l + s;, 
then 

On the other hand, if (according to T )  the machine 
operated at t, + s, - 1 is same as the machine operated 
at t,+l + sz, then 

E{Ct'+l-l l=t, P l X l ( l )  - cptt - CPt,'l 1 F l ( t , ) ]  

Pro08 

i) Consider policy 5 obtained from T as follows: Policy 
ii initially operates machines X 2 ,  . ' . , X N  for s1 units 
of time in the same order as policy 7r does starting at 
time t l ,  then it operates machine X1 for tl units of time 
and follows T from time tl + SI onwards. Assume that 
at t = 0 a switching cost is always incurred. Then the 
expected rewards obtained by policies 7r and ii are 

3 

where A is the reward earned from time SI+  t 2  onwards, 
and 

respectively, Assumption A2) along with some algebra 
yields 

a.s. 

Since T is assumed to be optimal, we must have V ( T )  - 
V(E) 2 0 a.s. Therefore 

as tl > 0 a.s., s1 > 0 a s .  Since 

R.H.S. of (3.18) 2 0 a.s. 

the proof of part i-a), when a switching cost is always 
incurred, is complete. The proof of the remaining parts 
of i) proceeds along similar arguments. 

ii) Consider policy %, obtained from 7r as follows: Policy 
ii follows T up to time t := t,+l + s, - 1; at time 
t%+l + s, it operates machine X1 for t,+2 - t,+l units 
of time; afterward it operates machines X 2 ,  . . . , X N  for 
s,+1 - sz units of time in the same order as policy 7r 

does, starting at time t,+l +s,; and follows 7r again from 
time t,+2 + sz+l onwards. 

Let &(T)[&(?)] denote the expected discounted re- 
ward obtained from policy ..[?] from time t onwards, 
conditioned on the information available until time t ,  
i.e., F ( t ) .  Then 

Vt(7r) E -CPss+t%+l + Pst+t'+l A,+1 - C,fj"t+l+tx+l i 
t,+2 - 1 

l=t,+1 

+ p + l  p l x l ( z )  - C p s n + 1 + t , + z  + A I F ( t ) }  a.s. 

where A is the reward earned from time s,+1 + t,+2 
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onwards (excluding the switching cost at s , + ~  + ti+2), 
and 

respectively. Hence, by using some algebra and the 
Assumption A2) and F ( t )  = F1(s,)VF1(t,+l), we have 
the equations shown at the bottom of the page. Since 
policies 7r and ? are the same until time t := tz+1+sz-l, 
and policy 7r is assumed to be optimal, we must have 
V,(T)  - &(e) 2 0 a s .  Therefore 

iii) Modify policy 7r to obtain policy 7r' as follows: policy 
T' follows 7r up to time t, + s, - 1; at time t, + s, 
72 operates machines X 2 ,  . ' . , X N  for s,+1 - s, units 
of time in the same order as policy T does starting 
at time tz+l + s,; then, it operates machine X1 for 
t,+l - t ,  units of time; finally d follows 7r again from 
time tz+l + s,+1 onwards. 

As before, let &(n) denote the expected discounted reward 
obtained from policy 7r from time t onwards, conditioned on 
F ( t ) .  Then 

where A is the reward earned from time s,+1+ tz+l onwards, 
excluding the switching cost incurred at time sz+l + tz+l. To 
compute V, (d). we consider the following two possibilities: 

a) According to policy 7r,  the machine operated at t, + s, - 1 
is different from the machine operated at time tz+l -t- s,. 

Then 

+ pS*+l pEX1(Z) + A  
E=t, 

a s .  

Because of Assumption (A2) and F ( t )  = P1(sz) V 
F1(t , ) ,  we obtain 

As n is assumed to be optimal, we must have & ( T )  - 

&(+) 2 0 a.s., hence 

b) According to T ,  the machine operated at t, + s, - 1 is 
the same as the machine operated at tz+l + s,. Then, 

By Assumption (A2) and F ( t )  = @ ' ( s i )  V F1( t i ) ,  we 
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By the optimality of x we must have 

Lemma 3.4: Consider the policy x that is described at 
the beginning of this section and is assumed to be optimal. 
Construct a policy ii from n as follows: 

i) % follows x until time s k - 1  + t k  - 1. 
ii) At time sk-l + t k ,  ii operates machine X1 for q ( 0 )  - t k  

units of time. 
iii) Afterwards, ?? operates machine X 2 ,  X 3 ,  . . . , X N  for 

s k  - s k - 1  units of time in the same order as policy 7r 

does, starting at time t k  + S k - 1 .  

iv) ii follows x from time ~ ' ( 0 )  + Sk onwards. 
Then ii is an optimal policy. 

Proofi Let y denote the discounted reward obtained until 
time t = t k P l  + s k - 1  - 1. Then, the expected discounted 
rewards obtained by policies 7r and ii are 

t k - 1  

V ( r )  = E y - C P S k - l + t k - - l  + p - 1  c PlXl(1) 
l=tk-l 

+ P  Ak 
t k + l - l  

i 
- C p s k - l + t k  S k - l + t k  

- ~ / ~ ~ k + ~ k  + p S k  P'x ' (~)  + s 
k t k  

Lemma 3.3 has an interpretation similar to that of Lemma 
2.4. The following corollary is an immediate consequence of 

where s is the reward earned from time Sk+tk+l onwards, and 

I 7 1  (0 )  - 1 the above lemma. 
Corollary 3.1: Suppose 7r is optimal. Then 
i) At t = s; + ti+1, we must have 

V(?) 2 E y - C p - - l + t k - - l  + P S k - - l  PlX'(1) t l = t k - l  

- C p S k -  1 + 7 1 ( 0 )  + f i s k - 1  +71 ( 0 ) A k  

1 1  tk+l-l 

- C , P ( ' ) + ~ ~  + p S k  P'x'(I) + s F ( O )  a.s. 
1=71(0) 

a.s. (3.19) respectively. The inequality above is strict only when q ( 0 )  = 
b+l. Therefore, because of Assumption A2) 

ii) If (according to n) the machine operated at ti + s; - 1 
is different from the machine operated at time ti+l+ si, 
then 

E{P"sA;+l - CPS* 1 P1(0)} 
- > a.s. (3.20) 

On the other hand, if (according to x) the machine 
operated at t, +s, - 1 is the same as the machine operated 
at tz+l + sz, then 

E {  Et'+'-' l=t ,  P I X 1 ( l )  - C,@ - CPt+l I F1(0))  

- E{PSk-lAk - C p s k - l  - C PSk I W ) )  a.s, 

E{ Pi  I P W }  
(3.22) 

As it is optimal to operate machine X1 at time s k - 1  + t k - l ,  

and a switch is incurred at that time, by Corollary 3.1, part ii) 

Proofi The corollary follows from (3.15)-(3.17) together 
with Assumptions Al)-A3) and [35, Proposition 4.20, part 

only 
i) 

(ii)]. U 

terms of the switching cost incurred at t = 0, there are 
the following two possibilities: 
A switching cost is incurred at t = 0. In this case, 
~ l ( 0 )  = ~,1(0). As it is optimal to operate machine X 1  
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at t = 0, we have from Lemma 3.3 [part i-a) or i-c)], 
depending on the machine operated at time tl) that 

E(E;:;1P"l(Z) - c I Fl(0) )  

Furthermore, by Corollary 3.1 (part i) at t = tl 

E { A l  - C - Cpsl 1 pl(o)} 
E{ EL1 Pl I W O ) }  

E{  EZll PIX1(l) I m} 
E{ ELll Pl 1 W)} 

2 a s .  (3.25) 

By repeating the arguments resulting in (3.24) and (3.25) 
at times t = t,+l + sa and t, + s,, i = 1, 2 , .  . . k - 1, 
we obtain 

Furthermore, by Lemma 3.1 

2 a s .  (3.27) 
{EE:L;lPz I F1(0)l 

Combining (3.23), (3.26), and (3.27) we obtain 

E{ PlX'(Z) 1 F l ( 0 ) )  

From (3.22) and (3.28) we conclude that V(+) 2 V(w) 
a s .  Since 7r was assumed to be an optimal policy, ii is 
also an optimal policy. 

ii) No switching cost is incurred at time t = 0. In this case 
rl(0) = ~ ~ ~ ( 0 )  and arguments similar to those of case 

Based on Lemmas 3.1, 3.3, and 3.4, we can now obtain the 
i) show that i? is an optimal policy. 

stochastic analogue of Theorem 2.1 for N-armed bandits. 

Theorem 3.1: An optimal scheduling policy w for the sto- 
chastic N-armed bandit problem with switching cost has the 
following property: Decisions about the processor allocation 
are made only at those F( . )  stopping times that achieve an 
appropriate index (the Gittins index or the switching cost 
index). 

Prooj Without any loss of generality, assume that it is 
optimal to operate machine X 1  at t = 0. Consider a policy 
T of the form 

X l ( O , w ) ,  x ' ( l , w ) . . . X l ( t : ( w ) - l , w ) ,  Z ( O , W ) , ' . '  

Z ( s X 4  - 1, U ) ,  x ' ( t : ( w ) ,  U ) , . . . ,  

X l ( t & J )  - 1, U), Z(s ' l (w) ,  U ) ,  . . ' , 
Z(s/Z(w) - 1, w), . . 'Xl( t ' , ( , ) - l , (w) ,  U ) ,  

X1( t&w)(w)  - 1, U ) ,  w;(w)-l(4, w ) ,  . . ' ,  
Z(SL(,)W - 1, w ) ,  x1(t;(u)(4, w ) , . . . ,  

X'(Tl(0,  w )  - 1, 4 , - . , x 1 ( & ( " ) + l ( 4  - 1, U ) ,  

Y(tY@k(w)+l(4 + sk(w)(w)), U ) ,  

y(ty(ti(w)+1(4 + s ; ( w ) ( 4  + 11, U ) , . . .  

where (by some abuse of notation) Z(0 ,  U ) ,  Z(1, U ) ,  

Z(2, w ) ,  . . . , Z ( s i ,  w ) ,  . . . , Z ( S & ~ )  - 1, U )  are an interleav- 
ing of reward sequences from machines X 2 ,  X 3 , . . . , X N  
(or a subset of these machines), Y(ty(t/,(,)+, + s ; ( ~ ) ) ,  U ) ,  

Y(tY(tk(u)+l + s;(,) + I), U ) ,  . . . represents an interleaving 
of reward sequences from machines X1, X 2 , . . . , X N  from 
time t&w)+l + s;(?) - 1 onwards, and TI  (0, w )  = ~,1 (0, w )  or 
rgl(O, w ) ,  depending on whether a switching cost is incurred 
at t = 0 or not. When the index for machine X1 is achieved 
between time instants th + sk and ti+, + sk - 1, then repeated 
application of Lemma 3.4 at times t',+sk-,, tk-l+s',-2,. . .ti 
proves that it is optimal to operate X 1  up until T,--(O) - 1 
(or T ~ ~ ( O )  - 1). When the index for machine X1 is achieved 
before ti we serve X 1  until ~ ~ l ( 0 )  - 1 (or rg l (0 )  - 1). At 
~ ~ l ( 0 )  [or 7-,1(0)] we are faced with the same problem as at 
time t = 0; thus it is optimal to serve the machine selected at 
~,--(0) (or ~,1(0)) until its index is achieved. 

Repetition of the above argument proves that along an 
optimal policy, decisions about the processor allocation need 
to be made only at F ( . )  stopping times that achieve a Gittins 

U 
As in the case of the two-armed deterministic bandit, The- 

orem 3.1 guarantees that the search for an optimal scheduling 
strategy can be reduced to the set of policies which possibly 
switch only at stopping times that achieve an appropriate 
index. Furthermore, by the counterexample following Theo- 
rem 2.1, the policy that operates machines according to the 
highest appropriate index is not necessarily optimal. Thus, 
determining an optimal allocation strategy for the multi-armed 
bandit problem with switching cost remains a difficult and 
challenging problem. However, there is at least one situation 
where an index policy is optimal. This is the case where along 
each sample path of positive probability the reward process 
associated with each machine is identically zero after a finite 
time (depending on the sample path) and the stopping time 
~ ~ ~ ( 0 )  is such that X Z ( t )  = 0 a s .  for all i E { 1, . . . , N }  and 

index or a switching cost index (as appropriate). 
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for all t such that t 2 ~ ~ ~ ( 0 )  a s .  In such a case, Theorem 3.1 
implies that the optimal policy is an exhaustive2 service policy. 
Then, a simple interchange argument shows that it is optimal 
to serve the machines in decreasing order of indexes. This 
situation includes the scheduling problem with switching cost 
studied in [3]. Indeed, we show that in this case the “switching 
cost index” defined by (3.3) is identical to the index defined 
in [3]. This is done as follows: The problem analyzed in [3] 
deals with the dynamic scheduling of parallel queues with 
switching cost and no arrivals. The reward index of queue i ,  
i = 1, 2, . . . , N (in discrete time) is defined (in [3]) as 

345 

U; = h,Si(l - Si)-’ - (1 - P)C(l - ST)-‘ (3.29) 

where 
h2 The instantaneous holding cost 

per customer for queue i ,  i = 
1 , 2 , . ’ . , N .  

s, = E{P“.(Q} 
a,(g), j = 1, . . . , q, The length of the j th service period 

in queue i ,  and service times of 
jobs in queue i are independent and 
identically distributed (i.i.d.). 
The initial length of queue i .  q 2  

C The switching cost. 
P The discount factor. 
In the context of this scheduling problem, we can interpret 

our results as follows: each bandit i is associated with a queue 
i of length q2 and instantaneous holding cost h,; rewards are 
obtained only at job completion epochs; the reward obtained 
from bandit z when a job is completed at time (t  - 1) in 
queue i is Pth,/(l - p). Consequently, according to (3.3), the 
“switching cost index” of bandit i is 

where 
12 

f2,k = ai($. 
j=1 

Since successive service times are i.i.d. 

Therefore 

C h,  s,(l-sf.) 
(3.31) - 1-p 1-s, 

l-SP% 
1-0 

U,, - 
2 

and by simplification we get 

U,., = h,S,(l - S,)-’ - (1 - P)C(l - S?)-’ (3.32) 

which is identical to (3.29). 

2By an exhaustive policy, we mean one that serves a machine until the 
machine’s reward sequence becomes identically zero. 

C. Calculation of the Indexes 

In this section we present a method for computing the 
switching indexes when each machine is described by a finite 
state Markov chain; the Gittins index for finite state Markovian 
bandits has been computed in [16, Section 41. 

Let z(s), s = 0, 1, 2 , . . .  be a Markov chain with state 
space 0 e { 1, 2, . . . , M }  and transition probability matrix 
P = {P,,}. Let R(i) be the reward when ~ ( t )  = i. Suppose 
the state is perfectly observed. Then, we have the standard 
machine { X ( s ) ,  F ( s ) }  where 

X ( s )  = R(lc(s)), F ( s )  = a{z(O), 2(1), 2 ( 2 ) ,  . ’ .  x ( s ) } .  

From (3.2) and (3.3) it follows that if ~ ( t )  = i ,  the Gittins 
and switching indexes are given by 

and 

v,.,(t) := max (3.34) 
T>t  E, { CL; P ‘ }  

respectively, where E , f  = E{ f  I ~ ( t )  = z }  and T ranges 
over all stopping times of {x(.)}. To calculate v,.,, a = 
1, 2 , . . . ,  M we proceed as follows: We construct a new 
Markov chain ?(s) ,  s = 0, 1, 2 , s . .  with state space 0 = 
(1, 2, . . . M ,  l’, 2’, . . . , M’} and transition probability matrix 
P = { P l k } ,  1, k E 6, given by 

P, ,=Px3  V 2 , 3 ~ { 1 , 2 , . . . , M }  
P 2 , , = 0  Q ~ E { ~ , ~ , ~ ~ ~ , M } , Q ~ ’ E { ~ ’ , ~ ’ , ~ ~ ~ , M ’ }  

P z t , s  = Pz3 V?’ E {l’, 2’, . . . ,MI} ,  v j  E {I, 2 , .  . . , M }  
P,tr3t = 0 Qz’, 3’ E {l’, 2’, . - . , M’}. (3.35) 

We take the reward 7i(.), associated with this chain, to be 

A ( j )  = R ( j )  Q] E (1, 2, ..., M } ,  
k(j’) = R(g) - C ‘dj’ E {l’, 2’ , . . . ,M’}  . (3.36) 

Then we have the standard machine { X ( s ) ,  p (  s ) }  where 

X ( s )  = A ( i ( s ) ) ,  @ ( s )  = a { i ( O ) ,  9(1), . . . , i ( s ) } .  

Using the algorithms presented in [16, Section 41, we compute 
the Gittins indexes .Cg,! ( t )  for the above machine. From (3.33) 
and (3.34) and the specification of the standard machine 
{ X ( s ) ,  P ( s ) } ,  it follows directly that 

f ig&) =us&) Q j  E (1, 2 ; . . , M }  
C g 3 , ( t )  =ucs ( t )  QJ’E {U, 2 ’ , 7 M ’ } .  (3.37) 

To determine the stopping time that achieves the switching 
index, we define for each state 3’ E { l’, 2’, . . . , M’} a stop- 
ping set e0,.(j’) c 0 and its complementary (with respect to 
0) continuation set 01,.(~’). The set Ooc(j’)Ahas the following 
interpretation: if the standard machine { X ( s ) ,  k(s)} is in 
state 3’ when its operation begins, it is operated until the first 
moment its state enters O o c ( ~ ’ ) .  Then, from (3.37) and a result 
of Gittins [13, p. 1541, we obtain the following. 
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Lemma 3.5: The maximum in (3.34) is obtained by setting 

Ooc( j ’ )  = {i E 0 :  U + ( . )  < f i g ? ) ( . ) } .  

Iv. EXTENSIONS TO MULTI-ARMED 
BANDITS WITH SWITCHING COST 

In this section, we briefly discuss three possible extensions 

i) a bandit problem with a single-server and machine- 
dependent switching cost (i.e., the setup cost for a 
particular machine depends on that machine); 

ii) multi-armed bandits with multiple servers and switching 
cost; and 

iii) multi-armed bandits with switching delays. 
We find that optimal scheduling policies for the first and 

third problems have the qualitative properties described by 
Theorem 3.1. On the contrary, the optimal scheduling policy 
for the second problem does not, in general, have the qualita- 
tive properties described by the above-mentioned theorem. 

of the problem presented in Section 111: 

A. Machine Dependent Switching Cost 

Let the setup cost for machine X z  be denoted by C,, 
i E { 1, . . . , N } .  The bandit problem with machine dependent 
switching cost is to find the policy n that maximizes 

The “switching cost index” is defined as 

E{ P z X z ( l )  - 1 F z ( t ) }  
vcc(t) := max (4.2) 

T > t  

where, as before, the maximization is over all stopping times 

The basic results of Sections I1 and I11 (Theorems 2.1 and 
3.1) remain valid for the machine-dependent switching-cost 
problem with the switching index defined as above. The proofs 
of the counterparts of Theorems 2.1 and 3.1 are omitted 
because they are based on the same arguments as the case 
of machine-independent switching cost. The counterparts of 
the sufficient conditions of Lemmas 2.6-2.8 [(2.27), (2.32), 
(2.36)] are 

T ( t  < 7 5 m) of {FZ(.)}. 

respectively. Lemmas 2.9-2.11 remain valid too with their 
conditions modified appropriately. 

B. Multiple Sewers with Switching Cost 

Another important extension is that of multiple servers at- 
tending the N-projects. Multiserver problems are considerably 
more difficult to analyze than single-server ones, and many of 
the structure of single-server problems is lost when one con- 
siders their multiserver counterparts. The qualitative properties 
of the optimal strategies of single-server bandits developed in 
Sections I1 and I11 no longer hold for the multiserver, multi- 
armed bandit problem with switching cost, as the following 
counterexample illustrates. 

Counterexample: Consider two servers 1, 2 and three 
machines X ,  Y, and 2. Machines X and Y are identi- 
cal. The reward sequences for machines X, and 2 are 
15, 15, 15, 15, 15, 16, 0, 0;.. and 8, 8, 8, 8, 8, 8, 8, 8, 9, 
0. 0, .  . . , respectively. Let p = 0.9 and C = 1. At t = 0, 
either a switching cost is incurred for all machines or no 
switching cost is incurred. Note that in this case both the 
switching and the Gittins indexes are achieved at the last time 
instant before the reward becomes zero. Then, according to 
Theorem 3.1, the optimal policy for the single-server problem 
with switching cost is an exhaustive policy. For the two-server 
problem the following two exhaustive policies are possible: 

i) At t = 0, start with machines X and Y and serve them 
until t = 5, i.e., until their reward becomes zero; from 
t = 6 until t = 14, serve machine Z with one of the two 
servers. Call this policy T A .  

ii) At t = 0 start with machines X and 2. At t = 6, i.e., 
when the reward from machine X is zero, switch the 
server of machine X to machine Y (and continue with 
the other server at 2). Serve machines 2 and Y until 
their reward becomes zero. Call this policy 71-B. 

Note that any other possible exhaustive policy will be 
equivalent to TA or T B  in terms of total discounted reward 
incurred. Now, construct the following policy called nc: Begin 
by serving machines X and Y at t = 0. At t = 3 continue the 
operation of machine X at one server and switch the second 
server to machine 2. At t = 6, switch the server for machine 
X to machine Y and serve Y until its reward becomes zero. 
Simple calculations show that V(TC)-V(TA) = 0.87 > 0 and 
V(71-c) - V ( T B )  = 10.84 > 0; hence, operating the machines 
until appropriate indexes are achieved is not optimal in the 

The above result is not surprising because it is known 
[7] that even in multi-armed bandit problems with multiple 
servers and no switching cost, the Gittins index strategy is 
not optimal. One of the important factors in determining 
optimal schedules in multiple-server problems is efficient 
server-utilization, and this issue destroys the optimality of 

case of multiple servers. 0 
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the policies described by Theorems 2.1 and 3.1 as one can 
see from the above counterexample. This counterexample 
illustrates the difficulties encountered even in the case of 
deterministic projects, machine-independent switching cost, 
and two servers. 

C. The Multi-Armed Bandits with Switching Delay 

of switching cost, 
we also address the caSe of switching delay which we deem to 
be at least as important. ne multi-armed bandit problem with 
switching delay is the Same as the problem with switching 

switching cost) is incurted when the server moves from one 
project to another and rewards are nonnegative. No reward 
is incurred during the switching interval. we that the 
delay D is a nonnegative integer random variable with a given 
distribution such that < < oo and is independent 
of machine dynamics. The multi-amed bandit problem with 
switching delay is to find a policy 7r that maximizes 

rate obtained from the operation of X during this allocation; 
hence X must be operated on until the appropriate index is 
achieved, and at that point the next processor allocation should 
be decided. 

The above feature of optimal policies, together with the 
sufficient conditions of Lemmas 2.6-2.11 simplify the search 
for optimal allocation strategies. The conditions of Lemmas 
2.6-2.11 are derived by looking one or two branches ahead in 
the decision tree that results after using the property of optimal 
allocation strategies expressed by Theorem 2.1. Additional 
conditions that may result in further simplification of the 

or more branches ahead in the aforementioned tree. 
We have identified one class of problems (parallel queues 

with switching penalties and no arrivals) where the qualitative 
Properties of optimal Policies described by Theorem 3. I are 
sufficient to determine an optimal allocation strategy. In gen- 
eral, determination of optimal allocation strategies remains a 
difficult and challenging task. 

Although we have emphasized the 

cost, except that a switching (setup) delay D (instead of a search for an Optima’ Policy be derived by looking three 
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As in the case of switching cost, the Gittins index rule is 
not optimal for the problem with switching delay. However, 
a result similar to that of Theorem 3.1 is true. Define the 
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