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We consider multi-armed bandit problems with switching cost and multiple plays, define “uniformly
good™ allocation rules and restrict altention to such rules. We consider i.i.d. as well as Markovian
rewards. We present a lower bound on the asymptotic performance of “uniformly good™ allocation
rules and construct an allocation scheme that achieves the bound. We discover that despite the
inclusion of a switching cost the proposed allocation scheme achieves the same asymptotic performance
as the optimal rules for the bandit problem without switching cost. This is made possible by grouping
together the samples in a fashion that makes the rate of switching negligible compared to the rate of
experimentation.
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. 1. INTRODUCTION

In this paper we consider a version of the multi-armed bandit problem with
multiple plays and with switching cost. There are p=2 arms and at each stage we
have to play a fixed number, m, of these arms, and collect rewards from each of
them. Successive plays of an arm Jhi=1,...,p, yield rewards X;, X;,,... whose
distribution (either i.i.d. or Markovian) is parametrized by an unknown parameter
U; belonging to a known parameter space ®. Moreover, each time we decide to
play a different set of m arms we incur a switching cost proportional to the
number of arms that are different from the previous play. The problem then is
how (o select these m arms at each stage so as to maximize, in some sense, the
long run sum of rewards minus the switching cost.

The set up of the problem in this paper is similar to the one addressed by Lai
and Robbins [1,2]. Anantharam et al. [3] have considered a version of this
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438 R. AGRAWAL ET AL.

problem with multiple plays but without switching cost. Agrawal et al. [4] have
provided a solution to the multi-armed bandit problem with switching cost but
with single plays. In this paper we consider the more general set up where we have
both multiple plays and a switching cost. Even though the adaptive allocation
scheme we propose combines the essential ideas behind the strategies in [3,4], the
calculation of the performance of the proposed adaptive scheme (Theorem 4.1) is
highly non-trivial and does not follow easily from the technical results in [3,4].

The paper is organized as follows: In Section 2 we provide a precise problem
formulation. We consider two cases for the distribution of rewards obtained from
the successive plays of any arm: Case A-iid., and Case B-Markovian. In Section
3 we present a lower bound on the total regret, and in Section 4 we construct
allocation rules which achieve this lower bound.

2. PROBLEM FORMULATION

Let there be p arms. Successive plays of arm j, j=12,...,p yields rewards X,
X;2.... whose joint distribution is parametrized by an unknown parameter 0;
belonging to a known parameter space ©. An adaptive allocation rule ¢ consists
of a sequence of {0,1}” valued random vectors {¢,}>., indicating which m,
{1=m<p), of p arms have been selected for play at stage n on the basis of all the
past actions and past observations, i.e. ¢, is a function of only the past actions
¢ir..., ¢, and the past rewards X;,,...,X;r,_,gp j=1,...,p, where

T.(j)= ‘Zx $:(J) ~ @n

is the number of times arm j was used up to stage n. Let Z,(j) denote the
o-algebra generated by X;,,..., X, let F()=\,ZA) and G(j)=V/i,; Fi).
For an adaptive allocation rule ¢, the number of plays we have made of arm j by
time n, T,( ), is a stopping time with respect to {F,(j) v G(j),t=1}. Let

P Tuld)

Jn:= Z Z Xﬂ (2.2)

i=1 =1

be the sum of rewards collected up to stage n. Also let

a1
Sai= Z d(dis i) (2.3)

i=1

be the total number of switches up to stage n where

d(dis iv )= 1/21§| Hoi(j)#dis (N}
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is the number of switches at stage i. Our objective (in choosing an adaptive
allocation scheme ¢) is to maximize in some sense E4(J,—CS,) where C>0is a
fixed switching cost, and 8:=(0,,...,0,) is the parameter configuration. We shall
make this notion of optimality more precise shortly. Before doing so we would like
to describe, in detail, the two cases for the distribution of the rewards obtained
from each arm, that we shall address in this paper.

CASE A: (LLD. rewards)
The successive plays of each arm j, j=1,2,...,p yield iid. rewards X;,,X;,,...
with a common marginal density f(x;0;) with respect to some measure v, where

S(+;+) is known and the 0;s are unknown parameters belonging to some set ©.
Assume that

| Xl f(x;0)dv(x)< oo forall 8e®.

Define

- al

u(0):= | xf(x; 0 dv(x), (2.4)

bl o}

the mean reward under the parameter 6, and
10, 4):= _I [log(f(x;0)/ f(x; 1)1 f(x; 0) dv(x), (2.5)

the Kulback-Leibler number, a well known measure of distance between
distributions.
CASE B: (Markovian rewards)

The successive plays of each arm j,j=1,...,p yield Markovian rewards
X;1,Xj2,... with a stationary transition probability

P(0)):={P(x,y,0)): x,ye X}, (2.6)
and initial probability distribution
p0,):={p(x;0): xe X}, 2.7

where Z<R is a finite set of rewards and 6,’s are unknown parameters belonging
to some set ©. Assume that for
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x,yed,0,0e®,P(x,y,0)>0=P(x,y;0)>0, (2.8)
P(0) is irreducible and aperiodic for all 0e ® and
p(x,0)>0 forall xeZ and 0eO. (2.9)

Let n(0):={n(x;0):xeX} be the invariant probability distribution under the
parameter ), and let

()= Y xn(x;0)

xed

be the mean reward under this distribution n(8). Define the Kulback-Leibler
number

10.4)= Y 1(x,0) ¥ P(x,y:0)log 2022:0)

. 2.10)
xed yea P(.’C, ys )') (

Note that, by (2.8)
0<I(0,))<w for O#A.

Note that we used the notation u(0) and /(0,1) to stand for the mean reward
and the Kulback-Leibler number respectively under both Case A and Case B.
This is an abuse of notation as u(#) and I(6, 1) have different definitions in the two
cases. For the sake of convenience any unqualified statements using the above

terms will be taken to hold for both cases.
Under the above two cases we can make the following observations.

la) For the i.id. case, by Wald’s Lemma (cf. [6])

P
EyJ,= Z #(oj)EaTn(j)- (2.11a)
j=1

1b) For the Markovian case, by (2.9) of [3]
Ld
|EgJa— Y. (0;) EqT,(j)| S const. (independent of n). (2.11b)
i=i

Let 6 be a permutation of {1,..., p} such that

/‘(Ua( N2 2 #(0.1(".)) g#(()a(nﬁ- n) 22 I‘(oa(p))

and call o¢(1),...,0(m) the m-best arms. Clearly, if the parameter configuration
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were known, then the optimal strategy would be to always use the m-best arms. If
this were true then

2a) EyJ,=n) n0,;) fortheiid. case. (2.12a)
j=1

J

m

2b) EyJ,—n Y p(0,;) S const. (indep. of n) for the Markovian case.  (2.12b)
ji=1

j=

In the absence of the knowledge of 0 it is desirable to approach this
performance as closely as possible. For this purpose we define

a) the “sampling regret”

AR;,(O)::::J.; u(0,)—EgJ,. (2.13)
b) the “switching regret™
SW,(0):=CE,S,, (2.14)
and
¢) the “total regret™
R (0):=R,(0)+SW,(0). (2.15)

Maximizing Ey(J,—CS,) is thus equivalent to minimizing the “total regret”
R,(0). More precisely we want to minimize the rate at which R, () increases with
n (lincar, logarithmic, finite etc.). Note that it is impossible to do this uniformly
over all parameter configurations 0. We call a rule “uniformly good” if for every
paramcter configuration @

R,(8)=o0(n") for every a>0. (2.16)

Such rules do not allow the total regret to increase very rapidly for any 8. We
restrict our attention to the class of uniformly good schemes, and consider any
others uninteresting.

The main results of the paper, appearing in Section 3 and 4, are derived under
the following technical assumptions:

Al 0<I(0,4) < oo whenever u(i)> pu(9).
A2 For every £>0 and 0,Ae® such that u(1)2u(8), there exists >0, such that

|10, 2) = 100, 2)| <& if |u(A) — p(4")] < 0.
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A3 Vie® and V6>0,31 € © such that p(d) <p(d)<u(l)+4.
A4 The parameter configuration 8 is such that u(8,,,) > (0, (m+1))-

Assumption Al is trivially satisfied for Case B. For Case A the assumption
1{0, 2)>0 is automatically satisfied whenever p(1)> pu(8). The condition 1(8,4) < o0
implies that the distribution of the samples under the parameter 8 is absolutely
continuous with respect to the distribution of the samples under any parameter 1
such that p(A)>pu(0). Such a condition can be expexted to be satisfied for most
parametric families of distributions which are mutually absolutely continuous.
Assumption A2 is a continuity condition on I(6,24) for fixed 8 and pu(d)=pu(9).
Assumption A3 is a denseness condition on the space ©. Assumption A2-A3J are
nceded to obtain the lower bound on the total regret. Assumption A4 implies that
there is a unique set of m-best arms amongst all of the p arms. This assumption is
essential in obtaining the upper bound on the total regret.

3. A LOWER BOUND FOR THE TOTAL REGRET
In this section we note the extension of the lower bound obtained by Anantharam
et al. [3] to our problem. We state this in the form of Theorem 3.1.

THeOREM 3.1 Assume that Al-A3 hold. Let ¢ be any uniformly good allocation
rule, i.e. ¢ satisfies (2.16). Then for any inferior arm j, i.e., (6;) < p(0, ),

liminf E, T, (j)/log n 2 1/1(8;, 0, m), (3.1)
and consequently
liminf R,(0)/logn 2 Y (6om) = 1(6,)) (3.2
n—w jefam+1),..., a(p)t I(BJ’ ga(m))

Proof  Follows from Theorem 3.1 of Anantharam et al. [3]. O

We shall call rules that attain the above lower bound asymptotically efficient,
ie.,

Rn(o)“'(‘ z (u(ga(m)_ﬂ(g ))) logn. (33)
jeta(m+1)...., a(p)} 1(0,]’ 0¢(m))

4, CONSTRUCTION OF ASYMPTOTICALLY EFFICIENT RULES

In the first part of Section 4.1 we motivate the idea of “block allocation” and then
introduce a specific “block allocation scheme”. In this scheme we employ upper
confidence bounds and point estimates that are constructed in Section 4.2. Finally,
in Section 4.3 we derive an upper bound on the total regret of our allocation
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scheme. This bound is asymptotically equal to the lower bound of Theorem 3.1.
Conscquently, the proposed allocation scheme is asymptotically efficient.

4.1 Block Allocation Scheme

In view of Theorem 3.1, if ¢ is an asymptotically elficient rule, then the number
of times that ¢ plays any inferior arm j up to stage n is about (logn)/I(0;,0,,.,).
With no knowledge of the time instants at which the plays are made from the
inferior arms, all we can infer about the contribution from arm j to the switching
regret up to stage n is that it is at most about (2logn)/1(0;,0,,). (The largest
contribution to the switching cost occurs when every play of arm j involves
switching to and from it.) Clearly any asymptotically efficient rule must ensure
that the plays of any arm are grouped together in blocks in such a fashion that the
contribution to the switching cost is much smaller than the above upper bound, in
fact o(log n). Furthermore, the block lengths must increase with n.

With this idea in mind we construct a “block allocation scheme” in two steps:
We first determine, a priori, intervals of time, and over each interval we use the
same arms. Then, at the beginning of each interval we adaptively decide which
arms to use. The intervals are chosen so that if we ensure the expected numbers of
plays of each inferior arm is O(logn), the expected number of switches is
automatically controlled to o(logn).

Step I To facilitate analysis time is first divided into “frames” numbered
0,1,2,.... Each frame [ is further subdivided into “blocks” numbered 1,2,3,.... All
“the blocks in a frame are of equal length. Each such block can thus be uniquely
identified by (f,i) where f is the frame number to which it belongs, and i is the
block number.

Furthermore, let
N, denote the time instant at the end of frame f,
b, denote the block length of each block in frame f,

k, denote the number of blocks in frame f.

We choose the block lengths and frame lengths (N ,— N, _,) as follows:

Frame #(f) b, N—N,_,
0 1 P

P _gur-1p
o P

(4.1)

We use [x] to denote the smallest integer =x, and [x] to denote the greatest
integer < x. Such a block allocation scheme is illustrated in Figure 1 for p=4.

We now derive lower and upper bounds for N, the time instants at the end of
frame f. These bounds will be used extensively in subsequent analysis.
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Figure I “Block allocation scheme” for p=4.

S 2:'2__2(.‘-1)1 .
Ne=Y [———* ] ]p.z.+p

1

/ 2 _yli-1)?
2y <%f~-~2;——~> pi+p

=p2/°, 4.2)

i
-

I il__z(i—l)’
N,gZ(— i —+1>p.i.+p
i=1

<p2 4 pf 4.3)

Therefore, Ny~ p2/*, and log N~ f2. On the other hand, the block lengths b,=/.

Step 2 To start up the allocation scheme, in frame 0 use each arm m-times.
From then on proceed as follows: The beginning of each block (f,i) is a
“comparison instant”, n(f,i)(=N,_, +(i— 1)b,); at that time decide when arms to
play. Play the chosen arms for the entire block (f, i), i.e. b, times. To decide which
. arms to usc at each comparison instant n we employ point estimates f,(j), and
upper confidence bounds U,(j) for u(0;), the mean reward under each arm J-
These are constructed in Section 4.2.

Choose 0<d < 1/p. Call the arms which have been used at least 6n times (up to
stage n) “well sampled”. Note that at least m of the p arms have to be well
sampled. Among these well sampled arms choose the “m-leaders” at comparison
instant n(f,i), namely the arms with m best values of the point estimate 2,0,
j=1...,p.

Consider for experimentation each of the p arms in a round-robin fashion. For
this purpose associate each block i with arm j such that j=imod p, and compute
the upper confidence bound U () of this arm j at comparison instant n(f,i). Now
use the following rules to decide which arms to play at the comparison instant

n(f,i).
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a) Il arm j is already one of the m-leaders then at comparison instant n(f,i)
choose to play the m-leaders.

b) Il arm j is not among the m-leaders and U,(j) is less than fi,(k) for every
m-lcader k, then again play the m-leaders.

¢) If arm j is not among the m-leaders, and U,( ) exceeds or equals fi,(k) of the
lcast best of the m-leaders, then play the m— 1 best of m-leaders and arm J-

Note that in any case the m— 1 best of the m-leaders always get played.

Remark  The proposed allocation strategy is obtained by imposing the “block
structure™ (Step 1) of [4] on the adaptive allocation scheme of [3].

4.2 Construction of Upper Confidence Bounds and Point Estimates

To fix ideas, let Y,,Y,,..., be a sequence of random variables (under either Case A
(i.i.d)) or Case B (Markovian)) whose distribution is parametrized by an unknown
parameter ) belonging to a known parameter space ©. Let

it R-R(n=1,2,...;i=1,2,...,n)

be Borel functions such that for every 0e©®

PyigalYis o, Y)Zu(0) forall iSn}=1-0(n""), (4.4)
imsup [E,[sup{1 SIS nlgnl Vioeo D ZHONoR ] S (49
whenever p(4) > u(0), and
i 1s nondecreasing in n>i for every fixed i=12,.... (4.6)
Let h;: R*>R be Borel functions such that for every 0e®
P,,{ max |h(Y,,..., Y,.)——,u((f)]>s}=o(n“). 4.7
onsisna

We now make use of the functions g,; and h; to define our upper confidence
bounds and point estimates respectively. Let Y;i,..., Yir.;» be the successive
rewards obtained from arm j up to stage n. Then at each comparison instant
n(f,i) the upper conlidence bound U (j) and the point estimate a,(Jj) for u(8)), the
mean reward under arm j, are given by

U.(j) =gnT.,(j)( an revy er.m)y
(4.8)

Al )=hr () (Yiiso s Yirng)
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for cach je!l,...,p}. Denote by ¢* the allocation rule constructed in Section 4.1
and 4.2,

For a heuristic cxplanation of the upper confidence bounds and point estimates
constructed above, as well as for their explicit form under a special class of
distributions, see [1,3,4,5,7].

4.3 Upper Bound on the Total Regret
TuroreMm 4.1 Assume that the arms have been reindexed and 120 so that

102 2p(0)>p(0, )= =p(0,)> - Zp(0,).

Under the block allocation rule ¢*, for all @ satisfying A4.

E, T,(j)= <1(071,(ﬂ) + of l)) logn for every j>m, (4.9)
EJn—T,(j)=o(logn) forevery j<l, (4.10)
SW,(8) £o(logn), (4.11)
and consequently,
P N
limsup R,(0)/lognS Y. (#(0)—p(0,)/1(65,0,). (412)
n—x j=m+1

Proof Throughout the proof let # A denote the number of elements of a set
A. Also fix £>0 satisfying

e<&0'):iM if 10

and

g <H0m) =10 s 1)
2

We now proceed to prove each part of Theorem 4.1.

Proof of (4.9) We shall first prove (i) for n=N,, the end of frame /, i.e. we shall
show that -

. 1
EgTy,(J) §<m+0(l)> log N,.
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For any fixed j>m, we have

i
TN'U’;—on b [ #{1Sigk,: ¢* selects arm j at comparison instant n(f,i)}]
i
=m+ b, [ #{1Zi<k,:¢* selects arm j at comparison instant n{Jf, i), all
r=1
the m-leaders at comparison instant n(f, i) are also the m-
best arms, and for each arm k which is an m-leader,

it (k) — (0| €)1

[}

+ Z b [ #{15i<k,:¢* selects arm j at comparison instant n(f,i), all the
=1

m-leaders at comparison instant n(f, i) are also the m-best
arms, and for at least one arm k which is an m-leader
|ia(k) — (0| > £}]

!
+ Y b [ #{1Zi<k;:¢* selects arm j at comparison instant n(f,i), and at
=1
least one of the m-leaders is not an m-best arm at comparison

instant n(f,i)}]

i
Sm+ ) b[#{1 Sigk s ¢* selects arm j at comparison instant n(/, i), -

r=1
Un(j)21(0,,) —¢}]
m !
+ 2 Y byl #{1Sigkparm k is well sampled and |1, (k) — p(8,)] > ¢}]

k=1 f=1

i

+ ) b;[ #{1Si<k,at least one of the m-leaders at comparison instant
S=1
n(f,i) is not an m-best arm}]

=m+Term 1(g) + Term 2(¢) + Term 3 (say).

Claim I For any p>0 there exists £>0 such that

Ey[Term 1(g)] = (T(TTHJ +p +o(1)) log N,.

Claim 2 Eg[Term 2(e)] < o(1)log N,.

Claim 3 E,[Term 3]<o(1)logN,.
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Proof of Claim 1

!
Term (e ): by[ #{1SiZk,:¢p* selects arm j at the comparison instant n(Jf, i),
=1

Ui )2 u(0,) —¢]]

Il/\

1
= b [ # {1 £i<k,:¢* selects arm j at the comparison instant
s t = J p:
s=1

(j ’) gnT,.U)( Jlreees Yan(i))glu(()m)—E}]

H/\

!
<Y b l# i< ks * selects arm j at the comparison instant
S=1

n( f,i), gN,T..(j)(lev“'vYjT..(j))_Z_.u(Bm)—E}]
Ssu P lé éngNn( FIS AR jl)>}l(0 )—8}+bl‘

Then, by (4.1) and (4.2)

E,JT I« 2

e S By Lsup (1 STS MgV, V)2 0.) ) iog Ny 10g(p2"),
i

Hence by (4.5) and A2

Ey[Term 1(g)] < ]
log N, ~1(0;9,)

limsup +p.

1=
Proof of Cluim 2

m {
Term 2(e)= 3 ¥ b [ #{1Si<k :arm k is well sampled and i1, (k) — u(6,)| > £}]
k=1 f=1
m 1 kr
L2 by Y max (V... V) —u(0)|>¢).
k=1 /=1  i=

i=1 ngtsn

II/\

. E, [Term 2g)] < Z Z b, Z Py { max |h(Yy,,..., Vi) = p(0,)] > &)

k=1 f=1 i= dngesSa

m 1 kg
=) ¥ by Yoln7') by

i=1 f=1 i=1

! oo
= b
0(@ Ny i))

=o(log N)). (by appendix R,).
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Proof of Claim 3

i
Term 3= ) b,[ #{1<igk,at least one of the m-leaders is not an m-best arm at
S=1
comparison instant n(f,i)}].

The steps of the proof of Claim 3 are summarized in the form of Lemma 4.1
below.

Lemma 4.1 Assume all the notation of Theorem 4.1. Let ¢ be a positive integer such
that ¢ >(1-pd)~ 1.
For r=0,1,...define
Ar= n { max lhn(yjh-“) an)—#(g_;)|§s}

12jsp 6~ Tgngert?

B,= ( {gulYju,... Y)Zp(B)—¢ for 1<igdnand ™ 'gngett)

jsm

where 0 <d < 1/p is the same as that used in ¢*.

Then

i) Py(A7)=0(c™"), Py(B;)=o0(c™").

it) On A, B,, at comparison instant n(f,i) where k=imodp for some k<m (k is
an m-best arm) and ¢~ ' <n(f,i)Sc"t! the rule ¢* plays k, and if r>r, (sufficiently
large) then all the m-best arms' are well sampled at any comparison instant
CEn(fise,

i) If rzry (sufficiently large), then on the event A, B,, for every ¢ <n<c™*!,
the m-leaders are the m-best arms.

iv) Eg[Term 3] =o0(log N)).
Proof of Lemma 4.1
I) A:= U { max . Ihn(yjlv-'a Y_]n)'-#(ej)|>6}

15jsp s lsnset

P
CPHAYS Y Pl max (Y., Vi) —p(8)]>6)
i=1 r-lgngert!

=po(c™*1) by (4.7)
=o(c™").

Let g be the smallest positive integer such that [¢~!/89]=c*!. For
t=0,...,q let n,=[c"~1/6'] and define

Dl= n {gn.i(th--'v in)g“(oj)_EVl§nl}
jsm
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Then by (4.4)

PyDO)=o0(n"Y)=o((c ") " Y=o(c™") for t=0,...,q. (4.13)
Given ¢""'snge*! and 1 5i<0n, there exists te{0,...,q—1} such lﬁat e 2

nzn,2i(See appendix R2).
Therefore by (4.6) on the event [)o<,<, D,

gni(th---, in)ggn.i(yjh---; in)g”(gj)_g Vjgm.
It then follows that

B,> () D.

0srsq

Therefore by (4.13) it follows that

9
Py(B;) < 3. Po(DY)

=0
=(g+Do(c™)
=o0(c™") by appendix R3.

i) Clearly if k is an m-leader then ¢* plays k. If k is not an m-leader then for the
worst of the m-leaders, say j,, since T,(j,)2dn,

ﬁn(jn)émax #(Hj)-*-g (On Ar)

j>m
<u(8,)—¢ (by choice of ¢)
Now in case T,(k)=dn we have on 4,

w0,)—eSu(0,) —e=< hT,.(k)( Yitreoos Viramy)

Hence k should be an m-leader which gives a contradiction.
In case T,(k)<dn we have on B,

u(l,)—esu(0,)—e¢ S8ataw (Yats- -5 Yaroiy)-

Hence ¢* will play arm k.

Thus for all comparison instants n(f,i) such that ¢~ '<n(f,i)S¢*! and k=i
mod p for some k<m, ¢* chooses k on A,~ B,. Then for all c<nZc !, and
r2rg (sufficiently large) on the event 4, N B,, for any k<m
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T2 (n=e ! =2pb(e ")
where b(c"*!') is the block length of the frame f(r) such that N, Sc"* ' <Ny,
By appendix R4 then, :
T, (k)= on

Thus k is well-sampled.
iliy Now for all c"Sn<c™*?, and rr, (sufficiently large), on the event 4, " B,
max {{1,(/): T,(j) 2 on, j>m}

Smaxp(0)+c  (by 4,)

j>m
<u(0,)—c¢ (by choice of ¢)
£a0,) forall k=m (by A4, and (ii)).
Thus the m-leaders are the m-best arms.
iv) Note that from (iii) it follows that, for r=ro and " Snsc™ !
{at least one of the m-leaders is not an
m-best arm at comparison instant n(f,i)} (4, N B,) = A] v B;.
Thus, by (iii) it follows that

! ks
E[Term 3]= Y b, Y. Py{at least one of the m-leaders is not an m-best arm at
=i i=1
comparison instant n(f,i)}

i ky

§IZ by Y (Po(A7)+ Py(B7)) + ¢+ b(c™)
=1 i=g
1 ky
<Y b, Y olcT)+c0+b(c)
J=1 i=1
So(logN)) by appendix RS.

This concludes the proof of Lemma 4.1 and Claim 3.
Thus, by Claims 1, 2 and 3,
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EaTN.(j>g(;(—0j—f0—m—)+ou))log N..

Now we extend this result for any arbitrary n. Let [ be such that N,_, <n<N,.
Clearly, '

EOTn(.’) < Eo[TN:(.’)]
logn = logN,_,

R log(p2"” + p1?)
<1(0,-, m*”‘”) log(p27~ 1)

1
—(1’(’9;:0;3“’“’)'

This completes the proof of (4.9).

A

Proof of (4.10) This proof is very similar to the proof of Claim 3 and is based
on Lemma 4.1. From Lemma 4.1(iii) we know that all the m-leaders are the m-best
arms at any comparison instant n(f,i) such that ¢ <n(f,i)<c"*! for some r2r,
(sufficiently large) on the event 4, N B,.

Thus since all the m-leaders are well sampled, if follows, on A,, that the point
estimates of all the m-best arms lie within ¢ of their true means. So by the choice
of ¢ we know that under these conditions all the arms k<! are among the m-
leaders and none of them is least best of the m-leaders, hence they will be played.
Conscquently at the end of frame L.

1 kg
EoN\=Ty,(j))=p—m+ Z b, Z Pg{arm j is not used at comparison instant
r=1 i=1
n(f, i)}
1 ks

Sp—m+ Y by Y (PolA])+ Po(Bf) +c+b(c™)
=1 i=1

! ks

Sp—m+ Y. by Y o(cT)+0+b()
r= i<

1
ZoflogN)) by appendix RS.

The result for general n follows just like as in the proof of (4.9).

Proof of (4.11) Let ¢e{0,1}? with exactly m I's i.e. a vector representing a
combination of m arms that have been selected for play. Let
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ntl

S.88= 3 1bi=b.b101 %)
and
Tk 3 100i=
Let ! be such that N,_, <n<N,. Then,

!
SAHSTu(0)+ X, N

! -1

s 3 T85! Tyt

_Tuld) 'y Z T~,(¢>[f - 1]

UGS 1
= Nl +;§1 TN,(¢)[73]-

Let ¢* be such that

d*()=0,j=m+1,...,p
Then, for ¢ #¢*, ¢(j)=1 for some j=m+1,...,p. Thus,
TP =T())

with the above found j.
By (4.9),

limsup l’og"'“)<1/1(9,, 0,).

- >

Therefore, for any given £¢>0 3 f, such that V f > f,

EeTnld) < 1/16,,0,)+e.
log N,

Hence, by (4.3)

453
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Ey Ty, (j) S(1/1(0;,0.,) + ) log(p2" + pf?)

<K(e)ft  for some K(g).

Thus, for n> N,

E Ty, (J) EoTy,(J)
EofSa(d)) =— ==+ Z

FerR &
K(e z K(e)+ Zx EGTN((])
I=Jo =1
S K(e)2l+ M(e)

-1
where M(g) = Z Eiﬂ#)
= J

Consequently,

EoS,(9) o EoSa(¢)  K(£)21+ M(e)

=< =< =o(1).
logn TlogN,_.,~ (-1)? o()

Under A4 we have from (2.14) and (2.3)

SW.(0) = mC[ 2. ES,(¢)+ ES..(¢“‘)]

Sret

§mC[2 Y ES,(¢)+ 1]

T
=o(log n).

This proves (4.11).
Proof of (4.12) By (2.13) we have

m p
R, (0)= "jzl #(01) —]Zl ﬂ(ej)EoTu(f)

P P
= Y wO)ET,()— Y HOYET,())

ji=m+1 jm=m+1
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m P
+.Zlu(0,~)Ea(n—T,.(j))— Y. HO)ET(j)
ji=

J=m+1

= Y (u(0,)—HONET,())

J=m+1

+ 3 (u(0;) — p(0,)) Eg(n—~ T, (/)
j=1

1

= Y (w0, —p0))ET,())

j=m+1

1
+ 2 ((0;)~ 1(0,0)) Eoln— T, ().

j=1

By (4.9) and (4.10) it then follows that,

R.(0) =[ Y ((0,)— p(0,)/1(0;,6,,) + of 1)] log n. (4.14)

Jj=m+t

Hence, (4.12) follows from (2.15), (4.14) and (4.11). O
In view of Theorems 3.1 and 4.1 the block allocation scheme ¢* that we
propose in this section is asymptotically efficient, i.e.

R,(0)~[ 5 (u(a,(m,)—u(ej))/l(e,-,6,(m,)]logn.

Jjelaim+1),..., a{p)}

Thus, despite the imposition of a switching cost we are able to recapture the
same asymptotically optimal performance as Anantharam et al. (cf. [3]) achieve in
the non-switching cost case. The block allocation scheme proposed in this section
is crucial in achieving this performance. By grouping together samples from each
inferior population in blocks, we manage to maintain the number of samples from
each inferior population at about logn/I(6;,0,,,) and to limit the number of
switches to o(logn).

5. CONCLUSIONS

Despite the inclusion of a switching cost, our allocation scheme achieves the same
asymptotic performance as the optimal solutions for the case without switching
cost. This is made possible by grouping together samples into blocks of increasing
sizes, thereby reducing the number of switches to o(log n).
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Notice that the block length and frame lengths are prescribed in advance and
not generated adaptively from the data. With our block scheme if we can ensure
that the number of samples from an inferior population is O(logn) then we
automatically control the number of switches to o(logn). It is worthwhile to point
out that the “block structure” we employ in our adaptive allocation scheme is the
same as that of [4]. However, the adaptive scheme of [4], based only on upper
confidence bounds, does not work in the case of multiple plays. More specifically,
we need to prove part (i) of Theorem 4.1, and for this purpose we need to employ
point estimates.

Although in our problem formulation we consider a fixed switching cost, we can
equally well handle switching costs which vary with time and with the pair of
populations between which switching occurs, provided the switching cost is
bounded.

Assumption A4 is essential to obtain asymptotic efficiency. If we do not have
unique m-best populations, then the number of switches among the m-best
populations can be arbitrarily large.
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APPENDIX

i ky 1

Rl: Z bf .';x n(f,i)

r=1
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i ky I
— f e
jgl i; n(f,i)
_,,1~+AA_,,1,~,_+---+, ] +-!_+._l_+ 1 + 1 +...
N, N ¥1 N—1 N, N,"N,+2 N, 32
1 1 1 I
L e IS .
N2_2+N2"’2 N2+N2 N2
1 1 1 t 1 1 1
< R T Py . AL B . S
A TS R VI B Vo B VL VT R v
R L B B
N2—3 Nz—z Nz—z N2—1 Nz
Ni—1-1 !
! 1 1
= + [
:=Z~v t =i Ny=bs
Ny !
< l+ -A-._l.__

<Nr <l7+, i (})f+_ 1
ot P i \2 Ny—1

11
SlogN;+ 1+ -+
=R T TN~

R2: By the definition of g and n,,t=0,...,q we have

Since
clsngdt3te{0,0,...,q—1}an,En<n,, .

Now assume n, <i. Then,

STOCH. B
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t"'<i=>c'"<i
‘Sr 614-1 5

_x -
c i
=) e |<<Sh
[5l+l] 6—

=>n,,, <n, which is a contradiction.

Son,.,>nznz=iforsometel01,...,q—1}.

R3:

P 1 & 1
tquTJ<Cr+ 195;__‘_ <Cr+l

=§"1>¢7?

=(q—1)logd>logc™?

loge™?

logd +2=const. >0.

=q+1<

Thus {g+ Ho(c™")=0(c™").
R4: By the choice of ¢, (1 —c~)/p> 4. Therefore,

r-1 r+ 1
!('1‘("_‘~2pb(('r+l))=i1(l—C __2pb(c ))
p p n n

-1 +1
gg(l_%__z_ﬂ’(%)) (asnzc)
=g<‘_c-l_zzb_(iﬂ)_

p <
Also
2(f(r)‘l)1§Nf(’)-l§Cr+l<Nf(r)9
and

logc*!

1.
log2 +

b(cr+l)=bj(r)=f(")§



MULTI-ARM BANDITS 459

Hence,

r+i
2pb(’c~ ) -0 as r—oo.
d

Therefore for sufficiently large r(=r,)

n~(l——c"'-—2pb(c’”))>n<1(l—-c")—~£)>n5
p P p

where -
p<1(1—c")~—5.
P

RS:  In what follows r is a function of n(/,i) satisfying ¢ <n(f,i)<c"*'. However,
we shall suppress this dependence for the sake of notational convenience.

! ks ) et
2 by Yo=Y [Z 0("")+b(c’)[o(c‘("”)]]
S=1

i=1 r=00n=c
where r{!) is such that
<N, <O+
and b(c") is the block length of the frame f(c") such that
Nrey-1 SC<N sy,

Now, N; increases as p2” where as ¢’ increases as c'. Clearly there exists an
r aVrZr ¢ <p2”, so that ¢" lies in a frame before frame r. Thus b(c")<b,=r.
Thus,

)

Z b, Z o(c™SK(r)+ Z [o(1)+ro(c™)]

i=1

3
=K(r) +r(1)0(1)+0< E rC">

<K(r)+o(l:)gN> (rg )

=o(log N)).



