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INFORMATION STRUCTURES, CAUSALITY, AND
NONSEQUENTIAL STOCHASTIC CONTROL II:

DESIGN-DEPENDENT PROPERTIES*

MARK S. ANDERSLAND? AND DEMOSTHENIS TENEKETZIS$

Abstract. In control theory, the usual notion of causality--that, at all times, a system’s output
(action) only depends on its past and present inputs (observations)--presupposes that all inputs and
outputs can be ordered, a priori, in time. In reality, many distributed systems (those subject to
deadlock, for instance), are not sequential in this sense.

In a previous paper (part I) [SIAM g. Control Optirn., 30 (1992), pp. 1447-1475], the relationship
between a less restrictive notion of causality, deadlock-freeness, and the design-independent properties
of a potentially nonsequential generic stochastic control problem formulated within the framework
of Witsenhausen’s intrinsic model was explored. In the present paper (part II) the properties of
individual designs are examined. In particular, a property of a design’s information partition that
is necessary and sufficient to ensure its deadlock-freeness is identified and shown to be sufficient to
ensure its possession of an expected reward. It is also shown, by example, that there exist nontrivial
deadlock-free designs that cannot be associated with any deadlock-free information structure.

The first result provides an intuitive design-dependent characterization of the cause/effect notion
of causality and suggests a framework for the optimization of constrained nonsequential stochastic
control problems. The second implies that this characterization is finer than existing design-inde-
pendent characterizations, including properties C (Witsenhausen) and CI (part I).
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1. Introduction. In control theory the usual notion of causality--that, at all
times a system’s output (action) only depends on its past and present inputs (observa-
tions)--presupposes that all inputs and outputs can be ordered a priori in time. In
reality, many controlled systems--including distributed data [5], communication [6],
manufacturing [3], and detection networks [2J--need not be sequential [10] in this
sense.

Consider, for example, a simple detection network in which three decentralized
detectors D1, D2, and D3 (perhaps radars or inspectors) each make a noisy obser-
vation of the same uncertain event (plane or product). Suppose that each detector
forms and transmits a one-bit hypothesis concerning the event (e.g., friend/foe or
pass/fail) to a silent coordinator. Moreover, suppose that each detector may elect to
monitor the others’ transmissions before forming its hypothesis. Then, depending on

the detectors’ control laws (termed the design) and the particular event that occurs,
64 different dependencies are possible, 39 of which deadlock. For instance, D3 may
wait for D, and depending on D’s transmission, perhaps D:, but Da and D may
not wait for each other because then neither can act.
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Each of the three detectors may wait for: none, one, the other, or both detectors; hence there
are 43 possibilities. By case analysis, 39 of these deadlock.
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This example illustrates two key differences between sequential and nonsequential
systems, namely: i) that the order in which a nonsequential system’s actions occur
may explicitly depend on the system’s uncontrolled inputs and the actions taken, and
ii) that when two or more of a nonsequential system’s actions are interdependent, no
"causal" ordering of the actions is possible. Due to i), deadlock-free designs that ex-
ploit a system’s nonsequentiality can outperform those that do not (see [2], Appendix
A). This should not be surprising; unlike sequential systems, the dependencies among
a nonsequential system’s actions can change dynamically. Due to ii), the problem of
identifying these "good" designs is difficult to formulate as a well-defined stochastic
control problem. In particular, a design that deadlocks need not possess an expected
reward,2 and when it does, it may be mathematically optimal despite the fact that
it is "not causal." This raises the question: Under what conditions is it possible to
pose well-defined nonsequential stochastic control problems?

In a previous paper [2] (part I), we addressed this question by defining a nonse-
quential system to be "causal" when, independent of its design, it is deadlock-free.
We then identified a property of a potentially nonsequential generic stochastic con-
trol problem’s information structure (property CI) that is necessary and sufficient to
ensure deadlock-freeness, and sufficient to ensure that all of the problem’s designs
possess expected rewards. This result subsumes Witsenhausen’s design-independent
causality condition (property C, in [9], [11]) and provides a framework for the recursive
optimization of unconstrained nonsequential stochastic control problems [1].

In the present paper (part II) we explore the relationship between deadlock-
freeness and the properties of individual designs. Our work is motivated by the fact
that when the observations available to a nonsequential system’s decision-making
agents (e.g., the detectors) are specified independently, the resulting information
structure need not be causal in the C or CI sense, although many admissible de-
signs may be deadlock-free. This presents systems designers with a dilemma. If the
existence of noncausal designs is ignored, formal optimization may not be possible. On
the other hand, if the agents’ information is constrained to ensure design-independent
causality--by forcing sequentiality, for instance--the designer may limit the system’s
possible performance.

An obvious alternative to either "fix" is to identify necessary and sufficient condi-
tions for individual designs to be causal. Once again, Witsenhausen’s intrinsic model
[9], [11] provides the framework for our work. Within this framework, we identify
design-dependent analogues of the causality properties C and CI. Specifically, we in-
troduce properties of a design’s information partition (properties C* and CI*) that
are necessary and sutficient to ensure that the design is deadlock-free, and sufficient
to ensure that it possesses an expected reward. Moreover, we show by example that
there exist deadlock-free designs that cannot be associated with any deadlock-free
information structure.

The first result provides an intuitive, design-dependent characterization of the

cause/effect notion of causality, and suggests a framework for the optimization of
constrained nonsequential stochastic control problems. The second implies that for
N > 2 agents, this characterization is finer than existing design-independent charac-
terizations, including properties C and CI. Because our conditions are based on what
a nonsequential system’s decision-making agents may know as opposed to what they
may do, they are substantially different than those derived using event sequence-based

2 To compute the reward we must break the deadlock, but the reward may vary depending on

how this is done (see [2, 2.3]).
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representations such as finite-state automata [7], or Petri nets [8].
The remainder of the paper is organized as follows. In 2 we briefly review the

structure of Witsenhausen’s intrinsic model and our generic stochastic control prob-
lem. In 3 we introduce the design-dependent analogues of the deadlock-freeness,
well-posedness, and causality properties in [2] and [9], [11], and relate a design’s
possession of these properties to its deadlock-freeness and possession of an expected
reward. In 4 we examine the relationship between the design-independent and de-
pendent properties, and establish, by example, that the design-dependent properties
are finer. Section 5 contains our conclusions.

2. Problem formulation. The generic stochastic control problem considered
in this paper is identical to that in [2] (part I). As before, the problem is posed
within the framework of Witsenhausen’s intrinsic model [9], [11]. This model, which
is interpreted in [2], has three components.

1. An information structure :r {(f,B), (Vk,b/k),flk" 1 _< k < N} specifies
the system’s allowable decisions and distinguishable events.

(a) N E/N denotes the number of control actions to be taken.
(b) (ft, B) denotes the measurable space from which a random input w is drawn.
(c) (Uk,/dk) denotes the measurable space from which uk, the kth control ac-

tion, is selected. Card(Uk) is assumed to be greater than one, and 5/k is assumed to
contain the singletons of Uk. The measurable product space containing the N-tuple
of control actions, u := (u1, u2,..., uN), is denoted by (U,5/) :-’- (Hi=IN u,i i=IN 4(i).

(d) k C B (R)/ characterizes the maximal information that can be used to
select the kth control action.

2. A design constraint set Fc constrains N-tuples of control laws y :=

(/1,., ...,TN), k (Ft x U,7k) (Uk,L/k), k- 1,2,...,N, called designs, to

a nonempty subset of F 1-IN_I Fi, where F, k 1, 2,..., N, denotes the set of all
/L/k-measurable functions.

3. A probability measure P on (gt, B) determines the statistics of the random
input.

When posed within this framework the generic problem takes the following form [2].
(P). Given an information structure I, a design constraint set Fc, a probability

measure P, and a bounded, nonnegative B(R)L/-measurable reward function V, identify
a design in Fc that achieves sup E[V(w, u)] exactly, or within e > 0.3

EFc

3. Design-dependent properties. Problem (P) is well defined when it is: i)
causal, i.e., every / E Fc is deadlock-free; and ii) well posed, i.e., every Fc
possesses an expected reward. As in part I, our objective is to identify properties
necessary and sufficient to ensure that (P) is causal and well-posed. Here, however,
we permit the problem’s design constraint set Fc C F to be arbitrary, and focus on
developing design-dependent properties (properties that may only hold for specific
/ F), as opposed to design-independent properties (properties that hold for all
 er).

3.1. Deadlock-freeness, solvability, and solvability-measurability: prop-
erties DF*, S* and SM* The identification of the design-dependent analogues
of the deadlock-freeness property DF [2], and the well-posedness properties S (solv-
ability [9]) and SM (solvability-measurability [9]), is straightforward. To ensure the

3 The notation u indicates that u depends on w through / (see Definitions 2 and 3).
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deadlock-freeness of the control problem, it is necessary and sufficient to require that
each 7 E Fc possess property DF* (cf. [2, Def. 1]).

DEFINITION 1. A design 7 possesses property DF* (deadlock-freeness) when for
every w gt there exists an ordering of 7’s N control laws, say 71(), 2(),
/N(), such that no control action depends on itself or the control actions that follow;
i.e., u() does not depend on u() for j >_ i.

When a design 7 possesses property DF*, it is deadlock-free in the sense that,
given w, u1() can be determined; given w and u(), u2() can be determined; and
so on.

To ensure well-posedness, it suffices to require that each 7 F possess properties
S* and SM* (cf. [9, 4]).

DEFINITION 2. A design 7 possesses property S* (solvability) when for every w
there exists a unique u := (u1, u2,..., uN) U satisfying the system of equations

uk=7k(w,u), k=l,2,...,N.
DEFINITION 3. A design 7 possesses property SM* (solvability-measurability)

when 7 possesses property S*, and the solution map E ---+ U induced by the
system of equations u 7(w,u) (i.e., E(w) u, where u
measurable.

Properties S* and SM* ensure that y’s reward V(-,E(.)) is B-measurable, and
consequently, that E,[V(w, E(w))] is well defined.

3.2. Design-dependent causality: property C*. When all designs 7 Fc
possess property SM*, (P) is well posed. However, just as property SM need not imply
property C ([9, Thm. 2]), a design’s possession of property SM* need not ensure that
it is deadlock-free.

Example 1. Suppose, for instance, that

1Y(w’u’u’u) 0

(3.1) y2(, ?.t t2, t3)__ { 01 d31--else, 1,

and

I
73(ap,u1,u2,u3) 0

are the component control laws of an admissible design 7 (71, 72, 73) for a three-
agent problem in which

(3.2)

and

(3.3)

Because

Ft U U2 U3 {0, 1},

A1 A2 A3 {), {0}, {1}, {0, 1}}.

(3.4)
:=

{(0, 0,1, 0), (1, 0,1,1)},
4 This example is a variation of the example used to prove Theorem 2 of [9].
5 denotes the binary complement of u {0, 1}, i.e., u.
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"y possesses property SM*. Nonetheless, when w 1, "T depends on u2 and u3,
depends on u3 and u1, and .y3 depends on u and n. Accordingly, no agent can act
without precognition.

Clearly, Witsenhausen’s design-independent causality property C [9], [11] provides
a condition sucient to ensure that individual designs F do not experience such
deadlocks. This condition is not necessary, however, because it imposes constraints
on all events that the agents can distinguish (i.e., the sets in the information fields
ff, k 1, 2,..., N), not just those distinguishable given a particular design (i.e.,
those in the restriction of the information partitions J {[Tk]-(u) u V},
k=l,2,...,N, to the graph G:={(w,u): y(, u) u} of 7).

These observations suggest that for fixed 7 F, a design-dependent analogue to
property C might be constructed by substituting for and G for x U in C
(cf. [9, 5] or [11, 2]).

DEFINITION 4. A design 7 F possesses property c* when P0(G) and
there exists at least one map G SN such that for all s := (s, s,..., sa)
and k 1,2,...,N,

(3.5) J AiT o ]-(s) c (r_(s)) A G.
Here, as in [2] Sk k 1,2,...,N, denotes the set of all k-action orderings

(i.e., all injections of {1,2,..., k} into {1,2,...,N}); Tf S Sj, j 0,1,...,N,
k j, j + 1,..., N, denotes a truncation map that returns the ordering of the first j
agents of a k-action ordering (i.e., T restricts s G S to the domain { 1, 2,..., j} or to
when j 0); P, s := (s,s2,...,s) S, k 1,2,...,N, denotes the projection

U Uof (a onto (=1 (i.e.,

(3.6) Ps(w, u) := (w, us uS2,..., u),

g whe 

( )(3.7) (s) :: [P]- B (@Ns{)
i:1

s :: (s,s,...,s) 6 S, k 1,2,...,N, denotes the cylindrical extension of B

i=1 to x U.
To interpret (3.5) note that

o o A e }
is the restriction of the set of events distinguishable by agent s under G to the subset
of outcomes (w, u) G that are mapped by into action orders in which the order
of the first k agents is s S. Similarly, (T_(s))G is the restriction, to G
of the set of events that can be induced by w and the actions of the first k- 1 agents
in s. Accordingly, (3.5) asserts that the set of events that agent s can distinguish
under , for known G, given that the ordering of the first k agents s determined by

is s, must be a subset of the events that can be induced on G by w and the actions
of the first k- 1 agents in s.

Consider, for instance, the design in Example 1. Because for all k 1, 2, 3, and
s S, (T_l(s)) G is the power set of G, all events that can be distinguished
by s under any G $3 can be induced by w,...,u-. Hence stisfies
property c*.
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Although a design’s possession of property c* implies that it possesses an expected
reward (just as 2-’s possession of property C implies that all designs 7 E F possess
expected rewards [9]), property c* does not imply deadlock-freeness.

LEMMA 1. For fixed / F, property c* implies property SM*, although property
c* need not imply property DF*.

Proof. See Appendix A. [3

The proof that c* implies SM* parallels the proof that C implies SM in [9, Thm.
1]. Property c*’s failure to ensure deadlock-freeness can be explained as follows.
Property C is too restrictive to characterize the deadlock-freeness of individual designs
because it requires that there exist a causal ordering for all outcomes in ft U, not
just those that can occur (i.e., the outcomes in G). Property c* is not restrictive
enough because, for fixed s Sk, it implicitly permits the skth agent to possess
information about its own action and the actions of its successors in s--i.e., because
the domain of is G, ff ["1 [TN ]-1(s) unavoidably constrains ff along axes
corresponding to agents that are not among the first k- 1 agents in s. For instance,
as previously noted, the design in Example 1 trivially satisfies property c* although
it is not deadlock-free.

One compromise between these extremes is to continue to restrict the domain of
to G7. However, another is to only require, for all s Sk and k 1, 2,..., N, that

the inclusion in (3.5) hold when sk and ’(T_ l(s)) are restricted to, respectively,

(3.9) [r’)T2_l (s)]-l (2T_l (s) ([Tk
N o )]-1(8)))

and

(3.10)

the smallest subsets of ft x U containing [Tv o)]-1(8) and G that can be constructed
without knowledge of the decisions of agents that are not among the first k- 1 agents
in s.

DEFINITION 5. A design / F possesses property C* (causality) when 7)0(G)
ft, and there ezists at least one mapO G SN such that for alls := (81,82,... ,sk)
S and k 1,2,...,N,

(3.11)

y’s [TRT_ (s)]-I (VT_I (s) ([T2 o %]-1(8)))
< -(Tkk_ (8))A [VT_(s)]-I(T_(s)(G))

Because the restriction of ffk to [PT_I(S)]-I(PT_I(S)([TN O )]--1(8))) in (3.11)
does not provide information to agent s concerning its action or the actions of its suc-
cessors, in addition to ensuring that a design possesses an expected reward, property
C* also implies deadlock-freeness.

THEOREM 1. If a design / F possesses property C*, then

(i) possesses property SM*, and
(ii) /possesses property DF*.

Proof. See Appendix B. [3

The proof of (i) follows from Lemma 1 and the fact that property C* implies
property c*. Part (ii) is an immediate consequence of C*’s definition.
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3.3. Design-dependent causality: property CI*. By Theorem 1, when all
7 E Fc possess property C*, problem (P) is causal and well posed. It is not clear,
however, that the converse implication holds. In particular, it would seem that the
measurability constraints that property C* imposes on are unnecessary to ensure
deadlock-freeness. Regardless of ’s measurability, 7 should be deadlock-free if
orders the agents, for all outcomes (w, u) E G, such that at (w, u), each agent’s
action only depends on w and its predecessors’ actions. This suggests the following
design-dependent analogue of property CI.

DEFINITION 6. A design ",/ F possesses property CI* (causal implementability)
when P(G) f and there exists at least one map q2 G - SN such that for all
k 1,2,...,N, and (co, u) G,
(3.12) fl [ [PTV_I(8)]-I(PT_I(s)(CO, u)) C {O, [7)T_l(s)]-I(7)T_1(8)(W, U))}

when s := (s, s.,...,Sy) (co, u).
As in property C*, for fixed y F, the in property CI* is a function that maps

every outcome in G into an N-agent ordering. Unlike property C*, however, this is
not constrained to be measurable in any sense. Instead, for all outcomes (w, u) G,
the cylinder set

(3.13) [PT:_I()]-I(PT (s)(w,u))- [’)Tff_l(s)]-l(co, uSl,...,Usk-)
induced on f x U by co and the actions of the first k- 1 agents in s := (81,82,...
sN) (co, u) is constrained to be a subset of all events containing (co, u) in the
information partition 7k induced by the skth agent’s control law 7k--i.e., no event
in 8 containing (w,u), may depend on u, uk+l, or usN (el. [2, Def. 2]).
Accordingly, property CI* ensures that for all outcomes (co, u) E G, there exists an
action order s := (Sl,S.,...,SN) (w,u) such that for all k 1,2,...,N, the
skth agent’s action at the point (co, u) does not depend on itself or tim actions of its
successors in s.

Clearly, the design in Example 1 does not satisfy this condition--when co 1,
all three agents’ actions are interdependent. Such is not the case in the following
three-agent example.

Example 2. Suppose that

(3.14) ft U U Ua [0, 1],
(3.15) /3 b/1 =/,/2 5/3 Borel[0, 1],
and

(3.16)

0
,.)/1 (co, ul, U2, t3)

1

/2 (co, tl, t2, ,it3) {
,.)/3(co,?tl, U2, 3). {

when co [0, ),
when(u)[- 1][1/2 1]2’
else

when w [1/2, 1],
when (CO, It 1) [0, 1/2] [1/2, 11,
else,

0 when co 6 [0, ),
1 else

are the component policies of an admissible design 7 (, 7, /3). It is straightfor-
ward to verify that

(3.17) 790(G") V0 ([0, ) x {(0, 1, 0)} (.J [1/2, 1] x {(1, 0, 1)})
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and that (3.12) is satisfied for all k 1, 2, 3 and (co, u) E G when

(3.18) (w u u2 u3)= (1, 2, 3) whenwe [0,),
(2, 1, 3) else.

Hence possesses property CI*.
Property CI* is of interest because it implies property SM* and provides a com-

plete characterization of ?’s deadlock-freeness.
THEOREM 2. Let be an arbitrary design in F. Then

(i) possesses property SM* if / possesses property CI*, and
(ii) " possesses property DF* if and only if possesses property CI*.

Proof. See Appendix C. 1
Theorem 2 ensures that (P) is causal and well posed if and only if all designs
Fc possess property CI*. Its proof, like that of property CI [2], hinges on the

following observation. When is an order function such that 7 possesses property
CI*, for arbitrary but fixed (co, u) ft x U, and k 1, 2,... ,N, (3.12) and the fact
that 5/k contains the singletons of Uk imply that, at the point (co, u), 78k s (co, u),
does not depend on the skth, Sk+lth, or sNth components of u. This suggests that for
fixed / F, a unique B-measurable solution E ft U to the closed-loop equation
u "(w, u) can be obtained by the following recursion.

Fix co P(G) and u E G]. Let r g be an arbitrary reference element, let
rv and 7ra denote the canonical projections of ftx U onto, respectively, U and ft, let
L :ft x U -- ftx U be defined as

(3.19) :=

and let L. Ftx U -- Ft x U be a k-fold composition of L--i.e.,

cI o... o

k times

Although (3.19) and (3.20) are nearly identical to (3.6) and (3.7) of [2], because
the domain of is Gv (as opposed to ftx U), the arguments following (3.7) in [2] no
longer suffice to ensure ru o Lv is the closed-loop solution map Ev induced by /. In
particular, because LT(co, r) need not belong to G for all r U and k 1, 2,..., N,
a somewhat different argument is required to show that at least one agent’s decision
becomes invariant after every iteration. Formally, we have the following.

1. After one iteration, the components of LT(co, r corresponding to agents
whose actions at the point (co, r) do not depend on r become invariant to subse-
quent iterations. By property CI*, the set A1 (co) c {1, 2,..., N} indexing (by agent)
these components is nonempty since, at the point (co, u), at least agent ((w, u))’s
action does not depend on r. Moreover, since r is arbitrary,

(3.21)

for all 4 (co).
2. After two iterations, the components of L(w, r) corresponding to agents in

{ 1, 2,..., N} \ A (w) whose actions at the point L(w, r) do not depend on the com-
ponents of agents in { 1, 2,..., N} \A (co) become invariant to subsequent iterations.6

6 For sets A, B C X, A \ B := {x E A :x B}, the complement of B relative to A.
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By property CI*, the set A.(ca) indexing (by agent) these components is nonempty
when card(Al(W)) < N since, at the point (w, u), at least agent (p(w, u))j’s action,

(3.22) j rain {m E {1,2,... ,N}: (b(w, u)), Zl(ca)}

does not depend on the components of agents in {1,2,... ,N} \ Al(w), and by (3.21),
the remaining components of (w, u) are identical to those of L(w,r). As before,
since r is arbitrary,

(3.23) 7(L(w,r)) 7)(L(w, u))- Pi(w, u)

for all/E A1 (w)U A2(w).

k. After k iterations, the components of L(w,r) corresponding to agents in

{1,2,...,N} \ -[.J= A(w) whose decisions at the point L_(w,r) do not depend

Uk-1 A(w) become invariant to subse-on the components of agents in {1,2,..., N}\ i=l

quent iterations. By property CI*, the set Ak(ca) indexing (by agent) these compo-
k-1nents is nonempty when card(Ui=l Ai(ca)) < N since, at the point (ca, u), at least

agent ((ca, u))j’s action,

(3.24) j--min m {1,2,...,N}" ((w,u))., Ai(ca)
i--1

does not depend on the components of agents in { 1, 2,..., N}\ -1Ui= ,4i(ca), and by the
preceding iterations (e.g., the remaining components of (ca, u) are identical
to those of L (ca r). Once again, since r is arbitrary,k-1

(3.25) 7)(L(w, r)) p(Lk(ca, u))

for all U,i 4.i(w).

And so on

Because property CI* ensures that, until all agents’ components are invariant,
at least one new component becomes invariant after every iteration, the recursive
procedure must converge in, at most, N iterations--i.e., the unique solution to the
closed-loop equation u (ca, u) is ru(LN(W, r)), where r G V is an arbitrary "seed"
that starts the recursive solution process. Because r, ru, and y are, respectively,
B(R)bl/B-, B(R)Vt/bl- and B(R)b//b/-measurable, L, and by composition, L and 7cuOLN,
are, respectively, B (R) bl/B (R) ld-, B (R) bt/B (R) it-, and/3 (R) N/U-measurable. It follows,
because all u-sections of B (R)/A/b/-measurable functions are B/N-measurable, that the
induced solution map E7 ru o Lv I is necessarily B/N-measurable.

The preceding recursion has the same physical interpretation as the recursion in

[2]. If for all k we ignore all components of 7cu(L(w, r)) except those corresponding
to the agents indexed in A(w), the preceding recursion outlines the partial ordering
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of agent actions that a passive observer would record, given co, if the design y were
implelnented in a "maximally" concurrent fashion. Although the recursion implicitly
demonstrates that property CI* implies property DF*, it is far easier to establish
sufficiency by a direct appeal to property CI*. For all (co, u) E G and k 1, 2,..., N,
property CI* implies that at the point (co, u), agent sk’s action does not depend on the
skth, Sk+lth, and sgth components of u. Consequently, no agent’s action depends
on its own action or the actions of its successors--i.e., y must be deadlock-free.

The fact that must deadlock when property CI* fails to hold is also a direct
consequence of property CI*’s definition. When 7)0(G) =/= ft, for some co E
the closed-loop equation has no solution; consequently, for that co, / has no imple-
mentation (let alone a deadlock-free implementation). Alternatively, suppose that
there exists at least one outcome (co, u) G such that for all N-agent orderings
s := (sl,s2,...,sN) SN, (3.12) fails for at least one k {1,2,...,N}, say
Then, for all orderings s SN, the sksth agent’s action, at the point (co, u), always
depends on itself and or the actions of its successors in s, and once again, y is not
deadlock-free.

3.4. Are properties C* and CI* equivalent? By Theorems l(ii) and 2(ii),
property C* implies DF*, which in turn implies property CI*. Consequently, we have
the following.

COROLLARY 1. Property C* implies property CI*.
Proof. See Appendix D for a direct proof. [3

Are properties C* and CI* equivalent? When N 1, the answer is yes (this
follows from Definition 7 and Theorem 3). When N > 1, it is not known (in gen-
eral) whether property CI* implies property C*. In particular, attempts to establish
a design-dependent analogue of Corollary 2 in [2] (i.e., that CI* implies C* when
N 2) are complicated by the fact that S* need not imply CI* (or C*) under any
circumstances (cf. [9, Thin. 2]). Consider, for instance, the following one-agent
example.

Example 3. Suppose that ft {0, 1} and U {0, 1, 2}, and let

(3.26)
2 if(w,u) E {(1,1),(1,2)},

7(w,u)= 1 if(w,u)--(1,0),
0 else.

Because

(3.27) {(o,o), (1,2)},

possesses property S*.
{(1, 0)}; consequently,

But [7)0]-1(7)(1,2))= {(1,0),(1,1),(1,2)} and

(3.28) []-1(1) [TPO]-(’PO(1,2))= {(1,0)} {, {(1,0), (1, 1), (1,2)}}.

Hence 7 does not process property CI*.
Properties CI* and C* are equivalent in at least two important cases" when y is

sequential (Theorem 3), and when the measurable structure underlying (P) is discrete,
i.e., when B(R)b/ contains the singletons of ft x U and t x U is a countable set (Theorem
4).
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DEFINITION 7. A design / E F is said to be sequential when property CI* holds

for some constant order function
THEOREM 3. All constant order functions g2 such that a design F possesses

property CI* are order functions such that possesses property C*.
Proof. See Appendix E.
THEOREM 4 When t and Uk k 1 2 N, are countable sets, and B contains

the singletons of , all order functions such that a design / F possesses property
CI* are order functions such that / possesses property C*.

Proof. See Appendix F.
When y F is nonsequential and (P)’s measurable structure is not discrete, it is

far more difficult to prove that property CI* implies property C* because, even if
possesses property C*, order functions for which /possesses property CI* need not
be order functions for which possesses property C*.

Example 4. Consider again the three-agent design of Example 2. Although the
design y defined in (3.16) possesses properties CI* and C*, when A is any nonmea-

surable subset of [0, 5) (such a set always exists [4]),

{ (1, 2, 3) when w [0, )/A,
(3.29) (c, u1, u2, u3) (3, 1, 2) when w A,

(2,1,3) else

is an order function such that possesses property CI*, but not property C*. To see

this, note that (3.12) holds for all k 1,2,3, and s E Sk, whereas (3.11) fails, for
instance, when k 1 and s- 3 G $1, since

[7)O]-1()0([T3 o ]-1(3)))- A U

(3.30)

The fact that there exist nonsequential designs 7 F and order functions such
that 7 possesses property CI*, but not property C*, implies that general proofs that
property CI* implies property C* (if such exist) must be constructive--i.e., to prove
that property CI* implies property C*, given a such that 7 possesses property CI*,
but not property C*, we must be able to construct a new order function (obviously
distinct from ), such that 7 possesses property C*. To date, no such constructions
are known.

4. Design-independence vs. design-dependence. In this section we briefly
examine the relationships between the design-independent properties introduced in

[2] (part I) and the design-dependent properties introduced here (part II).

4.1. Basic relationships.
THEOREM 5. Let :r be an arbitrary information structure. Then

(i) all F possess property S* if and only if : possesses property S,
(ii) .all / F possess property SM* if and only if : possesses property SM,
(iii) all / F possess property CI* if and only if : possesses property CI, and
(iv) all " F possess property C* if :r possesses property C.
Proof. See Appendix G.
Parts (i) and (ii) are immediate consequences of the definitions of properties S,

SM, S*, and SM*. Part (iii) follows from the fact that properties CI and CI* are
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necessary and sufficient conditions for, respectively, all designs -y E F and particular
designs "y E F, to be deadlock-free. If properties C and C* were known to provide
necessary and sufficient conditions for, respectively, all designs and particular designs
to be deadlock-free (as is the case, for instance, when ft and U are countable sets and B
contains the singletons of ft), the proof of part (iv), with the if replaced by if and only
if, would also be immediate. In the absence of such knowledge it is necessary to prove
(iv)--and if possible, the converse of (iv)--constructively. The forward construction
is straightforward. Given a such that Z possesses property C, simply let IG
(the restriction of to G) for each / F. The reverse construction (if such exists)
is not obvious since there does not seem to be any way of relating the set of order
functions

(4.1) U {" "y possesses property C* given ’}

to an order function such that Z possesses property C.

4.2. Design-dependent characterizations are finer. By Theorem 5, an in-
formation structure Z cannot possess the design-independent property CI (respec-
tively, C, SM, or S) if any one of its designs "y F fails to possess the design-dependent
property CI* (respectively, C*, SM*, or S*). This suggests that the design-dependent
properties provide a finer characterization of a design’s closed-loop solvability and
deadlock-freeness, than the design-independent properties.

THEOREM 6. For N > 2, there ezist designs possessing property C* (and conse-
quently, properties CI*, SM*, and S*) that cannot be associated with any deadlock-free
information structure possessing property S, let alone properties SM, CI, or C.

Proof. Since C* =, CI* = SM* = S* (by Corollary 1, Theorem 2, and Definition
3), and since C =, CI = SM = S (by [2, Cot. 1 and Thm. 2] and [9, 4]), it suffices
to construct a design possessing property C* that cannot be associated with any
information structure possessing property S.

Ezample 5. Consider a nonsequential/" of the following form:

N =3,
U U2 U3 {0, 1},

(4.2) /1 /A2 U3 {1), {0}, {1}, {0, 1}},
,ff’l {, {(CO, ). CO 0}, {(CO, t)" CO 1}, ftx U},

{o, 0},

(4.3) {(w, u)" max(&l2a, ulua) 1}, ft x U},
and

O,{(w,u)" wu=0},{(w,u)" wu2=l},ftxUJ.
Since the closed-loop equations for the design (1, 2, 3),

1 w--l,@ (co, u1, u2, ua) 0 else,

1 max(cgga,ulua) 1,(4.4) 2(co, ul, it2, U3) 0 else,
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1 con2 1,3 (w, u u2, u3) 0 else,

exhibit two distinct outcomes when w 1---i.e.,

(4.5)
{(, ). (,) }
{(0, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)}-- does not possess property S*. Consequently, no information structure (includ-

ing 2-) that can be associated with can possess property S (Theorem 5)--i.e., no
information structure

(4.6) r.-- {(t,B),(Uk,b/k),k" 1 <_ k<_3}

such that

(4.7) [k]-l(tk)- fl C , 1 < k < 3

can possess property S.
Consider, however, the design y (,1, 2, 3),

(4.8)

,.)/1(CO, ?_t 1, t2, u3 _{ O1 coelse,--1,
v (oo, 1,,) (, 1,, ),

This design possesses property S*--i.e.,

(4.9)
o {(, ). v(, ) }

{(0, 1, O, 0), (1, O, O, 0)}.

Moreover, when

(4.10) (CO tl t2 3) { (1, 3, 2)
(1,2,3)

(CO, ?_t U2, U3) (0, I, O, 0),
(CO, t t2, 3) (1, 0, 0, 0),

it can also be shown to possess property C*. r But for all k 1, 2, 3, / and @
both induce the same information subfield ,7 (i.e., J [7]-l(b/) [@]-l(b/),
for all k 1,2,3). Accordingly, even though "y possesses property C*, it cannot
be associated with any information structure possessing property S. This proves the
theorem. [3

Heuristically, the three-agent information structure that appears in the preceding
example can be viewed as a synthesis, parameterized by agent 1’s (O)-measurable
decisions of two different two-agent information structures for agents 2 and 3. The
first of these structures, ZC, corresponds to the restriction of agent 2 and agent 3’s
information subfields to the ul-sections of ,72 and 3 induced when u 0--i.e.,

(4.11) 2-c {(ft, B), (Ui,bli),Jil,:o 2 <_ <_ 3},
7 In this case it is somewhat easier to check property CI* and then apply Theorem 4.
8 By (4.2), j1 C 9(O) := {O, {0} x U, {1} x U,a x U}.
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where

(4.12)

and

(4.13)

gl--0 {o, {(,,). 0},

{(co, u,ua) &2a-1},xU2 xUa}

The second of these structures, ZNS, corresponds to the restriction of agent 2 and
agent 3’s information subfields to the ul-sections of2 and if3 induced when 1 1-
i.e.,

(4.14)

where

(4.15)

and

zNS {(,), (g li) ji u1=1 2 < < 3}

Jl= {o, {(,,). o},

{(co, u2,ua), ua=l},ftU xga}

Jl= {o, { (, ,). 0},

(4.16) {(co, u2,u3) cou2 1},ft x U x U3}.
It is not dicult to verify that zc possesses property C when

(417) (w, u2 u3)_ { (3,2) w--0,
(2, 3) else.

To see this note that

(4.18) j2 ill=o [T O ]--1(2) {, {0} X U2 X U3

and

(4.9)

NS, however, does not even possess property S. For instance,

{(,,). (,,) (,)}
(4.20) { (0, o, 0), (, 0, o), (, , 1)}

when

(4.21)

.3 lul=0 N IT12 1/)]-1(3

} c =()I=o

1 ua--1,72(co, , ua) 0 else,

1 con2 1,
7a(w, u, ua) 0 else.
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It follows, because agent l’s decision determines whether agent 2 and agent 3’s inter-
dependence is characterized by Iv (u 0) or INS(u 1), that agent l’s control
law determines whether nontrivial designs for the synthesized system (4.4) possess
property C* or do not possess property S*. Specifically, all designs such that

(4.22) 1 (02, U U
2

It3) 1

or

1 w=l,(4.23) 3’l(w’u’ u2’ u3)- 0 else,

and neither 2 nor 3 is a constant policy (there are 8 such designs since card(57k) > 2
and card(Uk) 2 for k 2, 3), do not possess property S*. All remaining designs
(there are 56) possess property C*.

Clearly, the preceding heuristic can be used to synthesize far more complicated in-
formation structures that fail to possess property S, but nonetheless admit nontrivial
designs possessing property C*. For instance, noncausal and causal 2-agent infor-
mation structures can be combined, when parameterized by two additional agents’
decisions, to form a 4-agent information structure that fails to possess property S but
admits nontrivial designs possessing property C*; similarly, this 4-agent information
structure and a second 4-agent information structure can be combined, when param-
eterized by three additional agents’ decisions, to form a 7-agent information structure
that fails to possess property S but admits nontrivial designs possessing property C*;
and so on. It follows that there exist a myriad of designs whose deadlock-freeness
and closed-loop solvability can not be characterized using any design-independent
property.

5. Conclusions. In this paper we have introduced conditions (properties C*
and CI*) necessary and sufficient to ensure the deadlock-freeness (property DF*)
and measurable closed-loop solvability (property SM*) of a nonsequential design 7
represented within the framework of Witsenhausen’s intrinsic model. We have also
shown, by example, that there exist nontrivial, deadlock-free designs that cannot be
associated with any deadlock-free information structure.

Our conditions, which are the design-dependent analogues of conditions in [2] and
[9] (properties CI and C), provide an intuitive characterization of the cause/effect
notion of causality in terms of the events that a system’s decision-making agents can

distinguish, and suggest a framework for the optimization of constrained nonsequential
stochastic control problems.

The existence of deadlock-free designs that cannot be associated with any deadlock-
free information structure is not surprising. Many network routing, flow, and concur-

rency control systems are seen to be deadlock-free under some designs and deadlock-
prone under others. In fact, unless the specification of a nonsequential system’s
agents’ information subfields is coordinated (in practice physical constraints, com-

plexity and/or cost may preclude such coordination) it is unlikely that the system’s
information structure will possess any design-independent property. Moreover, as

illustrated by Example 5, the deadlock-freeness and closed-loop solvability of the ad-
missible designs for such systems may hinge on the control laws of a small fraction
of the agents. The only difference between the designs and of Example 5, for
instance, is that ’s decision is the binary complement of /’s decision. Nonethe-
less, although does not possess any design-dependent property, , possesses all of the
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known design-dependent properties. Simply put, the inappropriate use of information
by a single agent can give rise to deadlocks.

One final note. In [9, p. 159] it is remarked that the "physical interpretation" of
information structures possessing property SM, but not property C, "appears difficult"
(the difficulty being the host of paradoxes that arise when effects precede their causes).
In light of Example 5, it would seem, rather, that it is the physical interpretation of
designs possessing property SM* but not property CI* that may be difficult.

Appendix A.
Proof of Lemma 1. Fix -y E F and suppose that b G -+ SN is an order function

such that -y possesses property c*. Except for the restriction of ’s domain to G, the
proof that c* implies SM* parallels the proof that C implies SM in [9, Thm. 1]. Note,
however, that unlike Witsenhausen’s kth umpire update map [9, 7], the analogous
update map, M G -+ G with

(A.1)/)(M (co u)) P(co, u)k

when a ((co, u)),
when a ((co, u))j,
otherwise

j=k+l,...,N,

for all c E {, 1,... ,N}, cannot be used to establish ’s deadlock-freeness because
the restriction of M2 to G permits the umpire to know the actions of agents before
they have acted.

To see that c* need not imply property DF*, note that although the design in
Example 1 is not deadlock-free, for all : G Sa, it trivially satisfies property c*
because, as pointed out in 3.2, for all k 1, 2, 3, and s S, 9C(T_l (s)) G is the
power set of G (see (3.4)). n

Appendix B. Proof of Theorem 1. To prove Theorem 1 we need the following
facts.

FACT 1. For all s S, k 1, 2,... ,N, if 7)s(co, u) 7)(, ft) for some (co, u)
and ((, ft) G, then no set in (s) G’ contains (c, u) but not ((, ).

Proof of Fact 1. Suppose that the fact fails for some s S, (co, u) G, and
(c, g) E G. Then because

there exists a set A B (R) (@i__1 b/8) such that

and

(B.3)

(co, ) [Ds] -1 (A) G

(c), 2) [7)s]-l(A) (I.
It follows that co and c, or least one of the slth through sth components of u
and , must differ. But 7)(co, u) Ps(c,g), a contradiction. Accordingly, the fact
holds. [q

FACT 2. Property C* implies property c*.
Proof of Fact 2. Fix -y F and suppose that b is an order function such that -y

possesses property C*. Because property C* ensures that Po(G) ft, it suffices to
show that is also an order function such that /possesses property c*.
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The restriction of (3.11) to G yields the desired resultm(3.5) of property c*--if,
for all k 1,2,...,N, and s E S,

(S.4)

By construction, the right side of (B.4) is a subset of the left. Suppose that the
converse inclusion fails for some k E {1, 2,..., N} and s G Sk. Then there exists an
outcome

(B.5) (CO, t) [’)T_ (s)]-I ()T_ (s) ([T o]-1(8)))G"
that is not in [Tv o )]-1(8). Moreover,

(B.6)

It follows from (B.6) that there exists an outcome (w, u) [TN o /)]-1(8) such that

(B.7)

and (w, u) and (&, 2) differ in one or more of the components of u not indexed in

TL().
But this is impossible. By property C*, the sets

(B.8) [,.)/sk ]--l(sk)N [-)Tkk_ (s)]--i (’)T_ (s)([T o @1-I (8)))N G

and

(B.9) []-() N [*_ ()]- (*_ ()([Ty o ]- ())) NG

are elements of 9r(T_l(S)) n Gz. If 12sk usk, [s]-l(s) and [/s]-l(ts), and
consequently the sets in (B.8) and (B.9), are disjoint. Since (&, 5) and (w, u) satisfy
(B.7), this contradicts Fact 1.

Similarly, if, for g- Tff ((w, )), j > k,

(B.IO)

and # w%, then by property C*,

(B.11) [o’ ]-’ () N [’h<, ()]-’ (W-, ()([T o V.’]-’ ())) N G,

and

[]-’() N [PT]_ ()]--i (pT]_ (’{)([T70 ]--1 ())) N G,

are disjoint sets in (T]_, (g))NG. Since (c, 2) and (w, u) satisfy (B.10), Fact 1 is
once again contradicted. It follows, by induction, that (w, u) (&, g). Hence, Fact 2
is proved. [3

Proof of Theorem 1. Fix -y F and suppose that b G SN is an order
function such that / possesses property C*. The proof of (i) follows from Lemma 1
and Fact 2.
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To prove (ii) it suffices to show that all agents can act without precognition
for all outcomes in G. Fix (co, u) E G. The first agent to act under b is agent
81 TIN(/)(co, t)). Since T(sl) !D, property C* implies that

(B.13) Y’ n []-(7([T1 W]-())) c ;()n []- (7o(a,)).

Because

(B.14) {co} X U E [)O]-I()o([TIN o ]-I(81)))C

and

(B.15) {, {}

the restriction of (B.13) to {co} x U can be rewritten as

(B.16) J’)’Sl ’ ({co} }K U)C {O, {co} U}.

But (B.16) implies that at the point (co, u), ,sl does not depend on u (recall that
1 [/sl]_l (us, )); consequently, given co, agent sl acts without precognition.

Now, suppose that k- 1 agents (agents s,s2,... ,sk-) have acted without pre-
cognition and in accordance with (i.e., s TV_l(g0(co, u))). The kth agent to act
under is agent sk (T((w,u))) Since Tk_l(S,S s, property C* implies
that

(B.17) s f-1 [7,]-(**([T o ]-(, ))) c () FI[**]-(**(G)).

Because

(B.18) [’s] -1(co, us,..., tsk-)[’s] -l(s([TkN o 2] -1 (8, 8k)))
C[s]- l(ps (G’r))

and

(B.19)

J:’(s) n [ps]-(co, u, uk-1)

{O,[s]-l(co, uSl,...,uS-l)},

the restriction of (B.17) to [’)s]-I(co, ts u*-1) can be rewritten as

n [7),]-l (w, u*l, u- C

But (B.20) implies that at the point (co, u), * does not depend on the skth, S+lth,
or sNth components of u; consequently, when nature and agents Sl, s2,. sk_’s

actions are (w,u**,...,uS-), agent s acts without precognition. It follows, by
induction, that all agents act without precognition. Thus y possesses property DF*
and the theorem is proved. E]
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Appendix C.
Proof of Theorem 2. (i). Pixy e F, let G :- ((co, u) eft U y(co, u)

u}, and suppose that is an order function such that possesses property CI*.
By assumption, the closed-loop equation (co, u) u admits at least one solution

u e G] := {u E U (w,u) u} for allw EFt (i.e., 7)0(G") [); hence, to
prove that 3’ possesses property SM*, it suffices to show, for each co ft, that this
solution is unique, and that the mapping E Ft U induced by these solutions (i.e.,
E(w) u) is B/N-measurable (cf. Definitions 2 and 3).

Uniqueness. Fix co e ft and u e GI, and let s := (sl, s2,..., 8N) @(CO, Uw).
Let v denote the canonical projection of [ U onto U, let L :ft U U be
defined as in (3.19) and (3.20). Clearly, u v(LN(co, u)) for all u GI, including

u. Accordingly, to establish the uniqueness of u, it suffices to show that

(C.1) (co, u) LN(, r)

for all r E U (since GI c U), or equivalently, that

(c.2) 7)Tf_ (s)(W, U) 7)Tv_ (s)(L (co, r))

when k N + 1.
Fix r U. When k 1, TN_i(s) (9 and

7)(, 5) ()
v0(w,-(L_ (co, r)))
Ve)(LN(co, r)).

Suppose, for k > 1, that (C.2) holds. Since property CI* holds with order function

(C.4) fl [ [7)Tf_()]-I(7)T2,_()(w, u)) C {, [)T_I(s)]-I(T_(s)(co, tw))}.

Equation (C.4) and the fact that L/k contains the singletons of Uk (2, l(c)), implies
that at the point (w,u) G ft U, ,s does not depend on the skth, s+th,
or sNth components of u (recall that ff [-]-I(U)). Accordingly, (C.2)
implies that

y (co, u) /k (Lv (w, r)),

and consequently, that

(C.6)
P:, ()(, 5) (v:,_, ()(, 5), (, 5))

(7)T_()(LN(w,r)),yS(LN(w,r)))
7)Tf()(LN(W,r)).

It follows, by induction, that (C.2) holds for all k 1, 2,..., N -4- 1; hence, (co, u)
LN(W, r) for all r U, and consequently, the unique solution u to the closed-loop
equation u /(w,u) is ru(Lg(co, r)), where r e U is the (arbitrary) "seed" that
starts the recursive solution process.
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Measurability. Fix r E U and let u and denote, respectively, the canonical
projections of t U onto U and t. To establish the B/b/-measurability of the induced
closed-loop solution map E gt --* U, it suffices to show that the u-section of ru oLv
rv o Lvlr is B/b/-measurable because, for fixed r,

E(w) (u o LNIr)(w) (7u o LN)(w,r).

To begin, note that (3.19) implies that

L(w, r) ((w, u), "(w, r)).

By definition, r and ru are, respectively, B(R)bl/B- and B (R)//5/-measurable. Like-
wise, ?k, k 1,2,... ,N, is ilk/b/a-measurable. Accordingly, 7 := (,1,72,... ,.N)
is B (R) 5//b/-measurable (since J C B (R) b/ for all k). It follows that L and,
by composition [4, Thm. 13.1] L and rv o Lv are, respectively, B (R) bl/B (R) bl-
/ (R)//B (R) b/-, and B (R) 5//b/-measurable. But all u-sections of B (R) 5//b/-measurable
functions are B/b/-measurable [4, Thm. 18.1]; consequently, E rv o Lvl is

B/N-measurable.
(ii). Sufficiency. Fix E F, and suppose that is an order function such that "possesses property CI*. To prove that ? is deadlock-free it suffices to show that for

each w gt, the agents can be ordered such that no agent’s action depends on itself,
or actions of its successors.

Fix 0 f. By (i), the closed-loop equation u (w, u) possesses a unique
solution u U. Let

(81,82,... 8N) )(, ttYw).

Since property CI* holds with order function , for all k 1, 2 N,

(C.10) flsk [T)Ty_I(s)]_I(T)Ty_I(s)(w, u)) C {g), [7)Ty_I(s)]-I(T)Ty_I()(O, U))}.

But (C.10) implies that at the point (w,u) G’, /k does not depend on the
skth, S+lth, or sNth components of (w, u) (recall that J’sk := []-I(U));
consequently, for all k 1, 2,..., N, the sth agent’s action does not depend on the
actions of agents s, s+l,... and SN. This proves sufficiency.

Necessity. Fix - E F, and suppose that /does not possess property CI* for any
order function . Then P(G) , or there exists at least one outcome in G, say
(*, u*), such that for all N-agent orderings s := (s,s,... ,SN) SN, the inclusion

(C.11) Y [ [Y)Tff._(s)]-l(’)Tff. (s)(2*, U*)) C {, [)T_,(s)]-l(’PT_(s)(02*, U*))}

fails for at least one k {1, 2,..., N}. To prove necessity, it suffices to demonstrate
that 7 is not deadlock-free in either case.

When P(G) :/: f, for some w gt, the closed-loop equation 7(w, u) u has no

solution; consequently, for that w, 7 has no implementation (let alone a deadlock-free
implementation). When there exists an outcome (w*,u*) G such that for every
N-agent ordering s SN, (C.11) fails for at least one k {1,2,...,N} for fixed
8SN,

y.’k* N [)TkN._ (s)]--I (’)T._ (s) 02.’ t* ))

(C.12) {, [PT_,(s)]-(PT_,(s)(w*, u*))}
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for some k* E {1,2,...,N}. But (C.12) implies that at the point (w*,u*), ys.
depends on the actions of agents that have yet to act under s; consequently, agent
sk* cannot act without precognition under s. Since the same argument applies for all
8 E SN, / must deadlock. This proves necessity. C]

Appendix D.
Proof of Corollary 1. Although this corollary is an immediate consequence of The-

orems l(ii) and 2(ii) (property C* property DF* property CI*), it is instructive
to prove it directly.

Fix 7 F and suppose that is an order function such that 7 possesses property
C*. Since property C* ensures that 7)(G) t, it suffices to show that @ is also an
order function such that possesses property CI*--i.e., that (3.11) of property C*
(with s %N(p(co, u)) Sk), implies (3.12)of property CI* (with s @(co, u) SN)
for all (co, u) G and k 1, 2,...,N.

Fix (co, u) E G and k {1,2,...,N}, and let

(D.I)

Since %N(s) S and Tff_ T_ o T, (3.11) of property C* implies that

(D.2)

s"’ N [2_()]-(v2_()([r2 o 1/)]--1 (Tr(8))))

Restricting both sides of (D.2) to

[Pr2_ ()]- (P2_ ()(, ))

yields the desired result--(3.12) of property CI*--if

(D.4) PT2_ (s) ]-I (’I’AT._I (S) (co,

and

S(T2- ()) N [*()]-(_ ()(G)) N [P2_, (s)] -1 (PTr_ (s)(co,
{0, [Dr._l(S)]-l(])rf_(s)(co u))}.

Equation (D.5) follows from the definition of (T_(s)),

(D.6)

the fact that inverse images preserve intersections--i.e.,

(D.7)
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--and the fact that

(D.8)

since

(D.9)

[JT (s)]-l (J’)T._l (s) (G)) f [JT_I (s)]-I (T)T_ (s) (a), t))

[T)Tff._l (s)]-l (J’)T_ (s) (Od, t)) E [T)TN_I (S)]-I (JT_ (s) (G3’))

when (, n) E Gv.
Equation (D.4) follows from the observation that

(D.10) c [PTN._I(8)]--I(pTN._I(8)([T 0 @]-I(TkN(8))))

by (D.1). S

Appendix E.
Proof of Theorem 3. Fix -y F and suppose that -y is sequential. Then there

exists a constant order function p such that " possesses property CI*. Since property
CI* ensures that 7o(G) t, it suffices to show that is also an order function such
that V possesses property C*---i.e., that for all k 1, 2,..., N, the fact that (3.12) of
property CI* holds for all (, u) Gv with s s* SN constant implies that (3.11)
of property C* holds for all s

Fix k {1,2,...,N} and let

(E.1) s* (s,s,...,s)

denote the constant order induced by . Since T_ T_ o T, and since for all
sS,

[T_(s)]-l(T_,(s)([ o ]-1(8)))

[T_(s,)]-I(T (s,)(V)) whe 8-
(E.2) else,

it suffices to show that

(E.3) J"v C Jz(TkN_(S*))

for all k 1,2,...,N.
By definition (2, l(d)), Jsk C js. is a subset of

Since (3.12) holds for all (w, u) Gv when s- s*, all events in ys;
form

must be of the
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k-1 is also a subset ofwhere A c f x (IIi= Us ), accordingly, ffs;

(E.6)

--the cylindrical extension of the power set of x (1-Ik-1 Us*
i=1 to f x U. But

/

.F(TkN_ (s*)).

Consequently, fls. C 9r(TV_l (s*)).

Appendix F.
Proof of Theorem 4. Fix 7 E F and suppose that is an order function such that

possesses property CI*. Since property CI* ensures that 7)0(G) f, it suffices to
show that is also an order function such that 7 possesses property C*wi.e., that for
all k 1, 2,... ,N, the fact that (3.12) holds for all (w, u) E G with order function

implies that (3.11) holds for all s Sk with order function .
By assumption, the a-fields 13 and b/k, k 1, 2,... ,N, contain, respectively,

the singletons of the countable sets f and Uk, k 1,2,... ,N (b/k contains the
singletons of Uk due to (2, 1(c)). Accordingly, for all s := (s, s2,..., sk) Sk, k
1 2, N, the product field B (R) (@k b/s) contains the singletons of the countablei=1

set f x (1-i/_l Usi ), implying that B (R) (@i /jsl is the power set of f x (IIiUs ).
It follows, for all s Sk, k 1, 2,..., N, that

(F.1) O" ([’))Tkk_l(s)] -1 (A)" A c a x ))
k-1--.i.e., that "(rkk_l(8)) is the cylindrical extension of the power set of f/x (1-Ii= Usi)

to 12 x U.
Fix k {1, 2,..., N} and s E Sk. Since property CI* holds with order function

(3.12) and (F.1) imply that for all (w, u) [Tv o ]-(s) and A ,
C (s)).

Since [Tv o 1-1(8) 03’ is a countable set, and since inverse and direct images
preserve unions, it follows by (F.2) that

AN [’)T_ (s)]-l ()T_ (s) ([TkN 0 )]-l(s)))
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(F.3) U (A [")[7)T_l(.)]-l(7)T2_l(8)(a, u)))
(w,t) e [To]- (s)

Y(TL()).
But because [Ty o ]-(s)

(F.4) [T:_(s)I-I(T:_(s)([T o 1-1(8)))C [T:_,(s)]-I(T:_I(s)(G));
hence (F.3) implies that

A [,_()]-(,_() ([Tf o ]-1()))

(.) Y(TL ()) [*_()]-(*_()()).
Since (F.5) holds for

[,_()]-l(_()([Tf o ]-()))

(.) < Y(TLI()) [_()]-(_()(G)).

This proves the theorem.
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Appendix G.
Proof of Theorem 5. (i) and (ii). Properties S and SM are, by definition, special-

izations of properties S* and SM* to all - E F /cf. Definitions 1 and 2, and [9, 4,
Definitions]). Accordingly, all " E F possess property S* (respectively SM*) if and
only if Z possesses property S (respectively SM).

(iii). By Theorem l(ii) of [2], Z’s possession of property CI is a necessary and
sufficient condition for all -y F to possess property DF*. By Theorem 2(ii), -y F
possesses property DF* if and only if possesses property CI*. Accordingly, all F
possess property CI* if and only if Z possesses property CI.

(iv). To prove that all F possess property C* when Z possesses property C, let

@ X U SN be an order flnction for which Z possesses property C, fix F, and
let denote the restriction of to G. Since induces a unique B/N-measurable
mapping E U with graph G [9, Thin. 1], Po(G) ; accordingly, to
establish that V possesses property C*, it suffices to show that (3.11) of property C*
holds with order function for all s := (Sl,S,...,sk) Sk and k 1,2,...,N.

Since x U s, property C [9, Lem. 1] implies that

(.1) [r o ]-1(8) (k_l(8)) [T_l(s)] @ U
ki=l

Consequently,

(G.2) [VT_(s)]-I(VT_I(S)([T o ]-1(8))) [T o ]-I(8).

Since C s, property C [9] also implies that

(c.a) [Tf o ]-1() c (TLI()).
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Substitute (G.2) into (G.3), and restrict both sides of the result to

(G.4) [VT_ (s)]- (’)T_ (s)(GO’ )"

The desired result--(3.11) of property C*--follows if

[’)T_ (s)]-] (r)T:_ (s) ([Tk
N

0 ]-i (S)))

(0.5)

To verify (G.5), note that

(G.)

Since po" is the restriction of p to Go’, and since direct and inverse images preserve
inclusions,

l)T

_
(1)T

_
TkN o V)O’]-1(8)))

C [’PT_,(s)]-I(’]’)T_I(s)([TkN, 0 ]-1(8))).

But

(G.S) {[TkN o]-1(8)’8

partitions ft U (cf. (G.2)). Hence, by (G.7), the restriction of (G.6) to

(G.9) [1)T:_1(s) (1)T:_1( [Tk o

is (G.5), and thus 7 possesses property C*. I
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