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Abstract— We consider the channel sensing problem arising
in opportunistic scheduling over fading channels, cognitive radio
networks, and resource constrained jamming. The same problem
arises in many other areas of science and technology as it is an
instance of restless bandit problems. The communication system
consists of N channels. Each channel is modeled as a multi-
state Markov chain. At each time instant a user selects one
channel to sense and uses it to transmit information. A reward
depending on the state of the selected channel is obtained for each
transmission. The objective is to design a channel sensing policy
that maximizes the expected total reward collected over a finite
or infinite horizon. This problem can be viewed as an instance of
restless bandit problems, for which the form of optimal policies
is unknown in general. We discover sets of conditions sufficient
to guarantee the optimality of a myopic sensing policy; we show
that under one particular set of conditions the myopic policy
coincides with the Gittins index rule.

Index Terms— Myopic sensing, Markov chain, POMDP,
restless bandits, stochastic order.

I. INTRODUCTION AND LITERATURE SURVEY

A. Motivation

Consider a communication system consisting of N inde-
pendent channels. Each channel is modeled as a K -state (K
finite) Markov chain (M.C.) with known matrix of transition
probabilities. At each time period a user selects one channel to
sense and uses it to transmit information. A reward depending
on the state of the selected channel is obtained for each
transmission. The objective is to design a channel sensing
policy that maximizes the expected total reward (respectively,
the expected total discounted reward) collected over a finite
(respectively, infinite) time horizon.

The above channel sensing problem arises in cognitive radio
networks, opportunistic scheduling over fading channels, as
well as on resource-constrained jamming ([2]). In cognitive
radio networks a secondary user may transmit over a channel
only when the channel is not occupied by the primary user.
Thus, at any time instant t , state 1 of the M.C. describing
the channel can indicate that the channel is occupied at t by
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the primary user, and states 2 through K indicate the quality
of the channel that is available to the secondary user at t .
In opportunistic transmission over fading channels, states 1
through K of the M.C. describe, at any time instant, the
quality of the fading channel. In resource-constrained jamming
a jammer can only jam one channel at a time, and any given
jamming/channel sensing policy results in an expected reward
for the jammer due to successful jamming. The physical chan-
nels in all of the above problems have memory. Introducing a
finite state (K -state) Markovian model for each channel allows
us to capture the effect of the channel’s memory on its current
quality by allowing K to take large values.1

This channel sensing problem is also an instance of restless
bandit problems (see [3], [4]). Restless bandit problems arise
in many areas, including wired and wireless communication
systems, manufacturing systems, economic systems, statistics,
biomedical engineering, business, computer science, informa-
tion systems etc. (see [3], [4]).

The problem described above can be formulated as a Par-
tially Observed Markov Decision Process (POMDP) (see [5])
and can be solved, for any selection of the channels’ transition
probabilities and any selection of the reward process, by
numerical methods. Such an approach has two drawbacks:
(i) it does not provide any insight into the nature of optimal
sensing strategies; (ii) it has very high computational com-
plexity (PSPACE-complete, see [6]). For this reason we focus
on identifying instances of the general problem where it is
possible to explicitly characterize optimal sensing strategies.
In this paper we discover sets of conditions under which the
optimal sensing strategy is the myopic policy, that is, the policy
that selects at every time instant the best (in the sense of
stochastic order [7]) channel.

B. Related Work

The channel sensing problem has been studied in [5] using
a POMDP framework. For channels described by two-state
Markov chains (henceforth called two-state channels), the
myopic policy was studied in [8], where its optimality was
established when the number of channels is two. For more
than two channels, the optimality of the myopic policy was
proved in [9] under certain conditions on channel parameters.
This result for two-state channels was extended in [10] under
a relaxed “positively correlated” condition. In [11], under the
same “positively correlated” channel condition, the myopic

1We can create a Markovian model of a finite-memory system by appro-
priate state expansion.
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policy was proved to be optimal for two-state channels when
the user can select multiple channels at each time instance.

For general restless bandit problems, there is a rich lit-
erature; however, contrary to classical multi-armed bandit
problems (see [4] and [12]), the structure (if any) of optimal
strategies for general restless bandit problems is not currently
known. To gain insight into the nature of restless bandit prob-
lems, research has focused on identifying instances where an
optimal strategy or qualitative properties of optimal strategies
can be explicitly determined. In [3] it has been shown that
the Gittins index rule (see [4] and [12] for the definition of
the Gittins index rule) is not optimal for general restless bandit
problems. Moreover, this class of problems is PSPACE-hard in
general [6]. In [3] Whittle introduced an index policy (referred
to as Whittle’s index) and an “indexability condition"; the
asymptotic optimality of Whittle’s index was addressed in
[13]. Issues related to Whittle’s indexability condition were
discussed in [3], [4], [13]–[16]. For the two-state channel
sensing problem, Whittle’s index was computed in closed-form
in [15], [16], where performance simulation of that index was
provided. For some special classes of restless bandit problems,
the optimality of index-type policies was established under
certain conditions (see [17], [18]). Approximation algorithms
for the computation of optimal policies for a class of restless
bandit problems similar to the one studied in this paper were
investigated in [19].

C. Contribution of the Paper

This paper contributes to the modeling and analysis of
channel sensing problems, and to the state of the art of the
theory of restless bandit problems. Specifically:

(i) Our model is more general than the two-state channels
model considered so far in the literature for the same
channel sensing problem (see Section I-B). Several
communication channels, such as fading channels have
memory. In order to have a Markovian description of
a channel that captures its memory characteristics we
need more than two (possibly a large number of) states
in the Markov chain that describes channel’s evolution.
Our model considers Markovian channels with arbitrary
(but finite) number of states; thus, it can capture memory
characteristics of a large class of communication chan-
nels.

(ii) We discover sets of conditions under which the policy
that chooses at every time instant the best (in the sense
of stochastic order [7]) channel maximizes the total
expected reward collected over a finite time horizon. We
also show that under one particular set of conditions the
above-described policy coincides with the Gittins index
rule. Since our model is more general than previously
studied models, our results are a contribution to the
state of the art in cognitive radio networks, opportunistic
scheduling and resource constrained jamming.

(iii) The results of this paper are a contribution to the state
of the art of the theory of restless bandit problems.
We show in Section II-C that the optimization problem
formulated in this paper is an instance of restless bandit

problems. Restless bandit problems are an important
class of problems that arise in many areas of science and
technology and very little is known about the structure
of their optimal strategies in general. Our results reveal
several instances of restless bandit problems where: (a)
the myopic policy is optimal; and (b) the myopic policy
is optimal and coincides with the Gittins index rule.
Thus, the results of this paper can be useful in many
areas of science and technology.

(iv) Our methodology (in particular the development of
ordering-based policies in Section III-F) can be useful
in stochastic scheduling problems where the optimality
of “list policies” is investigated (see [20] for an example
of list policies).

D. Organization

The rest of this paper is organized as follows. In Section II,
we present the model and the formulation of the optimization
problem associated with the channel sensing problem. In
Section III, we consider the finite horizon problem and identify
sets of conditions sufficient to guarantee the optimality of the
myopic policy; we briefly discuss the extension of our results
to the infinite horizon. In Section IV we show that under one
particular set of conditions the myopic policy coincides with
the Gittins index rule. We conclude in Section V. The proofs of
several intermediate results needed to establish the optimality
of the myopic policy appear in Appendices A-D.

II. MODEL AND THE OPTIMIZATION PROBLEM

A. The Model

Consider a communication system consisting of N identical
channels. Each channel is modeled as a K -state (K finite)
Markov chain (M.C.) with (the same) matrix of transition
probabilities P ,

P =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1K

p21 p22 · · · p2K
...

...
. . .

...
pK 1 pK 2 · · · pK K

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P1
P2
...

PK

⎤
⎥⎥⎥⎦ , (1)

where P1, P2, . . . , PK are row vectors. As pointed out in
Section I-C, channels that have memory can still be modeled
by Markov chain by expanding the number of states in the
M.C. to account for the channel’s memory. The K -state
M.C. model here captures the memory characteristics of a
larger class of communication channels. We assume that the
channel’s quality increases as the number of its state increases.
We want to use this communication system to transmit infor-
mation. For that matter, at each time t = 0, 1, ..., T , we can
select one channel, observe its state, and use it to transmit
information.

Let Xn
t denote the state of channel n at time t , and let Ut

denote the decision made at time t ; Ut ∈ {1, 2, ..., N}, where
Ut = n means that channel n is chosen for data transmission
at time t .

Initially, before any channel selection is made, we assume
that we have probabilistic information about the state of each
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of the N channels. Specifically, we assume that at t = 0
the decision-maker (the entity that decides which channel to
sense at each time instant) knows the probability mass function
(PMF) on the state space of each of the N channels; that is,
the decision-maker knows π0 := (π1

0 , π2
0 , . . . , π N

0 ), where

πn
0 := (πn

0 (1), πn
0 (2), . . . , πn

0 (K )), n = 1, 2, . . . , N, (2)

πn
0 (i) := P(Xn

0 = i), i = 1, 2, . . . , K . (3)

Then, in general,

U0 = g0(π0), (4)

Ut = gt (Y
t−1, Ut−1, π0), t = 1, 2, . . . , (5)

where

Y t−1 :=(Y0, Y1, . . . , Yt−1), Ut−1 := (U0, U1, . . . , Ut−1),
(6)

and Yt = XUt
t denotes the observation at time t; Yt gives the

state of the channel that is chosen at time t (that is, if Ut = 2,
Yt gives the state of channel 2 at time t).

Let R(t) denote the reward obtained by the transmission
at time t . We assume that R(t) depends on the state of the
channel chosen at time t . That is

R(t) = Ri , i = 1, 2, . . . , K , (7)

if the state of the channel chosen at t is i .

B. The Optimization Problem

Under the above assumptions, the objective is to solve the
following finite horizon (T ) optimization problem:

Problem (P1)

max
g∈Gs

Eg

[
T∑

t=0

β t R(t)

]
, (8)

where β is the discount factor (0 < β ≤ 1) and Gs is the set
of separated policies g := (g0, g1, . . . ) (see [21], Chapter 6),
that are such that

Ut = gt (πt ) for all t, (9)

πt := (π1
t , π2

t , . . . , π N
t ), (10)

πn
t := (πn

t (1), πn
t (2), . . . , πn

t (K )), n =1, 2, . . . , N, (11)

πn
t (i) := P(Xn

t = i |Y t−1, Ut−1), i = 1, 2, . . . , K , (12)

and πt evolves as follows. If Ut = n, Y n = i , then

πn
t+1 = Pi , (13)

π
j

t+1 = π
j

t P, for all j �= n. (14)

C. Characteristics of the Optimization Problem

The optimization problem (P1) formulated above is a
POMDP; it can be solved by numerical methods, but such
an approach has the drawbacks pointed out in Section I-A.

Problem (P1) can also be viewed as an instance of restless
bandit problems as follows. We can view the N channels as N
arms with their PMFs as the states of the arms. The decision
maker knows perfectly the states of the N arms at every time

instant. One arm is operated (selected) at each time t , and an
expected reward depending on the state of the selected arm is
received. If arm n (channel n) is not selected at t , its PMF πn

t
evolves according to

πn
t+1 = πn

t P; (15)

if arm n (channel n) is selected at t , its PMF evolves according
to

πn
t+1 = PYt , P(Yt = x) = πn

t (x). (16)

Since the selected bandit process evolves in a way that differs
from the evolution of the non-selected bandit processes, this
problem is a restless bandit problem.

In general, restless bandit problems are difficult to solve
because forward induction (the solution methodology for the
classical multi-armed bandit problem) does not result in an
optimal policy [4]. Consequently, optimal policies may not be
of the index type, and the form of optimal policies for general
restless bandit problems (hence, the channel sensing problem)
is still unknown.

To gain insight into the nature of the channel sensing
problem (as well as general restless bandit problems), it is
important to discover special instances of the problem where
it is possible to explicitly determine optimal strategies or the
structure of optimal strategies. For this season, in this paper
we focus on the “myopic policy” and we discover sets of
conditions under which it is optimal. We define the myopic
policy as follows. Let � denote the set of PMFs on the state
space S = {1, 2, . . . , K }. We define the concept of stochastic
dominance/order (see [7]). Stochastic dominance ≥st between
two row vectors x, y ∈ � is defined as follows:
x ≥st y if

∑K
j=i x( j) ≥ ∑K

j=i y( j), for i = 2, 3, . . . , K . (17)

Definition 1: The myopic policy gm := (gm
0 , gm

1 , . . . , gm
T )

is the policy that selects at each time instant the best (in the
sense of stochastic order) channel; that is,

gm
t (πt ) = i if π i

t ≥st π
j

t ∀ j �= i. (18)

III. ANALYSIS OF THE FINITE HORIZON PROBLEM

We will prove the optimality of the myopic policy gm

for Problem (P1) under certain specific assumptions on the
structure of the Markov chains describing the channels, on
the instantaneous rewards R = [R1, R2, R3, . . . , RK ]T and on
the initial PMFs π1

0 , π2
0 , . . . , π N

0 . We proceed as follows. In
Section III-A we discuss why the problem under consideration
is not a trivial extension of the instance where each channel has
only two states (studied in [10]). This discussion helps to jus-
tify the key assumptions/conditions we make in Section III-B.
These assumptions/conditions reduce to those of [10] when
K = 2. The main result of the paper is stated in Section III-C;
its proof appears in Section III-D to III-G. The key features
of the solution approach and the role of the conditions in the
approach are discussed in Section III-H, where the extension
to the infinite horizon problem is also presented briefly.
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A. Difficulties in Establishing the Optimality of the
Myopic Policy

The situation where each channel has two states, i.e. K = 2,
has been previously investigated in [10] where the optimality
of the myopic policy is established under some conditions.
In the two-state channels situation, the PMF in equation (11)
(called the information state of the POMDP, see [21]) can
be described by a number, the conditional probability of the
“best state". As a result of this feature, the information states
of all channels can be totally ordered at any time regardless
of channels’ evolution. Such an ordering is needed for the
derivation of the results in [10]. In our problem the information
state defined by equation (11) is a (K −1)-dimensional vector;
(K − 1)-dimensional vectors can not, in general, be ordered
at every time instant. This difference between the information
state of two-state channels and the one in our paper results
in a lot of complications in extending the results of [10] to
multi-state channels.

In general, an extension of the results on the optimality
of the myopic policy for two-state channels to multi-state
channels would require: (i) An ordering of the channels’
information states (PMFs defined by eq. (1)) at every time
instant. Such an ordering can only be ensured under certain
conditions (Conditions (A1)-(A3) appearing in Section III-B)
on the evolution of the channels. (ii) If the myopic policy
is to be optimal, the instantaneous expected gain incurred by
choosing the best channel (say channel n) versus any other
channel (say channel m) must overcompensate expected future
losses in performance resulting in when channel m is chosen
instead of channel n. We have K channel states and this leads
to K − 1 inequalities in Condition (A4) (appearing in Section
III-B) on the separation of instantaneous rewards. Condition
(A4) describes how much the instantaneous rewards obtained
in states i and i − 1, i = 2, 3, ..., K , should be separated so
as to ensure the optimality of the myopic policy.

The above discussion provides the rationale for Conditions
(A1)-(A4) appearing below.

B. Key Assumptions/Conditions

We make the following assumptions/conditions

(A1)

PK ≥st PK−1 ≥st · · · ≥st P1. (19)

Note that the quality of a channel state increases as
its number increases. Assumption (A1) ensures that the
higher the quality of the channel’s current state the
higher is the likelihood that the next channel state will
be of high quality. This requirement is the same as the
“positively correlated” condition when K = 2 in [10].

(A2) Let �P := {π P : π ∈ �}. At time 0,

π1
0 , π2

0 , . . . , π N
0 ∈ �P, (20)

and π1
0 ≤st π2

0 ≤st · · · ≤st π N
0 . (21)

Assumption (A2) states that initially the channels can be
ordered in terms of their quality, expressed by the PMF
on S. Moreover, the initial PMFs of the channels are

in �P . The requirement expressed by (20) is always
satisfied since the channels evolve before we begin
sensing them. Requirement (20) also ensures that the
initial PMFs on the channel states are in the same space
as all subsequent PMFs.

(A3) There exists some L, 2 ≤ L ≤ K such that

P1 P ≥ st PL−1, (22)

PK P ≤ st PL . (23)

Assumption (A3) along with (A2) ensure that, any PMF
π reachable from a non-selected channel has quality
between PL−1 and PL , that is PL ≥st π ≥st PL−1 (see
also Property 2, Section III-D).
As pointed out in Section III-A, (A1)-(A3) ensure that
the channels’ information states are ordered at any time
t (see Property 3, Section III-D).

(A4)

Ri − Ri−1 ≥ β(Pi − Pi−1)M

≥ β(Pi − Pi−1)U ≥ 0, for i �= L, (24)

RL − RL−1 ≥ β(h − PL−1 R) ≥ 0, (25)

where M and U are vectors given by

M : = U + β
∑
i≥L

pK i PU, (26)

Ui : = Ri for i = 1, 2, . . . , L − 1, (27)

Ui : = Ri +β(Pi − PL−1)U, for i = L, L+1, . . . , K ,

(28)

and h is given by

h = PK R−β
∑

i<L pK i Pi R
1−β

∑
i<L pK i

. (29)

Assumption (A4) states that the instantaneous rewards
obtained at different states of the channel are sufficiently
separated (see (24) and (25)). The reason for such a
separation was discussed in Section III-A.

We note that (A1)-(A4) describe sets of sets of assump-
tions/conditions; for every value of L, L = 2, 3, . . . , K , we
have a distinct set of conditions. In [1] we show, via an
example, that Conditions (A1)-(A4) can be simultaneously
satisfied.

We now compare the above conditions with those made
in [1] and [10]. When L = K , the above conditions are
exactly the same as those in [1]. In [1] we did not address
situations where L �= K that is, situation where the quality of
the information state resulting from a non-selected channel is
between PL and PL−1 for L �= K . Consequently, the result of
this paper subsumes the results obtained in [1].

When K = 2 the above Conditions (A1)-(A4) reduce to
those of [10] as follows. When K = 2, L = K . Then, our
Conditions (A1)-(A4) reduce to

p2,2 ≥ p1,2, (30)

πn
0 = (1 − pn, pn), p1,2 ≤ pn ≤ p2,2 for n =1, 2, . . . , N,

(31)

p1 ≤ p2 ≤ · · · ≤ pN . (32)
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Condition (30) is precisely the “positively correlated” condi-
tion in [10]. Condition (31) is satisfied, if the channels evolve
before we begin sensing them (before time t = 0). Condition
(32) is always satisfied by renumbering of the channels. (For
more details see [22]).

C. The Main Result

The main result we establish in this paper is given by
Theorem 1 below.

Theorem 1: Under assumptions (A1)-(A4), the myopic pol-
icy gm , that is, the policy that selects at every time instant the
best (in the sense of stochastic order) channel is optimal for
Problem (P1).

We proceed to establish the optimality of the myopic policy
gm as follows. In sections III-D-III-F we develop preliminary
results needed for the proof of Theorem 1. Specifically: In
section III-D we present three properties of the evolution of
the PMFs on the channel states. In section III-E we present
a property of the instantaneous expected reward. In section
III-F we define a class of ordering-based channel sensing
policies GO which includes the myopic policy gm; using the
results of sections III-D and III-E we discover four properties
of the expected reward resulting from any policy in GO . In
section III-G we use the results of section III-F to establish
the optimality of the myopic policy for Problem (P1). The
properties’ proofs appear in Appendices A-D.

D. Properties of the Channels’ Evolution

Under assumptions/conditions (A1)-(A4) stated in
section III-B, the following properties hold.

Property 1: Let x, y ∈ �. Under Assumption (A1),

x ≥st y �⇒ x P ≥st y P. (33)

An implication of Property 1 is the following. If at any
time t the information states of two channels (expressed by
the PMFs on their state space) are stochastically ordered and
none of these channels is sensed at t , then the same stochastic
order between the information states at time t+1 is maintained.

Property 2: Let π = x P2 ∈ �P2, �P2 := {π = x P2, x ∈
�}. Under (A1)-(A3),

PL ≥st x P2 ≥st PL−1. (34)

Property 2 says the following. By Condition (A2) a chan-
nel’s information state (the PMF on its state space) is always
in �P . If the channel is not sensed at time t , then at time t +1
its information state is in �P2, moreover it is stochastically
always between PL−1 and PL . If the channel is sensed at time
t and its observed state is larger than or equal to L (respec-
tively smaller than L), then at time t + 1 this channel is in
the stochastically largest (respectively stochastically smallest)
information state among all channels.

Property 3: Under (A1)-(A3), we have either πn
t ≤st πm

t or
πm

t ≤st πn
t for all n, m ∈ {1, 2, . . . , N} for all t .

Property 3 states that under (A1)-(A3) the information states
of all channels can be ordered stochastically at all times.

The proofs of Properties 1-3 appear in Appendix A.

E. A Property of the Instantaneous Expected Reward

A direct consequence of Condition (A4) is the following
property of the instantaneous expected reward:

Property 4: Let x, y ∈ �. Let v be a column vector in
increasing order, i.e. vi ≥ vi−1 for i = 2, 3, . . . , K . If x ≥st y,
we have

(i) (x − y)v ≥ 0.
(ii) (x − y)M ≥ (x − y)U ≥ (x − y)R ≥ 0, where M, U, R

are defined by equations (24)-(28).
(iii) (x − y)M ≥ β(x − y)P M .
(iv) If x(i) = y(i) for all i ≥ L or x(i) = y(i) for all i < L,

then

(x − y)R ≥ β(x − y)P M. (35)

Part (i) of Property 4 says the following. Consider a reward
vector such that the reward increases as the quality of the
channel state increases. Then the expected reward increases as
the information state of the channel increases stochastically.

Part (ii) is a restatement of part (i) when the reward vector
v takes the values M − U, U − R, R.

Part (iii) can be interpreted as follows. Consider the reward
vector M defined by (26). Consider two channels, chan-
nel i and channel j , that have information states x and
y respectively, such that x ≥st y. Consider the following
scenarios: (SC1) Sense channel i first, then sense channel j ;
(SC2) Sense channel j first, then sense channel i . Afterwards,
continue with the same channel selection sequence under both
scenarios. Then part (iii) of Property 4 asserts that scenario
(SC1) is better than scenario (SC2) in terms of the expected
accumulated rewards; that is, it is better to sense the best (in
the sense of stochastic order) channel first.

Part (iv) has an interpretation similar to that of part (iii)
when x, y satisfy the condition of part (iv).

The proof of Property 4 appears in Appendix B.

F. Properties of the Reward Associated With
Ordering-Bathe Optimality of the Myopicsed Channel
Sensing Polices

In this section we introduce ordering-based policies and
study their properties. The reason for considering this class
of policies is because under Conditions (A1)-(A4) we obtain
the following: (i) The performance of any sensing policy can
be upper-bounded by an appropriately chosen ordering-based
policy (see Section III-G); thus, for the solution of the original
optimization problem (Problem (P1)) we can restrict attention
to ordering-based policies. (ii) The myopic policy is an optimal
ordering-based policy. Combining (i) and (ii) we establish the
optimality of the myopic policy for Problem (P1).

We note that Properties 1-4, developed so far, are essential
for the discovery of the properties of ordering-based policies
that lead eventually to the solution of Problem (P1) (see
discussion in Section III-H).

Let O be the set of all orderings/permutations of the N
channels {1, 2, . . . , N}. Consider the ordering-based selection
function ĝ : O 	→ {1, 2, . . . , N} and the ordering update
mapping m̂ : O × {1, 2, . . . , K } 	→ O defined as follows.
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For every O := (O(1), O(2), . . . , O(N)) ∈ O,

ĝ(O) = O(N), (36)

m̂(O, y) =
{

O if y ≥ L,
SO if y < L,

(37)

where S is the cyclic shift operator on O such that

SO =: (O(N), O(1), O(2), . . . , O(N − 1)). (38)

Given a channel ordering Ot ∈ O at time t , we
define an ordering-based channel sensing policy gOt

t :T :=
(gOt

t , gOt
t+1, . . . , gOt

T ) as follows.

Ut = gOt
t (Ot ) = ĝ(Ot ) = O(N), (39)

Os = m̂(Os−1, Ys−1), for s = t + 1, t + 2, . . . , T, (40)

Us = gOt
s (Yt :s−1, Ut :s−1)

= gOt
s (Os) = ĝ(Os), for s = t + 1, t + 2, . . . , T . (41)

At time s, t ≤ s ≤ T , gOt
s chooses the last channel in Os ;

the ordering Os is shifted to the right by the update mapping
m̂ whenever the observed state is less than L, and remains
the same otherwise. As a result of the above specification of
gOt

t :T , if at time t channel n is on the right of channel m in the
ordering Ot , channel n will be sensed by policy gOt

t :T before
channel m.

Note that, the policy gOt
t :T is not a separated policy in general.

However, if the ordering O0 = (O0(1), O0(2), . . . , O0(N)) at
time 0 is such that π

O0(1)
0 ≤st π

O0(2)
0 ≤st · · · ≤st π

O0(N)
0 ,

then gO0
0:T is the myopic policy gm , therefore; gO0

0:T = gm ∈ Gs ,
as the following property shows.

Property 5: At time t = 0 consider the ordering O0 such
that π

O0(1)
0 ≤st π

O0(2)
0 ≤st · · · ≤st π

O0(N)
0 . Then, the ordering

based policy gO0
0:T is just the myopic policy gm .

The validity of Property 5 crucially depends on Properties 1
and 2, which say that stochastic order is maintained under
the evolution of unobserved channels (Property 1), and the
observed channel is either the stochastically best or the sto-
chastically worst among all channels (Property 2). Without
Properties 1 and 2 the myopic policy is not an ordering-based
policy. The proof of Property 5 appears in Appendix C.

Define Vt (Ot , π
1
t , π2

t , . . . , π N
t ) to be the expected reward

collected from time t up to and including T due to the
ordering-based policy gOt

t :T . That is,

Vt (Ot , π
1
t , π2

t , . . . , π N
t )

:= EgOt
t :T

[
T∑

l=t

βl−t R(l)|π1
t , π2

t , . . . , π N
t

]
. (42)

Then, Vt (Ot , π
1
t , π2

t , . . . , π N
t ) can be written recursively as

follows.

VT (Ot , π
1
T , π2

T , . . . , π N
T ) = π

Ot (N)
T R, (43)

Vt (Ot , π
1
t , π2

t , . . . , π N
t )

= π
Ot (N)
t R + β

∑
i<L

π
Ot (N)
t (i)Vt+1(SOt , π

1
t+1, . . . , π

N
t+1)

+β
∑
i≥L

π
Ot (N)
t (i)Vt+1(Ot , π

1
t+1, . . . , π

N
t+1), (44)

where πn
t+1 =

{
Pi for n = Ot (N),
πn

t P otherwise.
(45)

The function Vt (Ot , π
1
t , π2

t , . . . , π N
t ) defined above possesses

Properties 6-9 below. We will explain the role of these
properties in Section III-H after we prove the main result on
the optimality of the myopic policy in Section III-G.

Property 6: Let π̂1
t , π1

t , π2
t , . . . , π N

t ∈ �P and Ot ∈ O.
Define

Lt (Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

:= Vt (Ot , π̂
1
t , π2

t , . . . , π N
t ) − Vt (Ot , π

1
t , π2

t , . . . , π N
t ). (46)

If π̂1
t ≥st π1

t , and Ot (n) = 1, then for all m < n

0 ≤ Lt (Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

−Lt (S−m Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

≤ (π̂1
t − π1

t )U, (47)

where S−m Ot is the counter-clockwise cyclic shift of Ot by
m positions, that is,

S−m Ot

=(Ot (m+1), Ot (m+2), . . . , Ot (N), Ot (1), . . . , Ot (m)).

(48)

Property 7: For Ot ∈ O, define the operator Wnm as follows.

Wnm Ot (i) :=
⎧⎨
⎩

Ot (n) for i = m,
Ot (m) for i = n,
Ot (i) otherwise.

(49)

If π̂1
t ≥st π1

t , and Ot (n) = 1, then for m < n

0 ≤ Lt (Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

−Lt (Wnm Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

≤ (π̂1
t − π1

t )M. (50)

The meaning of Properties 6 and 7 is the following. Restrict
attention to ordering-based policies. Take any channel, say
channel 1. Replace it with a better quality (in the sense of
stochastic order) channel. Such a replacement will result in an
improvement in performance. This improvement is different
for different channel orderings. The earlier channel 1 is used
(that is, the closer to the right-most position in the ordering
channel 1 is) the higher is the improvement. Properties 6 and 7
also provide bounds on the difference between maximum and
minimum improvement. These bounds are useful in proving
Properties 6 and 7 by induction.

Property 8: If π
Ot (n)
t ≥st π

Ot (m)
t , then for m < n then

Vt (Ot , π
1
t , π2

t , . . . , π N
t ) ≥ Vt (Wnm Ot , π

1
t , π2

t , . . . , π N
t ). (51)

Property 8 states that if the position of two channels in
any arbitrary but fixed channel ordering are interchanged so
that the better (in the stochastic order sense) channel comes
closer to the right-most position (i.e. it is used earlier) in
the new ordering, the performance due to the ordering-based
policy improves.
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Property 9: For Ot ∈ O, define the operator Anm as follows.

Anm Ot (i) :=

⎧⎪⎨
⎪⎩

Ot (n) for i = m,

Ot (i − 1) for i = m + 1, m + 2, . . . , n,

Ot (i) otherwise.

(52)

If π1
t ≤st π1

t P , and Ot (n) = 1, then

Vt (Anm Ot , π
1
t , π2

t , . . . , π N
t ) − Vt (Ot , π

1
t , π2

t , . . . , π N
t )

≤ h − π1
t P N−n R. (53)

Property 9 states the following. Suppose that a channel, say
channel 1, is such that as long as it is not sensed its quality is
continuously improving (i.e. its PMF is continuously increas-
ing stochastically). Then, no matter how late this channel is
sensed (that is, no matter how much we move the channel
to the left from its initial position in the original channel
ordering) the change in performance due to an ordering-based
policy can not exceed a certain bound, given by the right hand
side of (53).

Properties 6-9 are proved simultaneously in Appendix D.
The idea of their proof may be useful in stochastic scheduling
problems where the optimality of “list polices” ([20]) is
investigated. In the analysis of “list polices”, it is important
to compare the performance due to different orders of task
processing/scheduling. To do this we consider an initial order-
ing of the tasks to be processed. We perturb the ordering
and study the resulting change in performance. Several types
of perturbation need to be examined. Typical types of such
perturbations are described in the statements of Properties 6-9.
The proof of Properties 6-9 indicates that such perturbations
can not be analyzed in isolation but have to be considered
simultaneously.

G. Proof of the Main Result (Theorem 1)

Proof: We proceed by induction.
At T , the expected reward is the instantaneous expected
reward. Since by part (ii) of Property 4 a better channel (in the
sense of stochastic order) gives larger instantaneous expected
reward, the myopic policy gm is optimal at T . This establishes
the basis of induction.

The induction hypothesis is that the myopic policy gm is
optimal at t + 1, t + 1, . . . , T .

Without loss of generality, we assume π1
t ≤st π2

t ≤st

· · · ≤st π N
t . Consider any policy g. If g picks channel n at

time t , then the expected reward collected from t on due to
the policy g is given by

Eg

[
T∑

l=t

βl−t R(l)|π1
t , . . . , π N

t

]

= πn R +
K∑

i=1

πn
t (i)

×Eg

[
T∑

l=t+1

βl−t R(l)|πn
t+1 = Pi , π

m
t+1 = πm

t P for m �= n

]

≤ πn R +
K∑

i=1

πn
t (i)

×Egm

[
T∑

l=t+1

βl−t R(l)|πn
t+1 = Pi , π

m
t+1 = πm

t P for m �= n

]

= πn
t R + β

∑
i<L

πn
t (i)Vt+1(SOt , π

1
t+1, . . . , π

N
t+1)

+β
∑
i≥L

πn
t (i)Vt+1(Ot , π

1
t+1, . . . , π

N
t+1)

= Vt (Ot , π
1
t , . . . , π N

t ). (54)

The inequality in (54) follows from the induction hypothesis
and the ordering Ot := (1, 2, . . . , n − 1, n + 1, . . . , N, n).

Since πn
t ≤st πm

t for all m = n+1, n+2, . . . , N , repeatedly
applying Property 8 we get

Vt (Ot , π
1
t , . . . , π N

t )

≤ Vt ((1, 2, . . . , n − 1, n, n + 1, . . . , N), π1
t , . . . , π N

t )

= Egm

[
T∑

l=t

R(l)|π1
t , π2

t , . . . , π N
t

]
. (55)

Combining (54), (55) we obtain

Eg

[
T∑

l=t

βl−t R(l)|π1
t , π2

t , . . . , π N
t

]

≤ Egm

[
T∑

l=t

βl−t R(l)|π1
t , π2

t , . . . , π N
t

]
, (56)

which completes the proof.

H. Remarks

1) The key steps in establishing the optimality of the
myopic policy, under the assumptions made in the
problem formulation, are the following:

(K1) The assertion that the performance of any separated
policy can be upper-bounded by the performance
of an ordering-based policy. Consequently, for the
solution of the original optimization problem, one
can restrict attention to ordering-based policies.

(K2) The assertion that the performance of an ordering-
based policy improves when a better (in the sense
of stochastic order) channel is used earlier. This
assertion implies the optimality of the myopic
policy.

The assertion of (K1) is established in Theorem 1 (its
induction step). The assertion of (K2) is established
by Property 8, provided that the myopic policy is an
ordering-based policy, and that stochastic order is main-
tained among all channels at every time. The fact that the
myopic policy is an ordering-based policy is ensured by
Property 5. The existence of a stochastic ordering among
all channels at any time t is ensured by Property 3. To
establish these properties we need Properties 1-9.

We now elaborate on the interdependence of Properties
1-9. Property 3, which asserts that channels can be
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ordered stochastically, is a consequence of Properties 1
and 2 for the unobserved channels and the observed
channel, respectively. Properties 1 and 2 also ensure that
the myopic policy gm belongs to the class of ordering-
based policies (Property 5). Property 8 is a special case
of Property 7 when π̂1

t = π
Ot (m)
t ≥st π1

t = π
Ot (n)
t .

Property 7 is coupled with Properties 6 and 9, that is,
Properties 6, 7 and 9 need to be proven simultaneously.
The proof of Properties 6, 7 and 9 requires Property 4.

The upper bounds that appear in Properties 6, 7 and 9
are essential in establishing the optimality of the myopic
policy. These bounds along with Condition (A4) ensure
that the instantaneous advantage in expected reward
obtained by the use of the myopic policy gm over any
other policy g, overcompensates any future possible
expected reward losses of gm as compared to g.

2) The result of Theorem 1 is also valid for the infinite
horizon expected discounted cost problem (see [22] for
details).

IV. MYOPIC POLICY VS. GITTINS INDEX RULE

In this section we investigate conditions under which the
myopic policy coincides with the Gittins index rule.

Select a channel, say channel n, n = 1, 2, . . . , N . For PMF
π ∈ �, the Gittins index ([4][12]) of channel n is defined is
defined by

νn(π) := max
τ

Egτ
[∑τ−1

t=0 β tπn
t R|πn

0 = π
]

Egτ
[∑τ−1

t=0 β t |πn
0 = π

] , (57)

where τ is any stopping time with respect to {πn
t , t =

0, 1, . . . } and gτ chooses channel n from t = 0 up to t = τ−1.
The Gittins index rule ([4][12]) chooses the channel with the
highest Gittins index at every time instant t .

In condition (A3) (Section III-B) L is fixed; it can be any
number form 2 to K . In this section we show that when
L = K , under conditions (A1)-(A4), after time 0 the myopic
policy coincides with the Gittins index rule. We establish this
result via Theorems 2 and 2.

Theorem 2:

(i) For π ∈ �P , PK−1 ≤st π ≤st PK , the Gittins index
ν(π) is given by

ν(π) =
π R + βπ(K ) PK R

1−βpK K

1 + βπ(K ) 1
1−βpK K

. (58)

(ii) If πx , πy ∈ �P and PK−1 ≤st πy ≤st πx ≤st PK , then
ν(πx) ≥ ν(πy).

(iii) If π ∈ �P and PK−1 ≤st π ≤st PK , then ν(π) ≥ ν(Pi )
for i < K .

Proof: (i) From Property 2 and part (ii) of Property 4 we
know that

π R ≤ PK R for all π ∈ �P. (59)

Using (59) in the definition of Gittins index (57) we get

ν(π) ≤ PK R for all π ∈ �P. (60)

Letting τ = 1 in (57), we get an lower bound on the Gittins
index of PK

ν(PK ) ≥ E[R(π0)|π0 = PK ] = PK R. (61)

Combining (60) and (61), ν(PK ) = PK R and the PMF PK

has the largest Gittins index among all PMFs.
From Theorem 4.1 in [23] we know that the second largest

Gittens index among PMFs
{π, P1, P2, .., PK−1, PK } is given by

max
x={π,P1,P2,..,PK−1}

νK (x), (62)

where

νK (x) : = AK (x)

BK (x)
, (63)

AK (x) : = x R+βx(K )AK (PK ), AK (PK )= PK R

1 − β PK K
, (64)

BK (x) : = 1 + βx(K )BK (PK ), BK (PK ) = 1

1 − β PK K
. (65)

We now show that for PK−1 ≤st π ≤st PK

νK (π) = max
x={π,P1,P2,..,PK−1}

νK (x). (66)

For that matter we need to show that ν(πx) ≥ ν(πy) whenever
πx ≥st πy, πx , πy ∈ �P . From (63),

νK (πx) = πx R + βπx(K )AK (PK )

1 + βπx(K )BK (PK )

= PK R + πx R − PK R

1 + βπx(K )BK (PK )

≥ PK R + πy R − PK R

1 + βπx(K )BK (PK )

≥ PK R + πy R − PK R

1 + βπy(K )BK (PK )

= νK (πy). (67)

The first inequality in (67) follows from part (ii) of Property 4
and πx ≥st πy . The second inequality in (67) holds because
πy R − PK R ≤ 0 as πy ≤st PK .

Since π ≥st Pi for i = 1, 2, . . . , K − 1, (67) ensures
that νK (π) ≥ νK (Pi ) for i = 1, 2, . . . , K − 1. Thus, π
is the PMF with the second largest Gittins index among
{π, P1, P2, .., PK−1, PK }.

The Gittins index for π ∈ �P, PK−1 ≤st π ≤st PK is
given by

ν(π) = νK (π) =
π R + βπ(K ) PK R

1−βpK K

1 + βπ(K ) 1
1−βpK K

. (68)

This completes the proof of (i).
(ii) If πx , πy ∈ �P and PK−1 ≤st πy ≤st πx ≤st PK , by

(67) and (68), we get

ν(πy) = νK (πy) ≤ νK (πx ) = ν(πx ). (69)

(iii) From part (i) we know that for π ∈ �P and
PK−1 ≤st π ≤st PK , π gives the second largest Gittins index
among {π, P1, P2, .., PK−1, PK }. Consequently, ν(π) ≥ ν(Pi )
for i < K .
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Theorem 2: Under Conditions (A1)-(A4) and L = K , after
time t = 0 the Gittins index rule is an optimal channel sensing
policy for Problems (P1).

Proof: Consider any time t > 0. If the channel observed
at time t −1 is in state K then the PMF of that channel at t is
PK . The myopic policy senses this channel at t . The Gittins
index rule senses the same channel at t as PK is the PMF with
the largest Gittins index by Theorem 2, part (ii).

If the channel observed at time t − 1 is in state i, i < K ,
then the PMF of that channel at t is Pi and the PMFs of all
other channels are stochastically ordered and are stochastically
larger than PK−1 and stochastically smaller than PK by
Property 2. The myopic policy will choose the channel with
the stochastically largest PMF (among all channels that are
not observed at t − 1). By Theorem 2 (ii), the Gittins index
of the same channel is the largest among the Gittins indices
of all channels that are not observed at t − 1. By Theorem 2
(iii), the Gittins index of the channel observed at time t − 1
is ν(Pi ) ≤ ν(π) for all PK−1 ≤st π ≤st PK . Therefore, the
Gittins index chooses the same channel as the myopic policy.
From the optimality of the myopic policy, under Conditions
(A1)-(A4) (Theorem 2) and the condition L = K , after time
t = 0 the Gittins index rule is an optimal channel sensing
strategy for problem (P1) and (P2).

Note that, if two channels, say channel 1 and 2 are such that
π1

0 , π2
0 ∈ {P1, P2, . . . , PK−1} then π1

0 , π2
0 ∈ �P and thus,

(A2) is satisfied. Nevertheless π1
0 , π2

0 do not necessarily satisfy
the condition Pk−1 ≤st π i

0 ≤st PK of Theorem 2. Thus, at
t = 0, the assertion of Theorem 2 may not be true for channels
1 and 2, thus the Gittins index rule may not be optimal
at time 0.

V. CONCLUSION

The channel sensing problem we investigated in this paper
arises in communications and many other fields of science and
technology, as it is an instance of restless bandit problems. We
identified conditions sufficient to guarantee the optimality of
the myopic policy, the policy that selects at each time instant
the channel with the stochastically largest PMF on its states.
We also identified conditions under which the Gittins index
rule coincides with the myopic policy (and is optimal).

Our results on the optimality of the myopic policy extend
previously existing results on the same problem when each
channel has two states. As pointed out in Section III-A, such
an extension is non-trivial and requires significant insight into
the nature of the problem (so as to identify the appropriate
assumptions/conditions), and much more careful and com-
plicated analysis (so as to discover qualitative properties of
optimal sensing policies, such as the optimality of the myopic
policy).

Our results on the optimality of the Gittins index rule rely
on: (i) the fact that the information state of any channel
after t > 0 lies stochastically between PK−1 and PK , i.e.
PK−1 ≤st π ≤st PK ; and (ii) the fact that ν(π̂ ) ≥ ν(π)
whenever π̂ ≥st π and both π̂ and π are stochastically
ordered between PK−1 and PK . We have not been able to
prove whether or not the Gittins index rule coincides with

the myopic policy when conditions (A1)-(A4) are valid and
L �= K in (A3).

APPENDIX A

Proof of Property 1:

x P − y P =
K∑

i=2

⎡
⎣

⎛
⎝

K∑
j=i

(x( j) − y( j))

⎞
⎠ (Pi − Pi−1)

⎤
⎦ . (70)

Note that
∑K

j=i(x( j) − y( j)) ≥ 0 since x ≥st y. Then, by
assumption (A1) Pi ≥st Pi−1 we get⎛

⎝
K∑

j=i

(x( j) − y( j))

⎞
⎠ (Pi − Pi−1) ≥st 0. (71)

Proof of Property 2: From Property 1, (A1) and (A3) we
obtain

Pi P ≤ st PK P ≤st PL , (72)

Pi P ≥ st P1 P ≥st PL−1. (73)

Therefore, (72) and (73) give

PL−1 ≤st

K∑
i=1

x(i)Pi P = x P2 ≤st PL . (74)

Proof of Property 3: We prove this Property by induction.
The Property is true at t = 0 by (A2).

Assume the Property is true at t . If n, m are not selected at
t , πn

t+1 = πn
t P , πm

t+1 = πm
t P .

By the induction hypothesis we have πn
t ≤st πm

t or πm
t ≤st

πn
t . Then from Property 1 we obtain πn

t+1 ≤st πm
t+1 or

πm
t+1 ≤st πn

t+1.
Suppose, without loss of generality, that channel n is

selected at t . Since channel m is not selected at t , πm
t+1 =

πm
t P ∈ �P2. Then from Property 2 we have either πn

t+1 ≤st

πm
t+1 or πm

t+1 ≤st πn
t+1.

APPENDIX B

Proof of Property 4:
(i) Since x ≥st y and vi ≥ vi−1, i = 2, 3, . . . , K − 1, by

summation by parts we have

(x −y)v =
K∑

i=2

⎡
⎣
⎛
⎝

K∑
j=i

(x( j) − y( j))

⎞
⎠ (vi − vi−1)

⎤
⎦ ≥ 0. (75)

For i < L, Ui − Ui−1 = Ri − Ri−1. (76)

For i ≥ L, Ui − Ui−1 = Ri − Ri−1 + β(Pi − Pi−1)U

≥ Ri − Ri−1. (77)

Then, for all i , from the definition of M we obtain

Mi − Mi−1 ≥ Ui − Ui−1 ≥ Ri − Ri−1 ≥ 0. (78)

Since x ≥st y, from (78) and the result of part (i) we
have

(x − y)M ≥ (x − y)U ≥ (x − y)R ≥ 0. (79)
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(ii) Because of Assumption (A4) and the result of part (ii)
we have:

For i < L, Ui − Ui−1 = Ri − Ri−1

≥ β(Pi − Pi−1)M

≥ β(Pi − Pi−1)U. (80)

For i ≥ L, Ui − Ui−1 = Ri − Ri−1 + β(Pi − Pi−1)U

≥ β(Pi − Pi−1)U. (81)

Then, (80) and (81) imply that U −β PU is in increasing
order, consequently,

(x − y)U ≥ β(x − y)PU. (82)

Since M = U + β
∑

i≥L pK i PU ,

(x −y)M ≥ β(x − y)PU +β
∑
i≥L

pK iβ(x P−y P)PU

= β(x − y)P M. (83)

(iii) If x(i) = y(i) for all i ≥ L, then x(i) − y(i) = 0 for
i ≥ L.
Define v := (v1, v2, . . . , vK ) such that

vi = Ri − β Pi M, for i = 1, 2, . . . , L − 1, (84)

vi = vL−1, for i ≥ L . (85)

From assumption (24) in (A4) we know that vi −vi−1 =
Ri − Ri−1 − β(Pi − Pi−1)M ≥ 0 for i ≤ L − 1 and
vi − vi−1 = 0 for i ≥ L. Then from the result of part
(i) we obtain

(x − y)(R − β P M) = (x − y)v ≥ 0. (86)

The case where x(i) = y(i) for all i < L can be proved
in the same way.

APPENDIX C

Proof of Property 5: We want to show that under gO0
0:T , at

any time t the ordering Ot has the property that
π

Ot (1)
t ≤st π

Ot (2)
t ≤st · · · ≤st π

Ot (N)
t .

At t = 0, by the statement of Property 5, the initial ordering
O0 is such that π

O0(1)
0 ≤st π

O0(2)
0 ≤st · · · ≤st π

O0(N)
0 .

Suppose at time t , the ordering Ot is such that π
Ot (1)
t ≤st

π
Ot (2)
t ≤st · · · ≤st π

Ot (N)
t .

If the observation is Yt ≥ L, the new ordering is Ot+1 =
m̂(Ot , Yt ) = Ot and the PMFs of the channels evolves to

πn
t+1 = πn

t P, for n �= Ot (N), (87)

π
Ot (N)
t+1 = PYt ≥st PL . (88)

From Properties 1 and 2 we know that

π
Ot (1)
t P ≤ stπ

Ot (2)
t P ≤st · · · ≤st π

Ot (N−1)
t P

≤st PL ≤ st PYt . (89)

On the other hand, if the observation is Yt < L, the new
ordering is Ot+1 = m̂(Ot , Yt ) = SOt and the PMFs of the
channels become

πn
t+1 = πn

t P, for n �= Ot (N), (90)

π
Ot (N)
t+1 = PYt ≤st PL−1. (91)

Again, from Properties 1 and 2 we get

PYt ≤ st PL−1

≤st π
Ot (1)
t P ≤ stπ

Ot (2)
t P ≤st · · · ≤st π

Ot (N−1)
t P. (92)

Thus, the ordering-based policy gO0
0:T selects at any time t

the channel Ot (N) from the ordering Ot with π
Ot (1)
t ≤st

π
Ot (2)
t ≤st · · · ≤st π

Ot (N)
t . This ordering-based policy is

exactly the same as the myopic policy gm .

APPENDIX D

For a more detailed version of this Appendix we refer the
reader to [22].

We first establish a lemma that is needed for the proof of
Properties 6-9.

Lemma 1: The functions Vt (Ot , π
1
t , π2

t , . . . , π N
t ), t =

1, 2, . . . , T (defined by eq. (42)), are linear in every com-
ponent πn

t , n = 1, 2, . . . , N .
That is, for all n = 1, 2, . . . , N

Vt (Ot , π
1
t , π2

t , . . . , π N
t )

=
K∑

i=1

πn(i)Vt(Ot , π
1
t , . . . , πn−1

t , ei , π
n+1
t , . . . , π N

t ), (93)

where ei is the vector with 1 in the i th position and 0

otherwise, i.e.
ei = [0, . . . , 0, 1, 0, . . . , 0]

↑ i th position
.

Furthermore, Lt (Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t ) satisfies for n =
2, 3, . . . , N

Lt (Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

=
K∑

i=1

πn(i)Lt (Ot , π̂
1
t , π1

t , . . . , πn−1
t , ei , π

n+1
t , . . . , π N

t ),

(94)

Lt (Ot , π̂
1
t , π1

t , π2
t , . . . , π N

t )

=
K∑

i=1

(π̂1
t (i) − π1

t (i))Vt (Ot , ei , π
2
t , . . . , π N

t ). (95)

Proof: From the definition of Vt (eq. (42)) we have

Vt (Ot , π
1
t , π2

t , . . . , π N
t )

=
K∑

i=1

πn
t (i)EgOt

t :T

[
T∑

s=t

βs−t R(s)|π1
t , π2

t , . . . , π N
t , Xn

t = i

]

=
K∑

i=1

πn
t (i)

×EgOt
t :T

[
T∑

s=t

βs−tR(s)|π1
t , . . . , πn−1

t , πn+1
t , . . . , π N

t , πn
t =ei

]

=
K∑

i=1

πn
t (i)Vt (Ot , π

1
t , . . . , πn−1

t , ei , π
n+1
t , . . . , π N

t ). (96)

The third equality in (96) follows from the specification of
the ordering-based policy gOt

t :T and the fact that conditional on
{Xn

t = i, πn
t } the evolution of channel n is the same as that

conditional on {πn
t = ei }.
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Furthermore, Lt is the difference of two Vt ’s, so the linearity
of Vt leads directly to equations (94) and (95).
We proceed now with the proof of Properties 6-9. In the
following proof, we use the notation

πk1:k2
t : = (πk1

t , πk1+1
t , . . . , πk2

t ), (97)

πk1:k2
t P : = (πk1

t P, πk1+1
t P, . . . , πk2

t P). (98)

Proof of Properties 6-9: First note that Property 8 is a
special case of Property 7. This can be seen as follows.
Without loss of generality, let Ot (n) = 1, Ot (m) = 2, and
π1

t ≥st π2
t . Note that

Vt (Ot , π
2
t , π2

t , . . . , π N
t )=Vt (Wnm Ot , π

2
t , π2

t , . . . , π N
t ). (99)

Applying Property 7 at time t , we have

Vt (Ot , π
1
t , π2

t , . . . , π N
t ) − Vt (Wnm Ot , π

1
t , π2

t , . . . , π N
t )

= Vt (Ot , π
1
t , π2

t , . . . , π N
t ) − Vt (Ot , π

2
t , π2

t , . . . , π N
t )

+Vt (Wnm Ot , π
2
t , π2

t , . . . , π N
t )

−Vt (Wnm Ot , π
1
t , π2

t , . . . , π N
t )

= Lt (Ot , π
1
t , π2

t , π2
t , . . . , π N

t )

−Lt (Wnm Ot , π
1
t , π2

t , π2
t , . . . , π N

t ) ≥ 0. (100)

Therefore, Property 8 is true at time t once Property 7 is true
at time t .

We prove all three Properties 6, 7 and 9 simultaneously by
induction.
For both the basis of induction and the induction we consider
two cases.

(i) When channel 1 is not the right-most channel in Ot (i.e.
n �= N and Ot (N) �= 1).

(ii) When channel 1 is the right-most channel in Ot (i.e.
n = N and Ot (N) = 1).

Basis of induction
It can be verified that Properties 6, 7 and 9 are true at time
t = T . For details see [22].
Induction hypothesis
Assume that the assertions of Properties 6, 7 and 9 are true
for time t + 1, t + 2, . . . , T .
Induction step
We prove here Properties 6, 7 and 9 for t .

We first develop five expressions (105), (107), (108), (109)
and (112) for Lt and Lt+1, defined by eq. (46), that will be
useful in the sequel.

For any PMF π ∈ � we define

π : = (π(1), π(2), . . . , π(L − 2),

K∑
i=L−1

π(i), 0, . . . , 0), (101)

π̄ : = (0, . . . , 0,

L∑
i=1

π(i), π(L + 1), . . . , π(K )). (102)

Then, π, π̄ ∈ �, and

π = π + π̄ − eL +
K∑

i=L

π(i)(eL − eL−1). (103)

Furthermore, if π̂ ≥st π , it follows that

π̂ ≥st π, ¯̂π ≥st π̄ . (104)

Consider any arbitrary ordering O ∈ O. When O(N) �= 1,
assume O(N) = 2 without any loss of generality. Then,

Lt (O, π̂1
t , π1

t , π2:N
t )

= (π2
t R − π2

t R) + β
∑
i<L

π2
t (i)(Vt+1(SO, π̂1

t P, Pi , π
3:N
t P)

−Vt+1(SO, π1
t P, Pi , π

3:N
t P))

+β
∑
i≥L

π2
t (i)(Vt+1(O, π̂1

t P, Pi , π
3:N
t P)

−Vt+1(O, π1
t P, Pi , π

3:N
t P))

= β
∑
i<L

π2
t (i)Lt+1(SO, π̂1

t P, π1
t P, Pi , π

3:N
t P)

+β
∑
i≥L

π2
t (i)Lt+1(O, π̂1

t P, π1
t P, Pi , π

3:N
t P). (105)

Furthermore, by the induction hypothesis for Property 6, we
get, for all i = 1, 2, . . . , K ,

Lt+1(SO, π̂1
t P, π1

t P, Pi , π
3:N
t P)

≥ Lt+1(O, π̂1
t P, π1

t P, Pi , π
3:N
t P). (106)

Therefore,

βLt+1(SO, π̂1
t P, π1:N

t P)

= β

L∑
i=1

π2
t (i)Lt+1(SO, π̂1

t P, π1
t P, Pi , π

3:N
t P)

≥ Lt (O, π̂1
t , π1:N

t ). (107)

Lt (O, π̂1
t , π1:N

t )

≥ β

L∑
i=1

π2
t (i)Lt+1(O, π̂1

t P, π1
t P, Pi , π

3:N
t P)

= βLt+1(O, π̂1
t P, π1:N

t P). (108)

When O(N) = 1,

Lt (Ot , π̂
1
t , π1:N

t )

: = Vt (Ot , π̂
1
t , π2:N

t ) − Vt (Ot , π
1
t , π2:N

t )

= (π̂1
t R−π1

t R)+β
∑
i<L

(π̂1
t (i)−π1

t (i))Vt+1(SOt , Pi , π
2:N
t P)

+β
∑
i≥L

(π̂1
t (i) − π1

t (i))Vt+1(Ot , Pi , π
2:N
t P)

= (π̂1
t − π1

t )R + βLt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

+βLt+1(Ot , ¯̂π1
t P, π̄1

t P, π2:N
t P)

+β
[
Vt+1(Ot , PL , π2:N

t P) − Vt+1(SOt , PL−1, π
2:N
t P)

]

×
[

K∑
i=L

(π̂1
t (i) − π1

t (i))

]
. (109)

The last equality in (109) follows from the linearity of Lt

(Lemma 1) and the definition of π, π̄ given by (101)-(102).
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Furthermore, using (109) we get

Lt (O, π̂1
t , π1:N

t ) − βLt+1(SO, π̂1
t P, π1:N

t P)

= (π̂1
t − π1

t )R + βLt+1(SO, π̂1
t P, π1

t P, π2:N
t P)

+βLt+1(O, ¯̂π1
t P, π̄1

t P, π2:N
t P)

+β
[
Vt+1(O, PL , π2:N

t P) − Vt+1(SO, PL−1, π
2:N
t P)

]

×
[

K∑
i=L

(π̂1
t (i) − π1

t (i))

]

−βLt+1(SO, π̂1
t P, π1

t P, π2:N
t P)

= (π̂1
t − π1

t )R + βLt+1(O, ¯̂π1
t P, π̄1

t P, π2:N
t P)

−βLt+1(SO, ¯̂π1
t P, π̄1

t P, π2:N
t P)

+β
[
Vt+1(O, PL , π2:N

t P) − Vt+1(SO, PL , π2:N
t P)

]

×
[

K∑
i=L

(π̂1
t (i) − π1

t (i))

]

≤ (π̂1
t − π1

t )R + β( ¯̂π1
t − π̄1

t )PU

+β
[
Vt+1(O, PL , π2:N

t P) − Vt+1(SO, PL , π2:N
t P)

]

×
[

K∑
i=L

(π̂1
t (i) − π1

t (i))

]
. (110)

The second equality in (110) follows from (103) and the lin-
earity of Lt (Lemma 1). The inequality in (110) follows from
the induction hypothesis for the upper bound of Property 6 at
t + 1 and the fact that ¯̂π1

t P ≥st π̄1
t P .

For the last term in (110), note that

Vt+1(O, PL , π2:N
t P) − Vt+1(SO, PL , π2:N

t P)

= Lt+1(O, PL , PL−1, π
2:N
t P)−Lt+1(SO, PL , PL−1, π

2:N
t P)

+Vt+1(O, PL−1, π
2:N
t P)

−Vt+1(W12 · · · W(N−1)(N−2)WN(N−1) O, PL−1, π
2:N
t P)

≤ Lt+1(O, PL , PL−1, π
2:N
t P)−Lt+1(SO, PL , PL−1, π

2:N
t P)

≤ (PL − PL−1)U. (111)

The equality in (111) follows from the definition of Lt+1
and the fact that SO = W12 · · · W(N−1)(N−2)WN(N−1) O. The
inequalities in (111) follow by the induction hypothesis for
Property 8 and Property 6 at t + 1.

Therefore, using (111) and (110) we get

Lt (O, π̂1
t , π1

t , π2:N
t ) − βLt+1(SO, π̂1

t P, π1
t P, π2:N

t P)

≤ (π̂1
t − π1

t )R + β( ¯̂π1
t − π̄1

t )PU

+β(PL − PL−1)U
K∑

i=L

(π̂1
t (i) − π1

t (i))

= (π̂1
t − π1

t )U. (112)

The last equality in (112) follows from the definition of the
vector U .

Induction step for Property 6:
We first consider the lower bound of Property 6.

(i) When Ot (N) �= 1 (i.e. n �= N), we also have

S−m Ot (N) = Ot (m) �= 1. Then,

Lt (Ot , π̂
1
t , π1:N

t ) ≥ βLt+1(Ot , π̂
1
t P, π1:N

t P)

≥ βLt+1(S1−m Ot , π̂
1
t P, π1:N

t P)

≥ Lt (S−m Ot , π̂
1
t , π1:N

t ). (113)

The first inequality in (113) follows from (107) and the fact
that Ot (N) �= 1. The second inequality in (113) follows
from the induction hypothesis for Property 6 at t + 1. The
last inequality in (113) follows from (108) and the fact that
S−m Ot (N) �= 1.

(ii) When Ot (N) = 1 (i.e. n = N).
Since S−m Ot (N) = Ot (m) �= 1, from (108) we get

Lt (S−m Ot , π̂
1
t , π1:N

t )

≤ βLt+1(S1−m Ot , π̂
1
t P, π1:N

t P)

= βLt+1(S1−m Ot , π̂
1
t P, π1

t P, π2:N
t P)

+βLt+1(S1−m Ot , ¯̂π1
t P, π̄1

t P, π2:N
t P)

+β

K∑
i=L

(π̂1
t (i) − π1

t (i))Lt+1(S1−m Ot , PL , PL−1, π
2:N
t P).

(114)

Since Ot (N) = 1, applying (109) we obtain

Lt (Ot , π̂
1
t , π1:N

t ) − Lt (S−m Ot , π̂
1
t , π1:N

t )

=(π̂1
t − π1

t )R + βLt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

+ βLt+1(Ot , ¯̂π1
t P, π̄1

t P, π2:N
t P)

+ β
[
Vt+1(Ot , PL , π2:N

t P) − Vt+1(SOt , PL−1, π
2:N
t P)

]

×
K∑

i=L

(π̂1
t (i) − π1

t (i)) − Lt (S−m Ot , π̂
1
t , π1

t , π2:N
t )

≥(π̂1
t − π1

t )R + βLt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

− βLt+1(S1−m Ot , π̂
1
t P, π1

t P, π2:N
t P)

+ βLt+1(Ot , ¯̂π1
t P, π̄1

t P, π2:N
t P)

− βLt+1(S1−m Ot , ¯̂π1
t P, π̄1

t P, π2:N
t P)

+ β
[
Vt+1(Ot , PL , π2:N

t P) − Vt+1(SOt , PL−1, π
2:N
t P)

−Lt+1(S1−m Ot , PL , PL−1, π
2:N
t P)

] K∑
i=L

(π̂1
t (i) − π1

t (i))

≥(π̂1
t − π1

t )R + βLt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

− βLt+1(S1−m Ot , π̂
1
t P, π1

t P, π2:N
t P)

+ β
[
Vt+1(Ot , PL , π2:N

t P) − Vt+1(SOt , PL−1, π
2:N
t P)

−Lt+1(S1−m Ot , PL , PL−1, π
2:N
t P)

] K∑
i=L

(π̂1
t (i) − π1

t (i)).

(115)

The equality in (115) follows from (109) and the fact that
Ot (N) = 1. The first inequality in (115) follows from (114).
The second inequality in (115) follows from the induction
hypothesis for Property 6 at t + 1.

Letting Ot+1 := S1−m Ot and n := N +1−m, m := N −m,
we have m < n and

Ot+1(n) = S1−m Ot (n) = 1, SOt = S−(m)Ot+1. (116)
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Consequently, the induction hypothesis for the upper bound of
Property 6 at t + 1 gives

Lt+1(S1−m Ot , π̂
1
t P, π1

t P, π2:N
t P)

−Lt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

= Lt+1(Ot+1, π̂
1
t P, π1

t P, π2:N
t P)

−Lt+1(S−(m)Ot+1, π̂
1
t P, π1

t P, π2:N
t P)

≤ (π̂1
t P − π1

t P)U. (117)

Letting m′ := 1, we have m′ < n = N and Am′n Ot = SOt .
Therefore,

Vt+1(SOt , PL−1, π
2:N
t P) − Vt+1(Ot , PL , π2:N

t P)

+Lt+1(S1−m Ot , PL , PL−1, π
2:N
t P)

≤ Vt+1(SOt , PL−1, π
2:N
t P) − Vt+1(Ot , PL , π2:N

t P)

+Lt+1(Ot , PL , PL−1, π
2:N
t P)

= Vt+1(Am′n Ot , PL−1, π
2:N
t P) − Vt+1(Ot , PL−1, π

2:N
t P)

≤ h − PL−1 R. (118)

The first inequality in (118) follows from the induction hypoth-
esis for the lower bound of Property 6 at t + 1. The last
inequality in (118) follows from the induction hypothesis for
Property 9 at t + 1.

Using (117) and (118) in (115) we obtain

Lt (Ot , π̂
1
t , π1:N

t ) − Lt (S−m Ot , π̂
1
t , π1:N

t )

≥ (π̂1
t − π1

t )R − β(π̂1
t P − π1

t P)U

−β

K∑
i=L

(π̂1
t (i) − π1

t (i))(h − PL−1 R)

= (π̂1
t − π1

t )(R − βU) + ( ¯̂π1
t − π̄1

t )R

+
K∑

i=L

(π̂1
t (i) − π1

t (i))(RL − RL−1 − β(h − PL−1 R))

≥ 0. (119)

The last inequality in (119) is true because: the terms (π̂1
t −

π1
t )(R − βU) and ( ¯̂π1

t − π̄1
t )R are positive by parts (iv) and

(ii) of Property 4; the term (RL − RL−1 − β(h − PL−1 R)) is
positive by Condition (A4).

The proof of the lower bound of Property 6 is now complete.
Now consider the upper bound of Property 6.

Let O ′
t := SN−n Ot ;, then O ′

t (N) = 1 and SO ′
t (1) = 1.

Consequently,

Lt (Ot , π̂
1
t , π1:N

t ) − Lt (S−m Ot , π̂
1
t , π1:N

t )

≤ Lt (O ′
t , π̂

1
t , π1:N

t ) − Lt (SO ′
t , π̂

1
t , π1:N

t )

≤ Lt (O ′
t , π̂

1
t , π1:N

t ) − βLt+1(SO ′
t , π̂

1
t P, π1:N

t P)

≤ (π̂1
t − π1

t )U. (120)

The first inequality in (120) is true because of the lower bound
of Property 6 at t . The second inequality in (120) follows from
(108) and the fact that SO ′

t (N) �= 1. The third inequality in
(120) follows from (112) and the fact that O ′

t (N) = 1.
This completes the proof of Property 7 at time t .

Induction step for Property 7:
(i) When Ot (N) �= 1 (i.e. n �= N), assume Ot (N) = 2 without

loss of generality. Then because of (105),

Lt (Ot , π̂
1
t , π1:N

t ) − Lt (Wnm Ot , π̂
1
t , π1:N

t )

= β
∑
i<L

π2(i)
[

Lt+1(SOt , π̂
1
t P, π1

t P, Pi , π
3:N
t P)

−Lt+1(W(n+1)(m+1)(SOt ), π̂
1
t P, π1

t P, Pi , π
3:N
t P)

]

+β
∑
i≥L

π2(i)
[

Lt+1(Ot , π̂
1
t P, π1

t P, Pi , π
3:N
t P)

−Lt+1(Wnm Ot , π̂
1
t P, π1

t P, Pi , π
3:N
t P)

]
. (121)

By the induction hypothesis for Property 7, each term in (121)
is positive and smaller than (π̂1

t P − π1
t P)M . Thus,

0 ≤ Lt (Ot , π̂
1
t , π1:N

t ) − Lt (Wnm Ot , π̂
1
t , π1:N

t )

≤ β(π̂1
t P − π1

t P)M ≤ (π̂1
t − π1

t )M. (122)

The last inequality in (122) holds by part (iii) of
Property 4.

(ii) Ot (N) = 1 (i.e. n = N).
We first consider the lower-bound. Using (103) and the

linearity of Lt (Lemma 1) we get

Lt (Ot , π̂
1
t , π1:N

t ) − Lt (WNm Ot , π̂
1
t , π1:N

t )

= Lt (Ot , π̂
1
t , π

1
t , π

2:N
t ) − Lt (WNm Ot , π̂

1
t , π

1
t , π

2:N
t )

+Lt (Ot , ¯̂π1
t , π̂1

t , π2:N
t ) − Lt (WNm Ot , ¯̂π1

t , π̂1
t , π2:N

t )

+
[

Lt (Ot , eL , eL−1, π
2:N
t )−Lt(WNm Ot , eL , eL−1, π

2:N
t )

]

×
[

K∑
i=L

(π̂1
t (i) − π1

t (i))

]
. (123)

We consider each of the terms

(a) Lt (Ot , π̂
1
t , π

1
t , π

2:N
t ) − Lt (WNm Ot , π̂

1
t , π

1
t , π

2:N
t ).

(b) Lt (Ot , ¯̂π1
t , π̂1

t , π2:N
t ) − Lt (WNm Ot , ¯̂π1

t , π̂1
t , π2:N

t ).
(c) [Lt (Ot , eL , eL−1, π

2:N
t ) − Lt (WNm Ot , eL , eL−1, π

2:N
t )]

[∑K
i=L (π̂1

t (i) − π1
t (i))].

that appear in the right hand side of (123) separately.
(a) Consider the first term.

Let O ′
t = S(WNm Ot ) = W1m+1(SOt ), then O ′

t (m + 1) = 1
and Wm+1,1 O ′

t = SOt . Therefore,

Lt (Ot , π̂
1
t , π

1
t , π

2:N
t ) − Lt (WNm Ot , π̂

1
t , π

1
t , π

2:N
t )

= (π̂1
t − π1

t )R + βLt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

−Lt (WNm Ot , π̂
1
t , π

1
t , π

2:N
t )

≥ (π̂1
t − π1

t )R + βLt+1(SOt , π̂
1
t P, π1

t P, π2:N
t P)

−βLt+1(S(WNm Ot ), π̂
1
t P, π1

t P, π2:N
t P)

≥ (π̂1
t − π1

t )R − β(π̂1
t P − π1

t P)M ≥ 0. (124)

The first equality in (124) follows from (109) and that fact
that π̂1

t (i) = π1
t (i) = 0 for i ≥ L. The first inequality

in (124) follows from (107). The second inequality in (124)
follows from the induction hypothesis for the upper bound of
Property 7 at t + 1. The last inequality in (124) holds by part
(iv) of Property 4.

(b) Consider the second term. From the induction hypothesis
for Property 6 at t + 1 and the fact that SOt = S−(N−1) Ot
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and Ot (N) = 1, we obtain.

Lt (Ot , ¯̂π1
t , π̄1

t , π2:N
t ) − Lt (WNm Ot , ¯̂π1

t , π̄1
t , π2:N

t )

= ( ¯̂π1
t − π̄1

t )R + βLt+1(Ot , ¯̂π1
t P, π̄1

t P, π2:N
t P)

−Lt (WNm Ot , ¯̂π1
t , π̄1

t , π2:N
t )

≥ ( ¯̂π1
t − π̄1

t )R + βLt+1(SOt , ¯̂π1
t P, π̄1

t P, π2:N
t P)

−Lt (WNm Ot , ¯̂π1
t , π̄1

t , π2:N
t ). (125)

Then, similar to the first term (a), the second term is positive.
(c) Consider the third term.
Assume Ot (m) = 2 without any loss of generality. Then

WNm Ot (N) = 2. Therefore,

Lt (Ot , eL , eL−1, π
2:N
t ) − Lt (WNm Ot , eL , eL−1, π

2:N
t )

= RL − RL−1 + β
∑
i<L

π2(i)

×
[
Vt+1(Ot , PL , Pi , π

3:N
t P)−Vt+1(SOt , PL−1, Pi , π

3:N
t P)

−Lt+1(SWNm Ot , PL , PL−1, Pi , π
3:N
t P)

]

+β
∑
i≥L

π2(i)

×
[
Vt+1(Ot , PL , Pi , π

3:N
t P)−Vt+1(SOt , PL−1, Pi , π

3:N
t P)

−Lt+1(WNm Ot , PL , PL−1, Pi , π
3:N
t P)

]
.

(126)

Let O ′
t := S(WNm Ot ) = W1m+1(SOt ); then O ′

t (m + 1) = 1
and Wm+1,1 O ′

t = SOt .
For each term in the first sum in (126), we have PL−1 ≥st Pi

(i < L in the first sum in (126)). Therefore, by the induction
hypothesis for Property 8 at t + 1 we get

Vt+1(Ot , PL , Pi , π
3:N
t P) − Vt+1(SOt , PL−1, Pi , π

3:N
t P)

−Lt+1(SWNm Ot , PL , PL−1, Pi , π
3:N
t P)

≥ Vt+1(Ot , PL , Pi , π
3:N
t P)−Vt+1(O ′

t , PL , Pi , π
3:N
t P). (127)

Furthermore, since PL ≥st π
Ot (l)
t P for all l = 1, 2, . . . , N by

Property 2, repeatedly applying Property 8 at t + 1 we obtain

Vt+1(Ot , PL , Pi , π
3:N
t P)

≥ Vt+1(W(m+2)(m+1) · · · WN(N−1) Ot , PL , Pi , π
3:N
t P). (128)

Note that W(m+2)(m+1) · · · WN(N−1) Ot = AN(m+1)Ot and
Am1(AN(m+1)Ot ) = S(WNm Ot ) = O ′

t . Consequently, the
induction hypothesis for Property 9 at t + 1 gives

Vt+1(W(m+2)(m+1) · · · WN(N−1) Ot , PL , Pi , π
3:N
t P)

−Vt+1(O ′
t , PL , Pi , π

3:N
t P)

= Vt+1(AN(m+)1 Ot , PL , Pi , π
3:N
t P)

−Vt+1(Am1(AN(m+1) Ot ), PL , Pi , π
3:N
t P)

≥ −(h − Pi P N−m R). (129)

For each term in the second sum in (126), we have

Vt+1(Ot , PL , Pi , π
3:N
t P) − Vt+1(SOt , PL−1, Pi , π

3:N
t P)

−Lt+1(WNm Ot , PL , PL−1, Pi , π
3:N
t P)

≥ Vt+1(Ot , PL , Pi , π
3:N
t P) − Vt+1(SOt , PL−1, Pi , π

3:N
t P)

−Lt+1(Ot , PL , PL−1, Pi , π
3:N
t P)

= Vt+1(Ot , PL−1, Pi , π
3:N
t P)−Vt+1(SOt , PL−1, Pi , π

3:N
t P)

≥ −(h − PL−1 R).

(130)

The inequalities in (130) follows from the induction hypothesis
at t + 1 for the lower bound of Property 7 and Property 9
respectively.

Using the lower bounds provided by (129) and (130) for
terms in (126), we obtain

Lt (Ot , eL , eL−1, π
2:N
t ) − Lt (WNm Ot , eL , eL−1, π

2:N
t )

≥ RL − RL−1 − β
∑
i<L

π2
t (i)(h − Pi P N−m R)

−β
∑
i≥L

π2
t (i)(h − PL−1 R)

≥ RL − RL−1 − β(h − PL−1 R) ≥ 0. (131)

The second and the last inequalities in (131) follows from part
(ii) of Property 4 and condition (A??) respectively.

Since the three terms (a), (b) and (c) in (123) are positive,
the proof for the lower bound of Property 7 is complete when
Ot (N) = 1 (case (ii)).

We now proceed to establish the upper bound of Property 7
when Ot (N) = 1 (case (ii)).

Assume Ot (m) = 2 without any loss of generality; then
WNm Ot (N) = 2. Therefore,

Lt (Ot , π̂
1
t , π1:N

t ) − Lt (WNm Ot , π̂
1
t , π1:N

t )

= Lt (Ot , π̂
1
t , π1:N

t ) − βLt+1(SOt , π̂
1
t P, π1:N

t P)

+βLt+1(SOt , π̂
1
t P, π1:N

t P) − Lt (WNm Ot , π̂
1
t , π1:N

t )

≤ (π̂1
t − π1

t )U + βLt+1(SOt , π̂
1
t P, π1:N

t P)

−Lt (WNm Ot , π̂
1
t , π1:N

t )

≤ (π̂1
t − π1

t )U + βLt+1(S(WNm Ot ), π̂
1
t P, π1:N

t P)

−Lt (WNm Ot , π̂
1
t , π1:N

t )

= (π̂1
t − π1

t )U

+β
∑
i≥L

π2
t (i)

[
Lt+1(S(WNm Ot ), π̂

1
t P, π1

t P, Pi , π
3:N
t P)

−Lt+1(WNm Ot , π̂
1
t P, π1

t P, Pi , π
3:N
t P)

]

≤ (π̂1
t − π1

t )U + β
∑
i≥L

π2
t (i)(π̂1

t P − π1
t P)U

≤ (π̂1
t − π1

t )U + β
∑
i≥L

pK i (π̂
1
t P − π1

t P)U

= (π̂1
t − π1

t )M. (132)

The first inequality in (132) follows from (112). The second
inequality in (132) follows from the induction hypothesis for
the lower bound of Property 7 at t + 1. The second equality
in (132) follows from (105). The third inequality in (132)
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follows from the induction hypothesis for the upper bound of
Property 6 and the fact that π̂1

t P ≥st π1
t P (since π̂1

t ≥st π1
t

and Property 1). The last inequality in (132) is true because
π2

t ≤st PK . The last equality in (132) follows from the
definition of M .

The proof of the upper bound of Property 7 at t is now
complete. The proof of the induction step for Property 7 at t
is also complete.

Induction step for Property 9:
(i) When Ot (N) �= 1 (i.e. n �= N), assume Ot (N) = N
without loss of generality. Then,

Vt (Anm Ot , π
1:N
t ) − Vt (Ot , π

1:N
t )

=
∑
i<L

π N
t (i)

[
Vt+1(S(Anm Ot ), π

1:N−1
t P, Pi )

−Vt+1(SOt , π
1:N−1
t P, Pi )

]

+
∑
i≥L

π N
t (i)

[
Vt+1(Anm Ot , π

1:N−1
t P, Pi )

−Vt+1(Ot , π
1:N−1
t P, Pi )

]

≤
∑
i<L

π N
t (i)

(
h − π1

t P(P N−n−1 R)
)

+
∑
i≥L

π N
t (i)

(
h − π1

t P(P N−n R)
)

≤ h − π1
t P N−n R. (133)

The inequalities in (133) follows from the induction hypothesis
for Property 9 and part (ii) of Property 4 respectively.

(ii) When Ot (N) = 1 (i.e. n = N), assume Ot (N −1) = N
without loss of generality. Then ANm Ot (N)= Ot (N −1)= N .

By the recursive equation and the linearity of the function
Vt+1 (eq. (44) and Lemma 1) we obtain

Vt (ANm Ot , π
1:N
t ) − Vt (Ot , π

1:N
t )

= (π N
t − π1

t )R

+β
∑
i<L

π N
t (i)

[
Vt+1(S(ANm Ot ), π

1:N−1
t P, Pi )

−Vt+1(ANm Ot , π
1:N−1
t P, Pi )

]

+β
∑
i<L

π1
t (i)

[
Vt+1(ANm Ot , Pi , π

2:N
t P)

−Vt+1(SOt , Pi , π
2:N
t P)

]

+β
∑
i≥L

π1
t (i)

[
Vt+1(ANm Ot , Pi , π

2:N
t P)

−Vt+1(Ot , Pi , π
2:N
t P)

]
. (134)

Furthermore, each term in the second and the third sum in
(134) is negative from repeatedly using Property 8 at t + 1.
Therefore,

Vt (ANm Ot , π
1:N
t ) − Vt (Ot , π

1:N
t ) ≤ (π N

t − π1
t )R

+β
∑
i<L

π N
t (i)

[
Vt+1(S(ANm Ot ), π

1:N−1
t P, Pi )

−Vt+1(ANm Ot , π
1:N−1
t P, Pi )

]

≤ (π N
t − π1

t )R + β
∑
i<L

π N
t (i)(h − Pi R)

= π N
t v − π1

t R. (135)

The second inequality in (135) follows from the induction
hypothesis for Property 9 and v is the vector such that

vi =
{

Ri + β(h − Pi R), for i < L,
Ri , for i ≥ L .

(136)

It can be verified that vi increases with i . Then, from part (i)
of Property 4 and the fact that π N

t ≤st PK we obtain

Vt (ANm Ot , π
1:N
t ) − Vt (Ot , π

1:N
t )

≤ π N
t v − π1

t R ≤ PK v − π1
t R = h − π1

t R. (137)

The last equality in (137) follows from the definition of h.
This completes the proof of the induction step for Property 9

at t , and the proof of the entire induction step.
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