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We present an approach to the admission control and resource allocanon problem i connection-oriented networks that offer multiple

services o users. Users” preferences are summanzed by means of their vulity functions, and each user 1= allowed 10 reguest more than one
type of service. Multiple types of resources are allocated at cach hink plong the path of a connection. We assume that the relation between

CQuahty of Serviee (QoS) and resobrce allocanon 1s given, and we ncorpirale ¢ as g constramt imto 4 slatic optimization problem. The
phjective of the optinuzation problem 1s 1o determine the amoum of and required resoyrces for each type of service w maximize the sum
of the users” nolines, We prove the existence of & selution of the optimization problem and desenbe a competitive market ecotiomy that
implements the soluton and saushies the informational constraimts imposed by the nature of the decentrilized resource nllocation problem
The cconamy conststs of tour different types ol agents: resaurce providers, service providers, users, and an auctioneer that regulates the
prices based an the obsorved agegregate excess demand. The gonds that are sold are: (i) the resources at cach link of the network, and (1)
services constructed from these resources and then delivered (o users. We specity an iterntive procedure that 15 used by the auctioneer 1o
updite the poces. and we show that it leads 10 an allocanon thar s arbstranly close o o solutton of the optimization problem in g Hoie

number of erations.

1. INTRODUCTION

The idea of o single shared physical network that will
support multiple heterogeneous applications. that is, apphi-
cations with different traffic characteristics and different
Quality of Service (QoS) requirements. is widely regarded
as the way 1w meet the telecommunication challenges
of the future. Packet-switched. connection-oriented net-
works have been proposed to offer the QoS guarantees
In integrated-services networks. because in connectionless
networks individual packets may exhibit a significant vari-
ation 1 network service quality,

The challenge m integrated-services connection-oriented
networks is to determine general admission and resource
allocation schemes that have the following desirable fea-
tures: (1) they meet the QoS requirements of the ser-
vices provided by the network: (ii) they efficiently allocate
resources by appropriately distributing the QoS among the
various resources at each link along the path of a connec-
tion; (1) they satisfy the user's preferences and simulta-
neously are soctal-welfare maximizing: and (iv) they sat-
15ty the informational constraints imposed by the network:
specifically they take into account the fact that the net-

work s an informationally  decentralized system where
the number of users is unknown, and each user's prefer-
ences and input raffic characteristics are private informa-
tion. Consequently. the development of efficient admission
and resource allocation schemes requires: (a) a quantifi-
cation of the interaction between resource allocation and
QoS requirements; such a quanufication will be described
by expressions that are function of the allocation of mul-
tiple resources at each link, as well as the allocation of
resources along multibnk paths; and (b) the discovery of
mechanisms that delegate resource allocation decisions (o
mdividual users. yet they lead to social welfare maximizing
solutions,

The above consideravons have guided most of the
research on admission control and resource allocation in
integrated-services networks, The same considerations. 1n
particular (iv) and (b). have led 1o the use of microe-
conomic methods in the investigation of the aforemen-
tioned problems. Two basic microeconomic approaches
have been used for the development of efficient decen-
tralized resource allocation schemes in integrated-services
networks: resource-directed and price-directed (Hurwicz
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1973). In the resource-directed approach, each user (agent)
computes the marginal values for his current resources, and
communicates them to the rest of the users. The alloca-
tion 1s then changed so that users with an above average
marginal utility receive more of this resource and users
with a below average marginal utility receive less. This
approach has been used in Kurose and Simha (1989) (o
develop decentralized algorithms for optimally allocating
a single resource to a set of interconnected computing
agents. In the price-directed approach. an mitial allocation
of resources is made and an arbitrary set of systemwide
initial resource prices is chosen. Prices then are iteratively
changed to accommodate the “demands™ for resources until
the total demand for a resource exactly equals the total
amount available. Most of the results on decentralized
resource allocation currently available in the literature are
based on the price-directed approach (Cocchi et al. 1993,
MacKie-Mason and Varian 1995b, Jordan and Jiang 1995,
Jiang and Jordan 1995, Wang et al. 1997, Murphy and
Murphy 1994, Murphy et al. 1994, Parris et ul. 1992, Par-
ris and Ferrari 1992, Kelly 1994, Kelly et al. 1998, Gupta
et al. 1997, Courcoubetis et al. 1997, MacKie-Mason and
Varian 19954, Low and Varaiya 1993, de Veciana and
Baldick 1998, Thomas and Teneketzis 1997). Because we
follow the price-directed appreach to resource allocation
in this paper, we critically review the results reported in
(Cocchi et al., 1993, MacKie-Mason and Varian 1995b.
Jordan and Jiang 1995, Jiang and Jordan 1995, Wang et
al. 1997, Murphy and Murphy 1994, Murphy et al. 1994,
Parris et al. 1992, Parris and Ferrari 1992, Kelly 1994,
Kelly et al. 1998, Gupta et al. 1997, Courcoubetis et al.
1997, MacKie-Mason and Varian 1995a, Low and Varaiya
1993, de Veciana and Baldick 1998, Thomas and Teneket-
z1s 1997) so that we can point out to the contributions of
our work.

The work currently available on decentralized resource
allocation by price-directed methods has addressed, either
by analysis (Jiang and Jordan 1995, Wang et al. 1997,
Murphy et al. 1994, Kelly 1994, Kelly et al. 1998, de
Veciana and Baldick 1998, Gupta et al. 1997, Courcou-
betis et al. 1997, MacKie-Mason and Varian 1995a, Low
and Varaiya 1993, Thomas and Teneketzis 1997). or simu-
lation and analysis (Cocchi et al. 1993, Murphy and Mur-
phy 1994, Parris et al. 1992, Parris and Ferrari 1992, Gupta
et al. 1997), a subset of the issues outlined in the second
paragraph of this section. A significant part of this work
has dealt with single link networks (Wang et al. 1997, Mur-
phy and Murphy 1994, Parris et al. 1992, de Veciana and
Baldick 1998), or with the allocation of a single resource
per connection (Wang et al. 1997, Murphy and Murphy
1994, Parris et al. 1992, de Veciana and Baldick 1998, Jiang
and Jordan 1995. Murphy et al. 1994, Kelly et al. 1998,
Gupta et al. 1997, MacKie-Mason and Varian 1995a).

In several papers (Jiang and Jordan 1995, Wang et al.
1997, Murphy et al. 1994, Kelly et al. 1998, Gupta et al.
1997, Low and Varaiya 1993, de Veciana and Baldick 1998,

Thomas and Teneketzis 1997) the following general phi-
losophy to resource allocation by price-directed methods
has been adopted: (1) formulate a centralized constrained
optimization problem where the objective is the maximiza-
tion of a social welfare function and the constraints are
imposed by the QoS requirements and the availability of
network resources; and (2) use pricing methods to devise a
decentralized scheme that realizes the solution of the cen-
tralized problem and satisfies the informational constraints
imposed by the network. The existence of a solution to
the centralized problem is shown, and market methods are
used to structure and develop the solution. The existence
of a set of prices that induce users to request the “optimal”
allocation is established and, in some cases (Wang et al.
1997, Gupta et al. 1997, Low and Varaiya 1993, de Veciana
and Baldick 1998, Thomas and Teneketzis 1997), an iter-
ative scheme for adjusting the prices based on the users’
requests 1s described. However, none of the papers specify
a mechanism to force the successive prices to converge (o
the “optimal™ set of prices.

[n this paper. we follow the price-directed approach
and the philosophy presented in the previous paragraph,
o address the admission control and resource allocation
problem in integrated-services networks. Our {ormulation
ol the admission control and resource allocation problem
captures the issues and considerations discussed in the sec-
ond paragraph of this section. In particular. we consider
a connection-oriented network that offers multiple services
to users. Users™ preferences are summarized by means of
their utility functions, and each user is allowed to request
more than one type of service. No assumption is made on
the functional form of the utility functions. although some
mild regularity conditions are imposed. We assume that the
relation between QoS and resource allocation is given (see
discussion in §2). and we incorporate it as a constraint into
a static optimization problem. The objective of the opti-
nmization problem is to determine the amount and, required
resources for each type of service to maximize the sum
of the users’ utilities. We prove the existence of a solu-
tion of the optimization problem. and describe a competi-
tive market economy that implements the solution and sat-
isfies the informational constraints imposed by the nature
of the decentralized resource allocation problem. The econ-
omy consists of four different types of agents: resource
providers, service providers, users, and an auctioneer that
regulates the prices based on the observed aggregate excess
demand. The goods that are sold are: (i) the resources at
each link of the network: and (1i) services constructed {rom
these resources and then delivered to users. We specify an
iterative procedure that is used by the auctioneer to update
the prices, and we prove its convergence. In particular, we
show that it leads to an allocation that is arbitrarily close to
a solution of the optimization problem in a finite number
ol iterations,

The contributions of this paper are: (1) the formulation
of a general optimization problem that has the following
features: (a) incorporation of the QoS requirements along



paths: (b) allocation of resources along paths with multiple
links: (¢) allocation of multiple type of resources al cach
link: (d) independent sell-interest users that request multi-
ple types of service: (2) the proof of existence ol a wellare
maximmzing solution; and (3) the construction of an algo-
rithm tor hinding a welture maximizing solution with arbi-
lrary precision in a finite number ol steps.

The renunnder of the paper is organized as follows: In §2
we Tormulate the optimizaton problem. In §3 we prove the
existence ol a solution, and in 84 we describe (§4.1) and
analyze (84.2) the competitive market economy that leads
o an opumum allocation. In §5 we summarize the results.
discuss their implications. and present some open problems
Lthat arise Trom this approach.

2. PROBLEM FORMULATION

Consider 4 commumcation network that consists of a sel
L=1{1.2..... L) of hnks. The network offers one-way
connections 1o a set N = (1.2, ... . N} ol users. There 1s
alsoaset M = |1,2, ... .M | ol different rypes of connec-
tions associated with each user . Each type 1s charactenized
by the ongin, the destination, and the quality level ol the

connection. By quality level we mean specific quality ot

service (QoS) guarantees (for example guarantees on max-
imum packet Joss and delay ). that the network is obliged 1o
provide once the connection 1s accepted. Users can request
a muluple number of connections over the network.

We represent user i's request by the vector ' =
()45, oo, ), that takes values in Y. In particular, v
is the number of type j connections requested by user 7
User’s i preferences on R are summarized by means of 4
quasilinear utility function xj -+ w, (1*), where x, = 0 is the
numeraire commodity {Mas-Colell er al. 1995). The chowce
of representing users’ preferences by quasilinear objective
functions 1mposes the constraint that there are no income
effects on network service demand: that 1s, changes in
income or budget available to the users does not change
the amount of network services they wish to purchase. This
is a typical simphifying assumption in the economic hit-
erature when the budget share of the services of nterest
s small, e.g.. when network services are only o relatively
smull amount of the users” total expenditures.

Users announce themr requests o the network during the
call setup phase. The network then, assigns virtual circuits
(routes) o each origin-destination pair. We denote by V©/
the set of links that belong to the route of a type J connec-
tion requested by user i, Once the routes are established the
network needs to deternune the number of connections that
will be accepied as well as the amount of resources (e.g.,
bandwidth and bulters) that need o be allocated along the
path of each connection in order to guarantee 1ts requested
quality level, The allocation ol resources must also max-
imize i social welfare function Y o ('), which 1s the
total utility of the users.'

We assume that there isaset K={1,2, . . K] of differ-
ent fypes of resources that the network allocates at each link
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in order to meet the QoS requirements ol a connection that
is accepted. For example. if bandwidth and bulfers are the
two types of resources that the network allocates in order to
establish connections, then K = [ 1. 2]. In this case, & = |
refers to bandwidth and & = 2 refers to buffers. We denole
by r,, the amount of a type &k resource that is reserved al
link [ for a connection of type j requested by user . Also.
the maximum amount of a type & resource that can be allo-
cated at link / 1s denoted by R, , = 0. We denote by F'/.

the set of all resource allocations r*' = |r;'{ ),y 1.x- that
guarantee the quality level specihed by the tvpe y connec-
tion requested by user . This set results from relations that
deseribe the interaction between resource allocation and
QoS requirements along routes; such relations can be found
i Thomas and Teneketzis (1997). In this paper we assume
that the sets F*7 of all resource allocations that guarantee
the end-to-end QoS requirements are known and given.

The tollowing assumptions are made on the utility func-
tions ,(-) and the sets F'

AsstmpenioNn (Al). The funcron w,(-) s continnous, differ-
entiable, locally nonsatiated,” and swrictly concave in X,
for all 1 = N

ASSUMPTION (A2). The sets ¥/ i e N, j & M., are com-
pract and .\H'f::'ff_#‘ conve.”

Assumpuon (Al) imphes that the underlying prefer-
ence relations are rational, continuous, strictly convex. and
locally nonsatiated on X (Mas-Colell et al, 1995), Assump-
tion (A2) 1y technical and 18 needed 1o establish the exis-
tence ol optimal allocation strategies that can be obtamed
as the result of a wonment process. In general there may
not exist a convex relation between QoS and resource allo-
cation along paths within the network: see Thomas and
Teneketzis (1997). In such a case. we take the sets F'/.
t &N, jeM 1o be the maximum strictly convex subsets
of the sets specified by the relationship between QoS and
resource allocation, A discussion of this 1ssue is presented
in §35.

Based on the above, we formulate the [ollowing opti-
mization problem

max e, (a') (MAX 1)
ba ¥ .._h

subject to

veX'. dieN (1}
rfeF ., TeN.jeM, (2)
Y Y ar <R ,. leL.kek. (3)
1N M,

where (x,7) =[x, '] x jem -

X'=[+v'eR": Dy <B<x~, jeM| (4)

and B is a suthiciently large real number. The restriction
of x' to the compact space X' is made for technical rea-
sons that appear in the proof of existence of a solution (o
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(MAX 1). This assumption does not affect the optimality
condition, since an infinite value for x} would violate the
constraint on the available resources—see (3), and notice
that the amount of resources r;'/, k € K needed at each link
[ € V"/ to establish the type j connection for user {, cannot
all be zero.

In summary, our problem formulation incorporates the
following features: (1) the QoS requirements are included
into the service provisioning problem, via constraints (2):
(2) multiple types of resources r)’/, k € K are allocated at
each link / of the network; (3) a virtual path V'*/ consists
of multiple links; and (4) a user can request multiple types
of services based on his own preferences. A critique and
discussion of the assumptions and features of the problem
formulation are presented in §5.

In the next section we establish the existence of a solu-
tion to (MAX 1).

3. EXISTENCE OF A WELFARE-MAXIMIZING
SOLUTION

The main result of this section is summarized by the fol-
lowing theorem:

THEOREM 3.1. There exists « solution to  problem
(MAX 1).

ProOE. We first fix » to an allocation that satisfies (2).
Then. Weierstrass's Theorem (Simon and Blume 1994,
p. 823) guarantees that the problem (MAX 2) defined
below, has a solution.

max )  u,(x") (MAX 2)
" ieN

subject to

xeX, (3)

2. Xi'i{<R,, leL.kek, (6)

(N JEM,

where (5) is an abbreviation for (1).

It we show that the maximum value function U(r) 2
Y ien ' (x'(r)), i.e. the objective function of (MAX 2) eval-
uated at a maximizer x(r), is a continuous function of r,
then the continuity of U(r) together with Assumption (A2)
and the Weierstrass’ theorem will guarantee the existence
of a solution to the following problem:

max L/(r) (MAX 3)
subject to
rleFf, ieN,jeM,. (7)

The existence of a solution to the original problem
(MAX 1) is then established, since a solution to (MAX 3)
15 also a solution to (MAX 1).

We now show that U(#) is continuous. For that matter
we use Proposition 3.1, that is given below. The proof of
the proposition is presented in Appendix A.

ProrosimiON 3.1. Consider the correspondence T': R — X
defined by I'r = {x € X : g(x, r) < 0), where X is compact
and g is a continuous function in X x R. Assume that for
all r € R there exists x € X with g(x.r) < 0. Then T is
continuous in R.

Define the correspondence

N"R= X, Tr={xreX:g(x.r)<0),

where R = R?*, X is the same as in (5).and g: X xR —
R** is defined by g ,(x,r) = 3.« Yojem X0k = Ry
! €L, k € K. The set X is compact. Furthermore. g is con-
tinuous on X x Rand g, ,(0.r) <O forall /e L and k e K.
Therefore the conditions of Proposition 3.1 are satisfied
and I' 1s a continuous correspondence in R. By Assump-
tion (Al) the objective function of (MAX 2) is continu-
ous on X. The Maximum Theorem (Border 1989. Theo-
rem 12.1, p. 64) then implies that the correspondence

DR X.

®r=1xelr:x maximizes » u,(x') on I'ry,
JEN

15 closed and upper hemicontinuous and that the function

Ulr)= ZH,-{A‘"} for xe dr,
feM

1s continuous on R. This completes the proof of Theo-
rem 3.1, [

4. A COMPETITIVE MARKET INTERPRETATION

In the previous section we established the existence of a
(weltare-maximizing) solution to problem (MAX 1). We
are now interested in the existence of an algorithm that can
lead to a solution of (MAX 1), and satisfies the informa-
tional constraints imposed by the nature of the network. To
establish the existence of such an algorithm we proceed as
follows: First, we describe a competitive market economy
that consists of three types of agents and an auctioneer that
regulates the prices through an iterative procedure that is
based on the aggregate demand and supply. Then, we prove
that the procedure used by the auctioneer leads to an allo-
cation that 1s arbitrarily close to a solution of (MAX 1),
in a finite number of steps. This result is given by Theo-
rem 4.1, which is presented later in the section. We now
proceed with the description of the market.

4.1. Description of the Market

The economy consists of four different types of agents:
resource providers, service providers, users, and an auction-
eer that was mentioned before. We assume that the resource
providers, the service providers, and the users are price tak-
ers. That is, they behave as if their behavior has, and can
have no effect on the equilibrium prices that are reached by
the market allocation process. The raw materials that are



sold are the resources at each link of the network. The price
for a type &k resource at hink [ 1s denoted by A, . These
resources are treated as if they were owned by the resource
providers, who then sell them to the service providers. The
service providers, tn turn, buy resources at each link in
order 1o produce low services, which they sell to end users.
For example. a service provider might want to produce g
“bounded-delay guaranteed™ service from node A 1o node
B. To do so, it will purchase the use of buffers and band-
width at cach link along some path between A and B ia
amounts sufficient o provide the promised service. Users
purchase services from service providers: they do not pur-
chase the primitive resources, nor do they need to know
how many bulfers or how much bandwidth 1s being dedi-
cated to their service, nor the path ol links that has been
established for their flows.

Although we construct the problem as one in which
there are (wo markets—tor network resources and lor
services—our algorithm works by solving only for o vec-
tor of resource prices. We are able to de this because the
assumption ol price taking that we 1impose on our agents
enables us to directly derive the service prices as a deter-
ministic function of the resource prices.” Nonetheless, the
characterization of the problem in terms ot the two separite
markels for separale resources and services 1s sigmhicanl.
because the mformation hiding conditions desenibed aboye
are maintained: The vsers do not need to know the resource
prices, nor the resources being purchased and combined 10
provide services on their behalf. In the sequel we describe
each of the above agents separately.

Resource Providers. Resource providers own the
resources (bandwidth, bufters, etc.) at each link of the net-
work. We assume that they are price takers and that there
1s no cost associated with the supply of their resources

ta the markel. The aggregate supply viA) at prices A =
[Ar 4 ber, ook IS given by

(A) E are max Ay e Vi g (&)
viA) _Shter ZZ i LU [

) S

where Y = (veRY :0< v, <R, ./ L.k € K}, and
K. L are the cardinal numbers of the sets K, L respecuvely.
Since there 15 no cost assoctated with the production, (8) is
trivially satished for every A = 0, when v, = R, ;. lor all
[ and k. Therefore,

viA)= |h’, k| tor every A = () ()

lel, ke K

Service Providers. Service providers accept requests
for connections from users. Each request is characterized
by the tnplet: origin, destunation. and guality level. and s
indexed by the pair ¢, j. where 1 € N refers to the user
and j & M, refers o the 1ype of connection. For each
user request 7, y, the service provider establishes a one-
way route V"' between the origin and the destination and
allocates resources »"/(A) that mininuze the cost of the
connection and guarantees the requested guahty level. We
assume that the service providers are price takers and that
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they can freely enter or exit the market. An implication of
this 18 that their profit s zero. Based on the above, service
providers allocate resources to each type ol connection by
determining

E Z "J"i' i f'; |'.‘* [ I{”

lzy 1 heln

A arg i
F e Il'

for each 1 € N and ;€ M. Once resources have been allo-

cated, service providers announce o users the following

Prices.

__u'llllﬁ‘-.];: Z }_:}-.Hr: ;.Il-"\]'-
feb 1 hEK

reN,jeM,. (11)

Users. Users request one way connections from the
service providers. As mentioned belore. each request is
characterized by the wiplet: origin. destination. and qual-
ity level. Service providers announce prices p'(A), i € N,
j =M, and users respond by requesting x(A) number of
connections. Users” demands satisly

1"{;1IEurgll'un[rﬂ'.'-t' ) — E "'r.-f",'[‘“} for all feN. (12)
LHEN =M '

For cach i € N, the optimization problem in (12) 1s equiv-
alent (o the standard utility maximization problem (Mas-
Colell et al. DUS).

Auctioneer. The auctioneer regulates the market prices
hased on the ageregate excess demand vector Z(A)

‘1|_i""11} — E E { t:.'f"l.’rr.;{fi?_;} __!'Jl*ff\}.

W h‘l

[eL.keK. (13)

Later. in the proof of Theorem 4.1, we show that z(A) 1s a
cominuous function of A (see Proposition 4.1).

During the setup phuase users announce 1o service
providers the types of connections (origin, destination,
quality level) that they are willing to buy. Then, the ser-
vice providers establish the routes V! for each type of
connection {, 7. 1 =N, ;=M. . Alter the romes have been
established, an weratve procedure begins, during which the
auctioneer announces prices A, and then uses the corre-
sponding aggregate excess demand funcuon z(A) to com-
pute the next set of prices A, Every time a new price vec-
tor A ts announced by the avctioneer, the service providers
determine the amount of resources r(A) that according
o (10) guarantee the requested guality level and mini-
mize the cost per connection. Then, the prices (11) are
announced to the users. Based on these prices users respond
by requesting v(A) number of conpecnhions, that sansfy (12).
The response of the resource providers 1o any price vector
announced by the auctioneer is given by (9).

A detailed description of the algorithm used by the auc-
tioneer 1o update market prices is presented in Appendix B,
In Figure 1. we present in block-diagram form the auction-
cer’s aleonthm and provide an explanation about the vari-
ables that appear in the deseription of the algorithm.
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Figure 1.  Auctioneer’s algorithm.
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The algorithm starts by choosing a positive integer value
for the parameter D. As shown in §4.2, where we prove the
convergence of the algorithm, the value of D determines
how close is the allocation that results from the algorithm
to a solution (¥, ) of problem (MAX 1). In particular, we
show that by increasing the value of D, we can come arbi-
trarily close to (x, r). However, by increasing D we also
increase the number of iterations needed for the algorithm
to terminate. Two other elements used by the algorithm are
the (LK + 1) x (LK + 1) matrix M and the (LK + 1) col-
umn v. The following notation is used for the entries of
these matrices: M (i, j) is the element in row | and column
J ot matrix M, and »(i) is the element in row i of column
v. Initially, matrix M is assigned the value

[(DD+1:--D+1]
I ()

My = _ _ (14)
00 ~1 |

Finally, the symbols &, & denote modulo LK subtraction
and addition, respectively. The proof of convergence of the

!
e
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auctioneer’s algorithm is given by Theorem 4.1, which is
presented in the section that follows.

4.2. Analysis of the Market

4.2.1. Preliminaries. In this section we show that the
recursive process, used by the auctioneer and described in
§4.1 and Appendix B, leads in a finite number of itera-
tions, to an allocation that is arbitrarily close to a solution
ol problem (MAX 1).

We proceed as follows. First, we present briefly some
known results that are crucial for the analysis of the mar-
ket. Then, we prove Theorem 4.1, which is the main result
ol this section. The known results used in the analysis of
the market can be found in Scarf (1973, Chapters 2-4, 6.
Appendix 1). Here we present them in a way that suits the
needs of our analysis.

Define the simplex S:

LK

S = geRF: Y g, =14,

=L}



where [ and K are. as before, the cardinal numbers of

i

the sets L and K respectively, and denote by s". m =
0.1,.... LK, its sides, that s,

D g € Sy =0 m=0il LK.

Consider the regular gnd of vectors on §, that i1s the
list P of all vectors of the torm (n,/D,n /D, ... 0y, /D).
with n, representing nonnegative integers summing to 0.
We introduce a special type of subsimplex in S, called

the primitive set, that 1s a Key concept for the proofl of

Theorem 4.1.

DeeiNtTioON k1. The LK + 1 —n vectors gh, ..., gt ool
P along with the n sides s, ... 5" of S, form a primitive
set in S il no vector ¢ € P is intenor to the simplex defined
by x, 20,....x, 20and g, 2mn{q).... g ] for
MEd oy,

We now introduce the tamily & of (LK +1)x (LK +1)
matrices

— e

Mgy 0 My Ly
Hyo *° Mjrx

it

(15)

_”{,ﬁ.’,ﬂ e MK LK

that have the following properties: The entries are integers
between — | and D+ | and the column sums are equal to
D. For the purpose ol our analysis we associate to each
column of M = A, a vector or a side from the simplex §
and also a label from the set {0, ..., LK].

Association of a Vector or Side from the Simplex with
a Column. The following rule is used 1o associate to a col-
umn of M € M, either a vector from the regular gnd P, or a
side of the simplex S : If column ¢ has at least one negative
entry then it is associated with side s'. where ¢ = min|m -
M(m,c¢) = —1]: 1l column ¢ has nonnegative entries, it is
associated with the vector (M(0, ¢)/D, ... . M(LK.c)/D).

Association of a Column with a Label. To specify the
rule that associates each column of M < 4 with a fabel
from the set [0, ..., LK), we first need (o make the fol-
lowing definitions:

For each g € § with ¢, > 0 define the price vector A

: , o Ik Grx
A= 1A ) e e i —— {]{‘l]
| fod Irtl..l-.-h ¢ o 4
Define also the following subsets of §:
Co=[geSiqy=00rz () <0.
fnruIIFEL.ﬁ:EKI. (17)
Ci . = fq eSiqy>0and gy =0
or (A =20]. lel.kek, (18)

where

oy L{.ﬂ’l.] — Z }: l:{ﬂ}."; :(-"l‘-] - Ri.h'

1M }-.—M.

le L,ke K., (19)
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and r(A). v(A) are solutions of the problems:

milty S Y A forallieN, jeM, (20)
rEr el kek

max [u,l.r* ) = Z X E Z A ami M]

(R, I..,Elidl ,h_:irj,a_h;

for all 1 = N. (21)

The definition of the sets €, and C, . le L.k e K
assumes that the sign of the aggregate excess demand
2, o (A) is well defined for all / € L.k € K. Later in the
section we show that z(A) 1s a continuous function ol A
(Proposition 4.1). This makes the above delinitions feasible,
because z(-) 1s a function of A and not a correspondence.

We assign to each column ¢ of M the following label
r(c): If column ¢ is associated with side s' then v(c) = 1.
if ¢ is associated with vector g then, if ¢ € C, set () =0,
otherwise set #(c)=min{(/— NK +k:qC, ).

The main result of this section is based on a combina-
torial theorem due to Scarf (1973, Theorem 2.5.1). Scarf’s
theorem and the main i1dea of the proof, that are both cru-
cial for the analysis of our algonthm, are presented in the
next paragraph.

Consider a labeling process that assigns to each side s"
(m =10, ...LK)of the simplex S the integer m. and to
each vector of the regular gnd £ an arbitrary integer from
the set {0, ... . LK | Then according to Scarf (1973, Theo-
rem 2.5.1), there exists a primitive set each of whose vec-
tors or sides has a different label. The proof of this theorem
1s based on the following iterative procedure, (IP1):

(IP1) 1. Define a unique replacement operation for a
single side or vector of a primitive set n S, that leads 1o
another primitive set in 5.

2 Start with a primiuve set all of whose vectors and
sides have distinet (nonzero) labels, except for a single patr
whaose labels are identical.

3. Replace one of the elements (vector or side), in the
pair with the identical labels, using the operation defined
im Step 1.

4. 1f the new vector or side has a zero label, terminate
the procedure. Otherwise, replace the element in the prim-
itive set that has the same label with the element that was
just brought in, and repeat Step 4.

The above procedure will terminate only with a primi-
tive set of the required type. It is shown n Scarf (1973,
pages 47—48) that the algorithm never returns to the same
position and that every required replacement can be carred
out. Therefore. since there are a hnite number of possible
primitive sets that can be composed from the sides of the
simplex and the vectors of the regular gnd. the algonthm
will terminate in a fimte number of steps.

The concepts and results presented above provide the
background necessary to proceed with the analysis of the
market described in §4.1.

4.2.2. Convergence of the Auctioneer’s Algorithm. The
main result of §4.2 is given by the following theorem.
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THEOREM 4.1. The aleorithm  described o §4.1  and
depicted in Figure | leads, in a finite nimber of steps, to a
price vector A that tduces an allocation x{A), r(A) which
ts arbitrary close to a solution x, r of problem (MAX 1),

Proor. The proof 1s based on the combinatonial result
(Scarf 1973, Theorem 2.5.1) presented above, and proceeds
in three steps:

(1) We hirst define a labeling process for the sides of S
and the vectors of P, that satisfies the conditions ol The-
orem 2.5.1 in Scarl (1973). This establishes the existence
of a4 primitive set T in § with vectors and sides that have
distinet labels.

(i1) We show that the auctioneer’s algorithm. described
in §4.1, leads in a fAnite number of steps to the set 7" (as it
implements the steps of the iterative procedure (IP1)).

(1) We prove that lor any g € T with g, > (. the price
vector given by (16), induces an allocation that 1s arbitrarily
close to a solution of (MAX 1).

We now proceed 1o prove the statements made in Steps
(1)—(111).

(1) Consider the following labeling process for the sides
of § and the vectors of P: Side 5™ is labeled with integer n:
and ¢ = P 1s assigned the label of its associated column of
M & Al (see the two association rules defined above). This
labeling process satisties the conditions of Theorem 2.5.1 in
Scarf (1973), thus, it establishes the existence of a primitive
set T C 8 such that all of its sides and vectors have distinct
labels.

(1) We show that the auctioneer’s algorithm implements
the steps of (TP1).

By construction, the auctioneer’s algorithm is an iterative
process with steps (structure) identical to those of (IP1).
Therefore, we only need to prove that the auctioneer’s algo-
rithm satisfies the conditions of Steps 1 and 2 of (IP1).

Let M e . be a matrix associated with a primitive set
in 5. and consider the following rule for replacing an ele-
ment (side or vector) of the primitive set: Find the column
¢ of M associated with the element of the primitive sel
that 1s replaced:; replace ¢ by the sum of columns ¢ |
and ¢ & 1 minus the column ¢ itsell, as in the auctioneer’s
algorithm: find the vector or side associated with that col-
umn and use 1t as @ replacement for the original element
of the primitive set. Then, according to Scarf (1973, Chap-
ter 2 and Appendix 1), this replacement operation leads to
another primitive set in §. The replacement is also unique.
Consequently, the replacement operation in the auctioneer’s
algorithm satishes the conditions of Step | of (IP1).

Let A, © 5 be the subsimplex associated with the matrix
M,,. introduced in the descnption of the auctioneer’s algo-
rithm (see Equation (14)). Matrix M, satisfies the condi-
tuons ol Theorems 6.2.1 and 6.2.9 in Scarf (1973, note 6),
therefore A, is a primitive se¢t in S, Furthermore, according
to our association rule, all the vectors and sides ot A have
distinct labels from the set {1, ..., LK}, except for a single
pair whose labels are identical. Therefore. A,,. the initially
chosen primitive set in the auctioneer’s algorithm, meets
the conditions ol Step 2 of the iterative process (IP1).

Consequently, the auctioneer’s algorithm leads, in u finite
number of steps. to the primitive set T in S with vectors
and sides that have distinet labels. The set T contains at
least one vector from the regular grid P which is in the
interior of the simplex § (i.e.. a vector the components of
which are all positive).’

(1) We prove that tor any ¢ € T with ¢, = 0, the price
vector given by (16), induces an allocation that is arbitrarily
close 1o a solution ol (MAX 1). According o the labeling
process, T has a nonzero mtersection with each one of the
sets G, € e Lok € K. defined by (17). (18). respec-
tively. Define

(‘éc,ﬁ( N c",.l).
el i K /

In Proposition 4.2 we prove that ' 1s nonempty, and in
Proposition 4.3 we show that for every ¢ € C, the alloca-
tion x(A"), r{A") (induced by the price vector A” defined by
(16)) solves (MAX 1). Consequently. if we make the reg-
ular grid sufficiently fine (by increasing the parameter D).
we can guarantee that the primitive set 7 has a4 nonzero
intersection with €', This result, along with the continuity
of the functions v(A"). #(A") with respect o A" (shown in
Proposition 4.1). prove the statement ol Step (iii).

Propositions, 4.1, 4.2, and 4.3, that we referred to above,
are presented below. Their proofs are given in Appen-
dices C. D, and E, respectively.

Prorosimion 41, The allocarion x(A), r(A) and the aggre-
gate excess demand 2(A) are continwous functions of A

Prorosirion 4.2. The ser C iy nonempty.

ProrosimioNn 4.3, For every g € C, XA, r(A)  solves

(MAX 1).

This concludes the proof of Theorem 4.1, [

5. CONCLUSIONS—REFLECTIONS

We have presented an approach for optimal admission
and resource allocation control in multiservice connection-
orented networks.

The mam contribution of our work in this paper is the
spectheation of a convergent and decentralized iterative
procedure that leads to a solution of a fairly general admis-
ston and resource allocation problem.

The main features of our approach are the following:

(1) The objective of the resource allocation process is 1o
maximze the total value of the network to its users.

(2) The agents are price takers m the markets in which
they participate.

(3) There 15 no cost associated with the supply of net-
work resources.

(4) The sets F"/' are strictly convex. for all 1. ;.

(5) Resource allocation decistons are based on the solu-
tion ol a constrained static optimization problem.

We now discuss and critique each one of the above fea-
fures.



(1) In this analysis we assumed that the objective func-
non of interest was to maximize the sum of individual net-
work users’ utility functions. It may not be obvious why
this 18 o reasonable objective 1o consider.

[l is important to realize that our point of view is pri-
marily normative, not descriprive. That 1s, we have taken
a particular objective function—one which we believe 1s
often reasonable, but see below-—and studied whether a
network resource pricing scheme exists that can achieve an
optimum for that particular functuon, and how one might
implement that allocation with a market-based algonthm.
Thus, we have demonstrated the feasibility of using pric-
ing 10 achieve a particular performance goal. We are not
claiming that this goal describes any particular actual net-
work environment, Nor are we making the stronger norma-
tive claim that this objective function sheuld be adopted in
any particular setting.

What we have shown is that economic market methods
can be harnessed to implement network resource alloca-
tions that fulfill a particular objective function. We believe
that this work provides a template for developing mar-
ket methads tor implementing other objective functions
as well. For example, some might think it appropriate
for short-run allocation problems. when network resource
capacities are relatively hxed and there is little opportunity
lor entry by competing resource providers, 1o devise auto-
mated market mechanisms that maximize the sum of user
utilities plus resource provider profits (possibly with some
particular weighting on how this total surplus is shared
between the users and the providers). To study this prob-
lem we would augment the (MAXT1) objective function by
adding the sum of resource provider profits, and then pro-
ceed (0 analyze the existence and implementation of an
optimizing price vector,

We do, in fact, believe that maximizing the sum of user
utilities 18 a reasonable description for a wide vanery of
network allocation problems. Suppose we are considenng
a4 corporate intranet. If the corporation’s overall vbjective 1s
to maximize ils profits (in present value). then the appro-
priate interpretation of our problem is to define each user’s
“utility”™ as that user’s contribution to corporate profit as
a funcuon of the network services it consumes, In other
words, the corporation 1s not (directly) interested in how
personally happy an employee 1s with the network, but on
how much value the network enhances the emplovee’s pro-
ductivity, Then the sum of user utilities will be the con-
tribution of network services to corporate profits, which is
precisely the firm’s objective function tor this part of the
overall management problem. Although 1t may seem dif-
ficult o come up with a reasonable representauon of the
effect of network services on each user’s contribution to
corporate prohits, at some level this 1s precisely the prob-
lem corporations need to solve for allocating equipment.
office space, subordinates and so forth to each employee—
it 1s well beyond the scope ol our research to worry about
how the corporation specihcally formulates these valuation
functions,
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In a market context, it might be in the mterest of a net-
work resource provider to design a marketing system with
the goal of maximizing its profits, rather than maximzing
the realized utility of 1ts customers. However, if the network
provider is competing with other providers and networks
are interconnected, then in long-run equilibrium it will tend
to be the case that the successful allocation schemes are
those that have the net effect of maximizing users’ utilities.

Thus, although our method of using prices to allocate
network resources cannot be directly applied to every allo-
cation problem with any reasonable objective function, we
believe that 1t has broad applicability to many existing sit-
uations. In any case, when our objective function is the
desired goal, we have carefully analyzed the existence and
implementability of a pricing scheme to support that objec-
tve.

(2) In §4.1 we imposed the price-taking assumption
o the agents of the market economy. In some network
allocation settings price-taking will not be a reasonable
assumption. for at least some of the agents. For example,
suppose that we are concerned with a single physical net-
work owned by a siagle resource provider. That provider,
then. would be a monopolist. If that provider had the goal
of profit-maximization, say, then it would likely know or
quickly learn that it could earn more profits by directly
manipulating price. In terms of Equation (9). the resource
provider might offer v, , less than R, ; for some prices A,
in order to drive up the price and increase profits (selling
fewer units at a sufficiently higher price). Likewise, there
might be only a single service provider. Indeed, mn a cor-
porate intranet, the information services division might be
both the resource provider and the service provider to the
users (corporate employees in general).

How useful 1s the price-taking assumption? 1t is nol
essential for a proof that an algorithm exists that will clear
the markets and reach some equilibrium allocation of net-
work resources. However, in general, that allocaton will
not be a solution of our onginal optimization problem,
(MAXI1). As a general matter we could show that equilib-
rium allocations based on behavior other than price-taking
will lead to less efficient allocations, that is, allocations
that do not maximize the sum of user utilities subject to
the technology constraints (1)+3). Therefore, for the pur-
pose of this work we do not study markets in which agents
exhibit different types of strategic behavior, but limit our-
selves to the price-taking behavior that we can show can
be harnessed to vield a solution to (MAXI),

Restricting attention to the price-taking case may not in
practice be as restrictive as 1t seems. Consider the exam-
ple of a corporate intranel with a single monopoly provider
of resources and services. If the management instructs the
resource and service provider to behave “as il it 1s a price
taker (and provides compensation incentives that make 1t in
the provider’s best interests to do so) then the desired out-
come can be achieved. Essentially. this requires compensat-
ing the provider based on the value of the allocation to the
company as a whole. rather than based on the provider’s
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own local “profits.” If the network is to be managed with
an agent-based control system, the agents should be pro-
grammed to act as price takers, whether or not other pro-
grammable strategies might seem more desirable from the
local viewpoint of the agents.

In a more open, conventionally market-based system.
such as a commercial market for virtual data circuits, it
1$ also possible that at a given moment some participants
might have some market power, which is to say that they
are cognizant of an opportunity to improve their position by
acting strategically with respect to price-setting, rather than
as a price taker. In such a setting, it might not be possible to
directly control behavior to make those participants behave
“as if” they are price takers. However, if there are no artifi-
cial barriers o entry by other providers—for example, if it
s possible for another competing firm to build an intercon-
nected network of links with buffers and bandwidth—then
it will tend to be the case that in a long-run equilibrium
surviving agents will be those who behave as price takers
(competition will drive others out of the market). There-
tore, we believe there are many circumstances under which
the conditions will exist, or can be imposed. that are nec-
essary lor our method to provide an equilibrium that is a
solution 1o (MAX1).

(3) When we introduced the resource providers' prob-
lem in §4.1, we assumed that there is no cost in supplying
network resources (bandwidth, buffers, etc.) to the market.
This cost can be incorporated into our model if we subtract
it from the objective function of the optimization problem.
We believe that the new problem will have the same qual-
itative properties with the problem presented in this paper.
thus 1t may lead to a similar type of result.

(4) In §2 we made the assumption that the sets -/ are
strictly convex. This condition is necessary for the conver-
gence of the market-based algorithm.” If this condition is
not satistied for some pair ¢, j, then, in order to be able 1o
use the algorithm, we need to replace F*/ with its maxi-
mum strictly convex subset. An important future problem
therefore, is to specify an algorithm for finding that relaxed
set, and also to be able to characterize how inefficient is
the resulting allocation compared 10 the optimum solution,
if we knew how to find it.

(5) Our approach to resource allocation is based on
the solution of a static constrained optimization prob-
lem. Resources are not reserved in anticipation of future
requests, and response to users’ requests may be delayed
until the next allocation epoch. Iff we wanted to consider a
formulation where at allocation instances resources will be
reserved in anticipation of future requests, we would have
to take into account statistics of future arrivals and statistics
of service times among other things. These statistics may
not be readily available; even if they were. we believe they
would lead to an intractable decentralized dynamic stochas-
tic optimization problem. We leave the study of such a
problem as a future challenge.

APPENDIX A
Proof of Proposition 3.1

We first show that I is upper hemicontinuous. The graph

of I, Gr T‘——Ht r)e XxR:g(x,r) <0} is a closed set
This follows from the fact that g is continuous in X x R
and therefore it is lower-semicontinuous in X x R (Border
1989, p. 15). Therefore I is a closed correspondence of R
mto X. Since X is compact, it follows from Border {1989,
Proposition 11.9(b)), that I' is upper hemicontinuous in R.

Next we show that I' is lower hemicontinuous. Thus, we
must prove that for every »' € R and each open set G in X
meeting I'r" there is a neighborhood (') such that
reldr) = I'rnG+#£o. (A.1)

We proceed to determine for every r’ € R and every open
set & in X meeting ['7', a neighborhood Q(r') such that
(A.1) 1s satisfied, For that matter. we define the correspon-
dence. I': R = X, by

2 (reX:g(x,r) <0}, (A.2)
and show that the lower inverse of G under I', defined by

[ [G1={reR:TrnG # o). (A.3)
is a neighborhood of ' that satisfies (A.1).

We first show that T~ [G] is an open set. By assumption,
I'r # @. Furthermore, since g 1s upper semicontinuous (as
it is continuous) on X x R, the graph of I', defined by

—

Grll={(x,r) e XxR:g(x,r) <0,

15 open. Consequently, I is an open correspondence,
hence it is lower hemicontinuous (Border 1989, Proposi-
tion 11.9(c)). Since I is lower hemicontinuous and & is an
open set, I'[G] is open (Border 1989, Definition 11.3).

We proceed now to establish (A.1) with T-[G] playing
the role of 2(r'). Let r' € R and consider an open set G
in X such that

I'rNG #+ 3, (A.4)

Then from (A.4). the fact that ¢l (I+') = I'+".” and the iden-
lil}r c(TrYNG Ccl(TFNG), we -:.,nm.lude that ¢l(T'/' N
G)#@. Cnnﬁequen[l}f T'r'NG + &, Therefore by (A.3),
"€l [G]and T~ [G] is an open neighborhood of +'. Fur-
Lhe1 more, by (A.3),
rel"[G] = TrnG#e. (A.5)
Since I'r € T'r, (A.5) gives that for every re I -[G], ['rM
G 7 @. Thus, (A1) is satisfied, as (A.4) holds and I-[6]
is an open neighborhood of r'. The lower hemicontinuity
of 1" 1s thus established.
Therefore. I' is continuous in R, since it is both upper
hemicontinuous and lower hemicontinuous in R. This com-
pletes the proof of Proposition 3.1. [



APPENDIX B
Description of Auctioneer’s Algorithm

The algorithm is based on the construction of a spectfic
sequence of (LK + 1) x (LK + 1) matrices, each of which
is obtained from the previous one by replacing a single
column. The replacement for column ¢ equals the sum
of columns ¢ & 1 and ¢ | minus column ¢ itsell. The
sequence begins with the matrix M, given i (14). As
shown in the proof of Theorem 4.1, replacing a column
of M. other than the first, results in a matrix that has the
same properties as M;; that 1s, its entries are between — |
and D+ 1 and the column sums are equal 1o 0.

The rule determining the column that 1s replaced at each
step is the following:

Initial Step: The first column of M, (m = 0) is labeled
with the integer v(0) = 1 and each column m (m =
1,2,..., LK) is labeled with the integer v(m) = m. Thus,
all columns of M, have distinct labels except for the first
two, whose labels are identical, The algorithm begins by
replacing the second column (according to the procedure
described ubove).

Iteration Step: An integer wvic) € [0, 1.... . LK} 1s
assigned to a new column ¢, that is brought into the matrix
as a replacement. according to the following rule: If the
column has a negative entry, then #(c) is the smallest sub-
sceript for which this is true. It the column has a zero entry,
then r(c) is the smallest subseript for which this is true.
If none of the above 1s true, then the label of column ¢ 18
determined by aobserving the aggregate excess demand Z(A)
that results from the announcement ol the prnice vector

Ay =M= NK 4k c)/MO, ). Tel.kek,

to the market:"" if =, (A} < 0 for all 1 & L.k € K then

p(c) =0 otherwise, p(c) =min|(I— DK +k:z, ;(A) =0}
The matrix resulting after an integer v(c) 18 assigned to

a new column ¢ has one of the following two features:

(F1) . None of the columns is associated with the
label (.

2. All of the columns have distinct labels, except
for a single pair whose labels are identical.

3. One member of the pair of columns with den-
tical labels has just been brought into the matrix.
(F2) All columns of the matrix have distinet labels that
span the set [0, 1, ... . LK} (in this case the column whose
label is 0 has just been brought into the matrix).

It the matrix constructed by the algorithm has feature
(F1). the algorithm proceeds by eliminating from the matrix
that column in the pair with identical lubels that has not
just been brought into the matrix. If the matrix constructed
by the algorithm has feature (F2), the algorithm terminates.
As shown in §4.2, any matrix that is constructed by the
algorithm and has feature (F2) contains at least one column
with all positive entries. This implies that the auctioneer
announces at least one set of prices before the algorithm
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terminates. The demand x(A) and the resource allocation
r(A) corresponding to the auctioneer’s latest prices are arbi-
trarily close to a solution of (MAX 1).

APPENDIX C
Proof of Proposition 4.1

We first use the strict convexity of the sets F'/ 1o show
thut the solution ~(A] to (20} is unique. Then we use the
Maximum Theorem. to show that #(A) is continuous. The
solution x{p(A)) to problems (21} is then shown to be con-
tinuous in p(A). This, along with the continuity ol pl(A)
shows that v{A) is also a continuous function ol A. The
continuity of both x(A) and r(A) validates the statement of
the proposition.

We show that for each A the solution r(A) to (20) is
unique. Assume that. for given 7 € N,y € M, the solution
r' I{A) to problem

| n}i:] Y ) A n (A.6)
= el ek

1s not unigue. Therefore, there are at least two distinet vec-
tors, r and 7 that both solve (A.6). By the strict convexity
of the set F''' we have that, F=ar4+(l —a)r. 0<a <]
belongs to the interior of F''. This implies that we can find
a vector ¥ € F', whose elements are strictly less than the
corresponding elements of r, Thus,

Yo ¥ Al <0 3o iy (A7)
el bel lel Lek

But.

YN A Bl=aY Y Merl + 0 =8)) 0 Y A i
el ke el heR el eR

(AN)

[

T4

207
==
=

Equations (A7) and (A8) lead o a comradiction. thus
rlA) 18 umque.

We proceed by showing that r(A) is a continuous func-
tion of A, Let i € N,y & M. and consider the correspon-
dence @' ! B4 — REY defined by DAy = {0 e RED
et e F) = F Then, @° 7 as constant and theretore con-
tinuous in 4% It is also compact-valued since F' is
a compact set. The function [/ R'™ — R, defined by
fror)y ==Y, Sk A r] is continuous on RY*
Therefore. the conditions of the Maximum Theorem (see
Border 1989, Theorem [2.1. p. 64) are satisfied and the
solution r*/{A) to problem (A.6) is an upper semicontin-
vous correspondence at A. This result, along with the fact
that ¥ "(A) 1s unique. establishes the continuity of r(A) at
every A,

In the sequel we show that x(A) is also a conunuous
function of A. Let 1 € N, and consider the following prob-
lem:

Max [fr.l-t']—' S plat ’]. (A.9)
R

=M

where p''= 30 Yiak Ay n i (A)-

-"_-1. [ —



G614 [/ THOMAS, TENEKETZIS, AND MACKIE-MASON

The tunction () is cominuous and strictly convex
on RY, Therefore, according to Mas-Colell et al. (1995,
Proposition 3.D.2 (iii) and Proposition 3AA.|) the solution

A(p') to (A9) is continuous at all vectors p' -'—{p | oM
that satisfy .”; = (), for all j € M,. This result, dInnL with
the continuity of p' with respect to A, implies that x(A) is a
continuous function of A. The continuity of both x(A) and
riA), establish the fact that the aggregate excess demand
function given by (19) is a continuous function of A. This
completes the proof of Proposition 4.1. [0

APPENDIX D
Proof of Proposition 4.2

We show that C is nonempty by constructing a vector ¢
that belongs in C.

Fix r to a feasible allocation and consider prob-
lem (MAX 2) that is presented in §3. The compactness
of X, the linearity of constraint (6), and the continuity of
w () for all { € N, guarantee, by the Weierstrass Theorem
(Stmon and Blume 1994, p. 823), the existence of a finite
solution x(r) to (MAX 2). Notice also that X is convex,
ti, (<) 1s concave for all i € N (by Assumption (Al)), and
that the following constraint quuliﬁca[iun holds true: x =0
belongs in X and is such that 3", (Y .y 1) < R,
for all / € L., k € K. Therefore, according to Bazaraa et al.
(1993, Corollary, p. 210), there exists a vector A(r) e R/A
that satisfies

Z-‘)l,r;“}(ZZl{F'JFH;— fl):”' {A.I“}
fel, kK eEN feM, -
and 1s such that
Uir}= max ['ilill Alx,r.A), (A.LL)
LE) =1
where
Alx,r,A)= Zu{tl—zzf\”(zz -4 ":r.';""'-'e,ar)

fel. keK reN =M,

(A.12)

1s the Lagrangian, x(r) is a solution to (MAX 2). and L/(r)
1s 118 maximum value function.

Based on the above, if 7 is a solution 1o prob-
lem (MAX 3) (also presented in §3), then (x(r),r)
solves (MAX 1). The maximum value function of (MAX 1)
is then given by

==

max maxmin A(x.r. A)= A(x. r. A).
relF EX A

(A.13)

where ¥ =x(7), A= A(r), and r € F is an abbreviation {or

(7).
Consider the vector ¢, defined by

e
‘Fn;(l+zzfllu) .
leL keK

-
f?u—muEAJ.L(]‘FEZ"HJ) . lel,keK. (A.l5)

(A.14)

We establish that g = C. Note that, by construction,
q € 8. Also, since (x, r) is feasible to (MAX 1),

BB

reN jeM,

R, <0 tlorall el keK.  (A.l6)

Thus. according to (17) and (19), ¢ € C,. We proceed by
showing that ¢ belongs to the sets C, ,, for all / € L and
ke K.

If §_yxax =0 for some /€ L,k € K then § € C,, (see
(18)). In the sequel we consider the case where ¢, ;x4 >
0. In this case we proceed as follows: We first show that 7

and ¥ solve (20) and (21) respectively, for A = A. Then we
show that
Y2 EFi—R,.=0 (A.17)

1EN feM,

These two results establish, according 1o (163421}, that

q€Cpy.

To show that r. X solve (20) and (21). respectively,
for A = A. we denote by 7(A) and x(A) the solutions to
problems (20) and (21) and note that, since X, r solves
(MAX 1), r is a feasible solution 1o (20) and X is a fea-
sible solution to (21), Therefore the following inequalities

dre true:

22 A FAZ A nil(A), ieNjEM,, (A.IB)
el deK el keK
u (X'(A) = 3 AN A, (A
JEM, leL ke
Su(P) =Y B Y A A, ieN.  (A.19)
jeM,  JeL k=K

From the above it follows thal

A(x(A), r(A).A) 2 A(F.r(A)A) 2 A(R.F. ). (A20)

where, the first inequality is obtained from (A.19) by sum-
ming over all i and adding the term 3 ,_, ¥, .« EH R, .
and the second from (A.18) by multiplying by —x!, sum-
mmb over all i, j, and adding the term > . yu,(X') +
2oiel 2okeK A,‘A R, 4. Assume that r, X do not hUWE’ (20)
and (21) for A = A. This implies that at least one of the
inequalities in (A.18), (A.19) is satisfied with strict inequal-
ity. Therefore (A.20) gives

A(x(A), r(A). A) > A(F, F, A). (A.21)
From (A.]13) we obtain that
max maxmin A(x. r, A) = A(L. 7. A), (A.22)

reF reX j=)

and this leads to a contradiction, since (A.21) violates
(A.22). Therefore, r, v solve (20) and (21) respectively. for
A=A

We next show that

=2f =g
ZZ k=

r-"ﬁl ,I'l—ht

R, , =0. (A.23)



Equanion (A D) Yor » =5 gives

e

3D I 39 IEA

fel ek reN M,

—,lfh)zil.

This combined with (A.16) and the fact that A, , = 0 for
all f€ Lok 2 K, implies that

A (Z YT )

e M,

R l) =() forall telL.kek.
(A.25)

By assumption. ¢ 5. = O. Therelore A; [ = 0, which
combined with (A_25), leads to (A.23).

We have thus established the fact that g € C, (. forall [ e
L.,k € K. This completes the proot of Propositon 4.2, [

APPENDIX E
Proof of Proposition 4.3

Let ¢ € C. Then ¢, = 0 because ¢ € €
g € C, and gy > 0, we have that

.- Furthermore, since

Y Y A DS R,, forall JeL. keK.

Ie ‘J I|'| 'l.ll

(A.26)

We also have from (200 and (21) that v(A) € X and
e Ay € B Lor all i, 7L Theretore oA ) (A7) 18 o teast-
ble solution to problem (MAX 1),

Let x, - be any other feasible solution to (MAX 1), From
(20) and (21) we get

YN AL iz Y AL (X)), ieN. jeM,. (A27)
e WLEeK
and
w (A = XA Y A A
L "'-l =t vk
Z o (x) = DN Y A (A, ieN, (A.28)
i N fe ], e K

respectively, From the above at follows that
ACECA Y rEA AT 2 Al r(A )L A7) 2 Al r A (AL29)

where the first ineguality 1s obtained from (A.28) by sum-
ming over all i and adding the term 3 ., > . A, R, .
and the second from (A27) by multiplying by —x'. sum-
ming over all 7, j, and adding the term 3 g (x') +
:“"_.u' L. \. kel ")‘I H.".a'

From U\.E‘J}. we have

Eul[.x':ﬁj]—zzm_l( Lt'[a\lr“ !—H“)
N i

feN l=Liek It

Lu{mJ—ZTA (Ez,\-j :-;.;41'“). (A.30)

LAk N EM
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Nole that g €
or thal

> ) XA (A2 R,

e e M

€, ymphies that g 00 =0 e A =0),

(A31)

It ¢, \,p., =0, then from (A.26) and (A.31) 1t follows that

22 A R =Ry, (A.32)
N reM

Therefore.

2.2, (E Y XA ) ) =R, ;) =B (A.33)
léL ek =N jeM,

because for all [ € L.k € K either A, = 0 or
2 ien Xjem, VAR A =R, =0

hmu: 1.0 s a feasible solution to (MAX 1) we have that

E }__ Vo <R forall el ke K
N

(A.34)

Multiplying (A.34) by A, =2 (0 and summing over all
[ k. gives

}_.-Z:‘:"H(ZZ" '.'.L' ;_;)'E;'I}. {A.E_"‘i}
Lick N M,
Inequalities (A.30), (A.33). and (A.35) give
Zu‘{l'lﬂ )) = Eu,l_r'). (A.36)
jEM

=

which shows that x(A"). r(A") solves (MAX 1). This con-
cludes the proof of Proposition 4.3, [

ENDNOTES

|. The numerare quantities x/,, + = N, are omitted without
loss of generality from the objective function, because they
do not affect the marginal conditions for optimization.

2. We assume that r;/ = 0if link / doesn’t belong to the
path V"' assigned to that connection.

3 That is, for every x € X and wtry € >0, there is x" € X
such that [|x" —x|| < € and w (x") > u,(x). where ||x" — x|
15 the Euclidean distance hLIWt‘.EI’I points " and x.

4. A set s strictly convex if every proper convex combina-
tion of two points of the set belongs to the interior of the
sel.

S. In the concluding §5. we discuss the role of the price-
taking assumption in our market-based implementation.

6. Scarf (1973, Theorems 6.2.1 and 6.2.9) derives condi-
tions for a matrix M € M, in order for the vectors or sides
of & that are associated with the columns ot M to form a
primitive set in S.

7. Otherwise 7 would be formed by sides and/or vectors
ol P that belong to the sides of S, thus, 1t would coincide
with § which 1s not a primitive set (as it contans vectors
of £ s interior),

8. We have seen in §3. that compactness 15 the necessary
condition for the existence of an optimal allocation.

0. ¢l{A) denotes the closure ol a set A.
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10. M(p.q) denotes the element in the p row and g col-
umn of matrix M.
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