
390 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 3, MARCH 1993 

Optimal Flow Control Allocation Policies in 
Communication Networks with Multiple 

Message Classes 
Redha M. Bournas, Frederick J. Beutler, and Demosthenis Teneketzis 

Abstruct-We consider M ( 2 2) transmitting stations sending 
packets to a single receiver over a slotted time-multiplexed link. 
For each phase consisting of T consecutive slots, the receiver 
dynamically allocates these slots among the M transmitters. 
The cost per slot for holding a packet may vary among the 
transmitters, and may be interpreted in terms of multiple classes 
of messages. Our objective is to characterize policies that mini- 
mize the discounted and long-term average costs due to holding 
packets at the M stations, based on delayed information on the 
numbers of packets being held at the respective transmitters. 

We derive properties of optimal (discounted) policies that 
reduce the computational complexity of the optimal flow control 
algorithm. For M = 2, we show that the minimal total cost is 
convex and submodular in the state, and we prove the following 
properties of optimal policies: 1) when the state at transmitter i 
increases by unity while the state at the other transmitter j is 
fixed, the optimal allocation is either unchanged, or increases by 
one at  transmitter i and decreases by one at  transmitter j; and 
2) the optimal policy is of the threshold type. We use these 
properties to show that the optimization reduces to the calcula- 
tion of optimal allocations for a finite number of states. In 
addition, for each such state (excluding the origin), property 
1) implies a significant reduction in the computation of optimal 
allocations. As an application, we further characterize optimal 
policies when the message generation at the transmitter of 
higher priority is stochastically larger than the message genera- 
tion at  the other. Under additional restrictions on the average 
arrival rate and the second moment of the number of arrivals 
per slot, similar results are derived for optimal policies with 
time-average costs. 

I. INTRODUCTION 
E flow control problem addressed in this paper 

hop” layer of computer communication networks. The 
hop-by-hop scheme considered here is the same as the 
one in [3]-[6]. Its purpose is to maintain a smooth flow of 
traffic between M transmitting stations sending packets to 
a single receiver over a communication channel. The 
channel is assumed to be slotted, that is, the channel time 
is divided into equal segments called slots. All messages 

T” arises in the performance modeling of the “hop-by- 
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consist of packets of equal length; the transmission time 
of a packet is one slot, and a packet transmission may 
only begin on a slot boundary. Each transmitter has an 
independent generally distributed arrival process of pack- 
ets per slot and a buffer of infinite size. We assume that 
the arrival processes to distinct transmitters are mutually 
independent. Only one station is allowed to transmit 
during any particular slot. It is desired to determine 
policies that allocate slots among the respective transmit- 
ters to minimize holding costs for the M transmitting 
stations. 

T consecutive slots form a phase. Prior to the beginning 
of each phase, the receiver informs each transmitter of 
the number of packets (referred to as a window size) that 
it is prepared to accept, and the particular slots in which 
each transmitter is allowed to transmit. For the purpose 
of making a decision on the window sizes for the current 
phase k,  the receiver possesses the following information: 
the knowledge of the arrival statistics, the history of 
previous allocations, and the number of packets queued at 
each transmitter at the beginning of phase k - 1. The 
allocation at phase k must be predicated on delayed 
information (from phase k - 1) since transmission delays, 
together with computational requirements, make it impos- 
sible for data generated in one location to be instantly 
accessible elsewhere. Because a random number of new 
packets arrive at each transmitter during the course of 
phase k - 1, the allocation algorithm can alternatively be 
described as depending on partial information. Generally, 
advising the receiver of the number of packets requires a 
capacity of insignificant size as compared to the transmit- 
ted packets themselves; hence, each transmitter can send 
the receiver this information separately, or as an extra 
packet of small size over the channel. 

At each station, there is a fixed cost per slot for holding 
a packet. Our cost per phase is the expectation of a linear 
combination of the number of untransmitted packets at 
the respective stations. A policy for the receiver is any 
function of the above-mentioned information that allo- 
cates the slots (I T )  among the stations at each phase. 

The results reported in [3]-[6] investigate discounted 
and time-average optimal policies when the cost per slot 
for holding a packet is equal at all transmitters. Here, we 
turn our attention to the general case where the holding 
cost may vary among the respective transmitters, which 
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may be interpreted in terms of multiple classes of mes- 
sages. Thus, we can view this problem as one of optimal 
resource allocation in a queueing system with different 
classes of messages. 

While the derivation of the explicit form of optimal 
policies appears very difficult, we are able to obtain quali- 
tative properties that reduce the computational complex- 
ity of the optimal flow control algorithm. By defining the 
state to be the most recent (delayed) information on the 
number of packets awaiting transmission at the M sta- 
tions, we find that the qualitative properties of optimal 
allocation policies have the following computational im- 
plications: 1) the state space can be partitioned into 
regions Si, 0 2 i < M ;  for each state in Si, an optimal 
policy allocates all the slots among i + 1 transmitters; 2) 
for each state in Si, there is a further reduction in the 
search for an optimal allocation among the (i + 1) trans- 
mitters. Since we relax the hypothesis that the holding 
costs are equal, the properties of optimal policies and 
their implications are weaker than those in [3]. 

When M = 2, we find that the addition of one packet at 
a transmitter either leaves the allocation of slots un- 
changed, or increases the allocation by unity in favor of 
that transmitter. This property is stronger than mono- 
tonicity in the state, and implies that the optimal policy is 
of the threshold type. It is reasonable to suppose that 
such a property significantly reduces the complexity of 
computation of the optimal allocation policy. 

We formalize the model and formulate the problem as 
a discounted Markov decision process in Section 11. In 
Section 111, we derive structural properties of optimal 
policies for the problem with M 2 2 transmitters. In 
Section IV, we let M = 2 and derive the properties of 
optimal policies stated in the preceding paragraph, and we 
show that the minimal total discounted cost is convex and 
submodular in the state. In Section V, we further charac- 
terize optimal policies when the message generation at 
the transmitter of higher holding cost is stochastically 
larger than the message generation at the other. In Sec- 
tion VI, we point out that the time-average optimal poli- 
cies have properties similar to those derived in [4] for 
equal holding costs. Conclusions are presented in Section 
VII. 

11. PROBLEM FORMULATION 
The operation of the hop-by-hop scheme is as described 

in the Introduction, as well as in 131. Two constraints are 
placed on the model: 1) no holding costs are assessed for 
packets in the phase in which they are being transmitted, 
and 2) packets arriving in a particular phase may not be 
transmitted in that phase. Constraint 2) leads to a simpler 
implementation of the receiver without significant sacri- 
fice in performance; indeed, 2) is analogous to a gated 
reservation system, as described in [l, sect. 3.5.21. More- 
over, relaxing these two constraints results in an optimiza- 
tion problem whose action space consists of not only the 
window sizes allocated to each transmitter, but also of the 
order in which the slots are scheduled for transmission. 

~ 
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This is a considerably more difficult problem involving 
combinatorics, and is left as a topic for future investiga- 
tion. 

The processes of message generation at each transmit- 
ter are stochastic with known statistics. The number of 
packets generated at transmitter j during slot i, ti"), 
j = 1,2;.., M ,  i = 1,2;-., are assumed to be independent 
random variables. For fixed j ,  ti"), i = 1,2,-.., are identi- 
cally distributed (i.i.d.) with finite first moment A('). For 
the remainder of the paper, for z E Z y ,  z(j)  will denote 
the j th  component of z ,  unless stated otherwise. 

Let Yk(') be the number of packets generated at trans- 
mitter j during phase k.  For fixed j ,  these random vari- 
ables are independent and identically distributed random 
variables, and the random variables {YJ'), 1 I j I M ,  k = 

0,1, - 0 .  } are independent. We will denote by Nfj) the 
number of packets at transmitter j at the beginning of 
phase k,  and by w i j )  the window size allocated to trans- 
mitter j during phase k.  Assume that w a ) ,  NO'), j = 
l;.., M ,  are given. 

Prior to the beginning of each phase, the transmitters 
are informed of the particular slots during which they are 
allowed to transmit. The receiver computes wij) before 
the beginning of phase k based on the following informa- 
tion: the knowledge of the arrival statistics, the history of 
previous window sizes, and the number of messages 
queued at each transmitter at the beginning of phase 

Corresponding to this description, we define xk 4 
( k  - 1). 

(Xi'); e ,  X i M ) )  where 

as the state of the system at the start of phase k.  The 
values of { X i ,  1 I i I k }  will be used to compute wk = 

wf), . . . ,  wjM)) .  The most recent value of xk can be 
calculated by the receiver before the end of phase ( k  - 1) 
for the following reasons: 1) each transmitter j sends 
NJi', to the receiver just before the beginning of phase 
( k  - 11, and 2) as T is sufficiently large, the receiver is 
guaranteed to receive the NJ!)l before the start of 
phase k.  

Since packets arriving during phase ( k  - 1) are not 
allowed to be transmitted during this phase, then 

Nk =xk -k Yk-1, k 2 1 ( 2 4 
where Nk = (Nf l ) ; - - ,  NfM))  and Yk = (YL1),--*,  YJM)>.  
Combining (2.1) and (2.2) yields the dynamic evolution 
equations for the state sequence { X J :  

Observe from (2.3) that the transmission of Nk by the 
transmitters during phase k enables the receiver to de- 
duce xk+ l since the receiver has previously computed wk. 

Fig. 1 illustrates the operation of the modeled flow 
control scheme in accordance with (2.2) and (2.3). In 
terms of the preceding notation, we have at the beginning 
of phase n the values X ,  = (2,1,0) and unsent packets 
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M=3 

&, Messages Received in Phase n-1: Y,, 
Old Messages Not Yet Transmitted: 

Fig. 1. Flow control scheme. 

received during the preceding phase x- = (1,2,2); this 
implies that N, = (3,2,2). With the specified value of w,,, 
we then obtain X,, + = (0, 0, l), regardless of the arrival 
vector Y,, during this phase. 

We let c(') > 0 be a weighting on the cost of holding a 
packet at transmitter j ,  and without loss of generality, 
assume that 

cm 2 cm 2 ... 2 C(w* 
These costs could be interpreted as measures of the 
transmission priorities of the respective transmitters. In 
the setting of (2.41, the transmitters are arranged in de- 
scending priority order. 

For the N-step finite horizon problem, the objective is 
to minimize over the window vectors w, E A ,  1 5 i 5 N ,  
the expected total p-discounted cost 

(2.4) 

J N ( X )  
N M 

= pr-1 c"'E[(X"' + yLq - WI('))+ IX, =XI. 
r = l  / = 1  

(2.5) 
Here, A is the set of admissible slot allocations in a 
phase, consisting of M-vectors w with nonnegative integer 
components satisfying Z,!lw(J) I T. As in [3], we model 
this problem as a Markov decision process, and derive the 
optimality equations of dynamic programming. We first 
define the expected cost per phase as 

M 
L ( x , w )  a c d J ) E [ ( Y ( I )  +x(') - w ( J ) ) + ] .  (2.6) 

/ = 1  

For future reference, we alternatively write 
M m  

L( x, w )  = c( ' )  P [  YCr)  > w(') - x ( ' )  + j ] .  (2.7) 

Let Vl(x) be the minimal achievable total expected 
p-discounted cost when the system is in state x and there 
are k phases to go. The optimality equations of dynamic 
programming for the N-phase finite horizon problem yield 

1 = 1  / = o  

V,p(x)  = o  
(2.8) 

Vkp (x) = min, E A { L( x, w ) 
+ P E [ T / , P _ d [ y + x  - ~ l + ) ] } ,  
1 i k I N .  

Since p is fixed, we shall set 

(2.9) v k  E Vkp 

to simplify the notation. 
For the infinite horizon problem, the objective is to 

minimize over the windows wi E A  the expected total 
p-discounted ( p < 1) cost: 

m M 

Jm(x) = pi-1 c(j)  
i = l  j = 1  

* E [ ( X ) j )  + x?, - w!j))+IX,  = X I .  (2.10) 

As in [31, V ( x )  A lim,,,+m VN(x) exists, is finite, and is 
the minimal total expected discounted cost for the infinite 
horizon problem. We only show that V ( x )  is finite, and we 
refer the reader to [3] for the proof that it exists and that 
it is the minimal total expected discounted infinite horizon 
cost. 

For any policy r E P ,  let V N ( r ,  x) be the total expected 
p-discounted cost given that the system is in state x and 
there are N phases to go, i.e., 

N 
V-(rr,X) = p ' - ' E , " [ L ( x i , w i ) ]  (2.11) 

i =  1 

and 

~ ( r r , x )  A Iim vN(r,x) (2.12) 
N + m  

which exists by the nonnegativity of the one-step costs. 
Moreover, from [3, lemma 2.21, V,(rr, x) is finite for every 
rr and every 0 < p < 1. 

The optimality equation of dynamic programming for 
the infinite horizon problem is given by (see [31) 

The result V(x) = limN+m V J x )  will enable us to de- 
rive the qualitative properties of optimal allocation poli- 
cies for the infinite horizon problem by a standard limit- 
ing argument. Therefore, we first study the finite horizon 
problem. 

111. QUALITATIVE PROPERTIES OF OPTIMAL POLICIES 
FOR hf 2 2 

In this section, we derive qualitative properties of Vk(x) 
and V(x) that will be used to partially characterize the 
structure of a set of optimal allocation policies. We re- 
mind the reader that the stations are arranged in descend- 
ing order of holding costs [cf. (2.4)]. We derive the follow- 
ing properties for optimal discounted policies. Let x be 
the initial system state, and fix i, 1 I i 5 M .  Then, 

P1) if Ci.=lx(j)  2 T ,  there exists an optimal allocation 
w , ( x )  such that Cj= ,w$) (x )  = T ;  

P2) if Cj, ,x( j )  I T ,  there exists an optimal allocation 
w , ( x )  such that Ci.=,w$)(x)  2 Cj= lx ( j ) .  
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Property P1) assures that all of the slots are allocated 
to the first i transmitters when the sum of their known 
queue lengths exceeds T .  Property P2) asserts that the 
first i transmitters are allocated at least as many slots as 
the sum of their known queue lengths. We remark that 
for the case of equal holding costs, the analogous of 
property P2) is the stronger result: w$) L x ( j )  for each j ;  
see [3, lemma 3.61. 

As a consequence of properties P1) and P2), we trans- 
form this optimal resource allocation problem into an 
equivalent one with a smaller action space. This then 
reduces the computational complexity of the optimal con- 
trol algorithm. In particular, for large values of M and/or 
T ,  this reduction may be significant. 

To proceed with the analysis, we first establish some 
preliminary properties of V,(x> and V(x) .  

Lemma 3.1: 
a> Vk(x)  is a nondecreasing function in each x ( j ) ,  1 < j  

b) V ( x )  is a nondecreasing function in each d’), 1 < j  

Lemma 3.2: 
a) V,(x> is achieved by an allocation w,(x)  E A satisfy- 

b) V ( x )  is achieved by an allocation w ( x >  E A satisfying 

By Lemma 3.2, there is no loss of optimality in restrict- 
ing attention to those Markov policies whose action space 
is the set 

I M. 

I M .  
Proof Mimic the proof of [3, lemma 3.11. 

ing CE lwi j ) (x)  = T. 

CK1w(J’)(x) = T. 
Proof Mimic the proof of [3, lemma 3.21. 

j =  1 

(3.1) 

If we define 

G,(x,w) ~ L ( X , W )  + P E [ V , _ , ( [ Y + x - w ] + ) ]  (3.2) 

G ( x , w )  2 L ( x , w )  + P E [ V ( [ Y  + X  - w]’)] (3.3) 

then the dynamic programming equations (2.8) and (2.13) 
become, respectively, 

= mi? { Gk( x, w)} 
W E A  

(3.4) 

= mi% { G( x ,  w)} 
w e A  

(3.5) 

We let ei denote the M-dimensional row vector with 
one in the ith entry and zero in all other entries. In the 
next lemma, we prove that if the holding cost at transmit- 
ter i is higher than the one at j ,  then the minimal total 
cost starting from state x is higher than the one starting 
from x - e ,  f e i .  That is, transferring a packet from the 

queue of transmitter i to the one of transmitter j results 
in a smaller minimal total cost since it costs more to hold 
a packet at i than at j .  We remark that if the holding 
costs at transmitters i and j are equal, then by a symme- 
try argument, the minimal total cost is unaltered by a 
packet transfer from i to j (see [3, lemma 3.41). 

for j > i 
for j > i. 

Lemma 3.3: If x( ’ )  2 1, then 

V,( x - e, + e,)  < V,( x )  

V ( x  -e ,  + e,) I V ( x )  

(3.6) 

(3.7) 

Proo$ The proof of (3.6) is by induction on k.  The 
assertion trivially holds for k = 0. Suppose the assertion is 
true for k ,  and let V,, ,(x> = G,, , (x ,  w *) for some w , E 

2 We consider the two cases w$) = 0 and w$) 2 1. We 
begin first with the case w$) = 0. We clearly have 

V,+,(x - e, + e,) 

- < G,+,(x - e, + e , , w , ) = L ( x  - e, + e , , w , )  

+ PE[V,( [Y  + x  - e, + e, - w,]’)]. (3.8) 

Since when w$) = 0 and x ( ’ )  2 1 

[ Y ( , )  + x ( ’ )  - 1 - wy]+ = [ Y @ )  + x ( ‘ ) ]  - 1, (3.9) 

and for any realization Y ( J )  

( Y ( ’ )  + x(’) + 1 - wy>+ 4 ( Y ( ’ )  + x( ’ )  - wy)+ + 1, 
(3.10) 

we then obtain 

L ( x  - ei + e j , w , )  

11 - - ,(‘)E[ y(i) + x ( i )  - 

+ I  
c ,‘“E[ ( Y ( ! )  + x ( I )  - w$’) + 1 

+ , ( j ) E [ ( y ( j )  + x(i) + 1 - wy)) 
+ 

l # i ,  l # j  

- < , ( j )E[y( i )  + x ( ~ ) ~  + ,(i),r[(y(i) + x( i )  - ,,,v)>+ ] 
+ , ( ~ , r [ ( y ( ~  + x ( l )  - w(:))+] + ,(i) - ,(i). 

(3.11) 
l z i ,  l + j  

As c(’) I di) for j > i [cf. (2.411, we then get 

L ( x  - ei + e j , w , )  s L ( x , w , ) .  (3.12) 

Using (3.9), (3.10), the monotonicity of V,(x) in the jth 
component, and the induction hypothesis, respectively, 
then 

E[v,([Y + x  - e ,  + ej - w , l + ) ]  

s ~ [ ~ , ( [ ~ + x - w , l + - e ~  + e j ) ]  

5 E [  V,( [Y  + x - w* I’ )] . (3.13) 
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Combining (3.12) and (3.13) results in V,+,(x - e, + e j )  
I V,+,(x). For the case w$) 2 1, we have 

V,+,(x - e ,  + e j )  I G,+,(x - e ,  + e j , w ,  - e, + e j )  

= Gk+l(X,W*) = V,+,(x> (3.14) 

where the first equality on the RHS of (3.14) is immediate 
from the definitions of G,+ ,(e,* and L(x, w )  [cf. (3.2) and 
(2.6)]. This concludes the proof of (3.6). To prove (3.71, 
take the limit on both sides of (3.6) as k + m. . 

As a corollary, we prove the following result. Suppose 
that a slot is allocated to a packet with a certain holding 
cost according to an optimal policy. Then if this packet is 
replaced by one of higher holding cost, it is optimal to 
assign this slot to the new packet without altering the 
allocation of the other slots. 

Corollary 3.4: 
a) Suppose j > 1, x ( j )  2 1 and let V,(x) = G , ( x ,  w*). 

Then if w!$ 2 1, 

V,(x + e ,  - e j )  = G,(x + e, - e j , w ,  + e, - e j )  

= V,(x)  for all i < j .  

b) Property a) above holds for the infinite horizon cost 
V h ) .  

Roo$ We prove a) only because the proof of b) 
follows in a similar fashion. By the minimality of V,(x + 
e, - ej>, 

optimal policy that does not satisfy the stated property, 
there exists an optimal policy-that satisfies it. Let V,(x) = 

G,(x ,w , )  for some w, E A ,  and suppose that Cj=lw$) 
< min {E:.= , x (J ) ,  T } .  This then implies that wLm) 2 1 for 
some m > i, and w',") < dn) for some n I i. We next 
consider the allocation U* = w *  + en - e,, and show 
that 

G ~ ( x , v * )  I V,(X) .  (3.17) 

By a straightforward calculation, 

L ( x , v * )  - L ( x , w * )  

,(n) ( E [  ( y ( n )  + x(" )  - ,',"I - 1) ' 

+ 1) - ( y ( n )  + x ( n )  - w',")) 

+c(m)(E[(y(m)  + X ( m )  - w ( m )  * + I > +  

-( y c m ,  + .(m) - w$") + 1) . (3.18) 

As w:) < d"), the first term in { } on the RHS of (3.18) is 
equal to -1. Moreover, since the second term in { 1 on 
the RHS of (3.18) cannot exceed 1, 

L ( x , u , )  - L ( x , w , )  I c ( ~ )  - dn) I 0, (3.19) 

the last inequality following from (2.4) as m > n.  We 
show now that 

V,(x + e ,  - e j )  I G , ( x  + ei - e j , w *  + e, - e j )  
E [  V,- 1( [ Y + x - U* I + ) ]  I E [  V,- l ( [Y + x - w* 1 + I ]  . 

= G , ( x , w * )  = V , ( X ) .  (3.15) (3.20) 

[y(n) + x ( n )  - ,,,',") - I ]+= [ y ( n )  + .(n) - w',")] - 1 for 
every realization Y(,)  because x(" )  > w',"). Using this, 

But by Lemma 3.3, for i < j ,  

V, (x )  I V,(x + e, - e j ) .  (3.16) 
together with the monotonicity of V,-,(.) in the mth The combination of (3.15) and (3.16) leads to the desired 

result. . component, 

The above property is very useful in reducing the num- 
ber of computations of state-dependent allocation 
schemes. Given an optimal allocation for x ,  it enables us 
to obtain, in some cases, an optimal allocation for x + e, 
- ej without the requirement of any calculations. We now 
prove the existence of an optimal allocation policy satisfy- 
ing properties P1) and P2). 

Theorem 3.5: For any i, 1 I i I M ,  there exists an 
optimal allocation w *  E 2 such that C;.=,w','" 2 
min {E;= ! x ( j ) ,  TI, that is, 

a) if C f = l x ( J )  2 T ,  then there exists an optimal alloca- 
tion w, E A such that Cj= ,w$) = T, i.e., Vk(x)  = 

b) if Cf=,z(j) I T ,  then there exists an optimal alloca- 
tion w, E A such that Cj= lwq) 2 C:.=lx( i ) ,  i.e., V,<x> = 

c) there exist optimal policies for the infinite horizon 
total expected discounted cost problem with properties a) 
and b). 

Proo$ We prove a) and b) first. Assume that i < M, 
for if i = M ,  the statements of Theorem 3.5 are trivially 
true. The proof is by construction; that is, for every 

G , ( x ,  w * ?; 

G,(x, w * ); 

E [ V , - , W + x  - u * 1 + , ]  

= E [  v,-,([Y + x - w, - e, + e m ] +  ) ]  
I E [  V , - , ( [ Y  + x - w,]+ - e, + e m ) ] .  (3.21) 

Applying (3.6) to the RHS of (3.211, we obtain, as m > n, 

~ [ ~ , - , ( [ y + x - w * l + - e n  + e m ) ]  

I E [ V , - , ( [ Y + x  - w , ] + ) ] .  (3.22) 

Inequalities (3.21) and (3.22) lead to (3.20), and the com- 
bination of (3.19) and (3.20) produces (3.17). If Cj,,u!+!) = 

min {E:= , x ( j ) ,  T} ,  the proof is then complete; otherwise, 
Cj= ,U$)  < min {E:., ,&), T }  implies the existence of an 
m ,  > i such that ukml) 2 1 and an n,  I i such that U(*.])  

< ~ ( " 1 ) .  By the same argument as above, 

G,(x ,u*  + enl - e m l )  I G , ( x , u * )  I V , ( x ) .  (3.23) 

By proceeding in this fashion, we get 
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for some U, = w *  + Z:=,<e,, - em,) and integers I, 
IZ, 5 i, m, > i, 1 5 j I 1 such that lu$) = min 
{Cfi=,x('), T ) .  This completes the proof of a) and b). To 
prove c), use the dynamic programming equation (3.5) for 
V(x) ,  inequality (3.7), and proceed in the same way. 

As a corollary, we show that if the ordering (2.4) is 
strict, i.e., 

c(l) > p )  > ... > C('+f), (3.25) 

then any optimal policy must allocate at least 
min {E;= T }  to the first i transmitters. 

Corolluiy 3.6: Suppose (3.25) holds. Th? for any i, 
1 I i I M ,  every optimal allocation w * E A must satisfy 
Ci=lw(," 2 min{Cf,=,x('), T } ,  that is, 

a) if ~ f i =  2 T ,  every optimal allocation w * E ii is 
such that C;=,w'," = T ;  

b) if Xi= ,dJ)  i T ,  every optimal allocation w * E 2 is 
such that E;,,w$) 2 Cfi=lxo); 

c) any optimal policy for the infinite horizon total 

If U 4 ( U ( l ) ,  
A - (0 ,... ,o ,  x ( i + 2 )  ,... x(M) ) ,  then 

- U ( l )  ,... U ( ' + ' )  - U(i),o,.-.,o) and y 

(3.28) V, (x )  = min {G,(Y, U ) }  

subject to the constraints 

U( '+ ' )  = Y ( i  + 1) (3.29) 
(3.30) 0 I U ( ' )  I x('+l) + 1 I 1 I i. 

Furthermore, if U *  minimizes the RHS of (3.28), then 
(3.31) 

is an optimal allocation, i.e., V,(x)  = G k ( x ,  w * ) .  
b) Equations (3.28H3.31) hold when a ( M )  I T .  This 

reduced set of optimality equations is exactly the same 
when a ( M  - 1) < T and a ( M )  2 T.  

c) Properties a) and b) hold for the infinite horizon 
problem, i.e., with y and U as defined in a): 

w *  A x +  U *  - y  

V ( x )  = min U { G ( y , o ) }  (3.32) 

expected discounted cost problem has properties a) and subiect to (3.29)-(3.31). - \  

We next use Theorem 3.5 to show that the search of 
optimal policies is reduced, as stated at the beginning of 
the section. We first define 

(3.26) 
j = l  

~ ( i )  T - a ( i ) .  (3.27) 

For every initial state, a brute-force optimization over 2 
will require the computation of + - allocation 
schemes (see [lo]). However, if we take advantage of 
properties a) and b) of Theorem 3.5, the computational 
complexity of the optimal control algorithm will be re- 
duced. Indeed, if we suppose that the sum of the queue 
lengths of the first (i + 1) transmitters is not less than T 
( a ( i  + 1) 2 T ) ,  then by Theorem 3.5 a), it is optimal to 
allocate all of the T slots to transmitters (1,2,---,i + 1). 
Then, a brute-force optimization will require the compu- 
tation of ( ) allocation schemes. In addition, if a ( i )  < 
T ,  then by Theorem 3.5 b), it is optimal to allocate at least 
&(I) slots to the first I transmitters for each 1 = 1,2;-., i. 
Hence, we only need to search for the optimal additional 
number of slots U $ ) ,  U$?,..*, U $ )  to allocate to transmit- 
ter 1, transmitters 1 and 2;.., transmitters(l,2;.., i), 

( M - 1  1 

I I 
w ( j )  2 x ( j ) ,  1 I 1 I i (3.33) 

j =  1 j =  1 

i+ 1 
(3.34) 

Then there exist nonnegative integers U ( ' ) , - - * ,  U ( ' )  such 
that 

1 1 

w(j) = x ( i )  + U ( [ ) ,  1 < 1 s i. (3.35) 
j =  1 j = l  

If we define u ( ~ + ' )  4 y ( i  + 1) and use (3.34)-(3.35), we 
then obtain 

+ U ( ' )  i f 1 = 1  
w(') = x(1) + - g 0 - 1 )  if 1 < 1 5 j + 1 

if i + 1 < 1 I M .  
(3.36) 

The constraints on the RHS of (3.30) follow directly from 
(3.36) because w( ' )  2 0. 

We next verify (3.28). With y and U as defined in 
statement a) of Theorem 3.7, we write (3.36) in the vector 
form 

w = x + a - y .  (3.37) 

( 0  

. .  
respectively. This then leads to a second computational 
reduction of the optimal allocation scheme because 
( U ? ) ; * - ,  U $ ) )  lies in a set of size smaller than ( i  :. '1. This 
is made explicit in Theorem 3.7, which also gives a formu- 

From the definitions of L(x, w )  and G,(x, w )  [cf. (2.6) and 
(3.2)], one checks that 

G , ( x , x  + u - y )  = G , ( Y , ~ ) *  (3.38) 

lation for the reduced equations of optimal&. Since 
Theorem 3.7: Vk(x)  = mic { G ~ ( x , w ) ) ,  (3.39) 
a) Let i < M be such that a( i )  I T and a(i + 1) 2 T .  w e A  
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(3.28) is now immediate from (3.37) and (3.38). Finally, 
W 

To compute optimal policies, we first partition the state 
space into sets So = ( x :  (~(1) 2 T } ,  Si = (x: a(i)  < T ,  
a( i  + 1) 2 TI for 1 5 i I M - 1, and S, = (x: a ( M )  < 
T}. Optimal policies over So are trivial; all of the T slots 
are allocated to transmitter 1 [cf. theorem 3.5 a)]. We 
then use the simplifications of Theorem 3.7 to compute an 
optimal allocation for each state in Si, 1 I i I M .  

We believe that these properties may reduce the com- 
putational difficulty of the optimization problem, even 
though the computation of an optimal policy still requires 
knowledge of the value function for all states. 

Iv. FURTHER RESULTS FOR M = 2 
In this section, we let M = 2 and show that V,(x) and 

V ( x )  are convex and submodular in x,  and that optimal 
allocation policies have (as in the case of equal holding 
costs) the following property: if w *  is an optimal alloca- 
tion when the state is x, then either w, or w, + e, - e, 
(i # j )  is optimal when the state is x + ei. This property is 
stronger than monotonicity in the state. It implies that 
optimal policies possess the threshold property, that is, for 
every state d1) of transmitter one, there exist an alloca- 
tion u(x( ' ) )  E A  and a threshold state t ( x ( ' ) )  such that 
u(x( ' ) )  is optimal for all states (d'), d')) for which x(') 2 
t (x( ' )> .  Combining these properties with those of Section 
111, we finally show that for some x$), the optimization is 
reduced to the calculation of optimal allocations for states 
in the set {(O, x(*)): 0 I x(') 2 ~$9. Moreover, by the first 
above-mentioned property, optimal allocations over this 
set are calculated recursively using an optimal allocation 
for state (O,O), thus reducing the computational complex- 
ity of the optimal flow control algorithm significantly. We 
first define convexity, submodularity, and prove some pre- 
liminary lemmas. 

The following definitions are as in [2]. Let g be a 
function of x = (xl;-*, x n ) ,  where xl;-*, x ,  E Z. We say g 
is convex in Z" if 

g( x + e, + e,)  - g( x + e , )  2 g (  x + e,)  - g( x)  

(3.31) follows from (3.28), (3.37), and (3.39). 

V1 I i , j  5 n (4.1) 

and g is submodular in Z" if 

g( x + e,  - e,) - g( x) 2 g( x - e,)  - g( x - e , )  

V1 I i # j  ~ n .  (4.2) 

The following two lemmas are proved in [3] (see Lemma 
4.1 and Lemma 4.2, respectively). We restate them here 
for completeness. 

Lemma 4.1: Let g be a function of x = (x1,x2) E 2:. 
If g is monotonically nondecreasing in each variable and 
convex, then g(x : ,  x i )  is convex in Z 2 ,  i.e., for any i, j ,  

e,]' ) - g([x - e, - e , ]+  ). (4.3) 

Lemma 4.2: Let g, a function of x = (x,, x,) E Z:, 

a) g(xl, x , )  is monotonically nondecreasing in each 

b) g(xl, x,) is convex in each variable, 
c) g(x , ,  x , )  is submodular. 
Then g(x : ,  x : )  is submodular in Z 2 ,  i.e., for i # j ,  

satisfy the three properties: 

variable, 

In the next theorem, we prove that V,(x) is convex and 
submodular in x ,  and that it satisfies the first property of 
the optimal control policy stated at the beginning of the 
section. 

Theorem 4.3: a) Let V,( x) = G,( x, w * ) for some w * E 
A. Then for i = 1,2, 

(min,=,,,G,(x + e , ,w* + e, - e j )  

if wz) = T. 

(4.5) 

b) V,(x) is convex. 
c) V,(x) is submodular. 

Proofi The theorem is trivial for k = 0. Assuming 
that V,(x) is convex and submodular, we shall show that 
a), b), and c) hold for V,, ,(x); thus, by way of induction, 
the theorem holds for all k 2 0. 

Proof of a): Suppose V,(x) is convex and submodular. 
Combining these two properties with the monotonicity of 
V,(x) in each component (cf. Lemma 3.0, then by Lemma 
4.1 and Lemma 4.2, respectively, 

~ 3 )  V,(X') is convex in Z 2 ,  
P4) V,(x') is submodular in 2'. 
We will invoke these properties later in the proof. Let 

V,+I (X)  = G k + l ( X , W * )  = L ( x , w * )  

for some w * E For j = 1,2, define 

Our goal is to prove the following two inequalities: 

GL+l(x + e , , w * )  I G k + l ( x  + e ; , w )  Vw E B ( i ) ;  
(4.7) 

if w(;) * < T ,  

G,, x + e; ,  w *  + e, - e j )  I G,, ' ( x  + e , ,  w + e ,  - e j )  

Vw E B ( j ) .  (4.8) 

Suppose for now that (4.7H4.8) hold. If w$) = T, then 
(4.7) implies that V,,,(x + e , )  = GA+,(x + e,,w.>. For 
the other case, w$) < T, pick w EA.  If I w$), then 
by (4.71, G,, ,(x + e,, w, I G, ,  ,(x + e;, w). On the 
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other hand, if w(') > w$), then for the other index j ,  
w ( J )  < w$) because w, , w E A. Hence, w - e, + e, E 

B ( j ) ,  and by ( 4 8 ,  Gk+, (x  + e,,w, + e, - e,) I Gk+,(x 
+ e,,w). We then conclude that in all cases, 

ifw2) = T ,  

(4.9) 

and thus a) holds for k + 1. We next proceed to prove 
(4.7)-(4.8). By a straightforward calculation, 

Gk+,(x  + ei,w + e, - e,)  - G , + , ( x , w )  

= , ( j ) ( ,~[(y( j )  + x(i) + 1 - ,,,(j))+ ] 

+ P ( E [ v , ( [ Y + ~ - ~  + e j ] + ) ]  

-E[  V,([Y + x - w1+ 11) 7 (4.10) 

and by the convexity of (-I+, 
E [ ( y ( j )  +x(i)  + 1 1 

* ) + ]  
- ( y ( j )  + x ( j )  - w(i))+ 

> - E [  ( y ( i )  + x ( j )  + 1 - w(i))+ -(y(i)  +x(i) - w(i) 

V d j )  I wy). (4.11) 
If we show that V w ( j )  s wy) 

E[v,([Y + x - w + e,]+ ) - v,([Y + x - w ] +  I] 
2 E [  v,([Y + x - w, + e j ] +  ) 
- V , ( [ Y + X - w * l + ) ] ,  (4.12) 

then combining (4.10)-(4.12), we obtain V w ( j )  I w?) 

G,+,(x + e,,w + e ,  - e,) - G,+,(x,w) 
2 G,+,(x + e, ,w* + ei - e j )  - G k + , ( x , w * ) .  (4.13) 

Using the optimality of w,, i.e., G,+,(x, w )  2 
G,+ ,(x, w,) for all w E and (4.131, we then obtain 
(4.7H4.8). To complete the proof, it remains to demon- 
strate (4.12). Without loss of generality, assume j = 1 and 

holds with equality; so suppose m 2 1. For any realization 

- d2). Then by repeated applications of P4), we obtain 

let w(1) = w, (1) - m ,  d2) = w?) + m. If m = 0, (4.12) 

('(I), y(2)), let 2 ,  = y(1) + x(l) - w(l)  and z2 = y(2) + x(2)  

Vk(b1 + 11+,2:) - V,(.:,.:) 

2 V , ( z : , [ z ,  + 11') - V,([., - 1 1 + , [ 2 2  + 11+) 

2 V,([., - 1 3 + , [ 2 2  + 21+) 

- V , ( [ z ,  - 21+,[22 + 21+) 

2 2 v,([z, - m + 1]+ , [ z2  + m ] + )  

- V, ( [ z ,  - m ] + , [ z 2  + m ] ' )  (4.14) 

or, equivalently, 

v,([Y + x - w + e ,  J' ) - v,([Y + x - w]+ 

2 v,([Y + x - w, + e l l+  ) - v,([Y + x - w,]+ 1. 
(4.15) 

Taking expectations on both sides of (4.15), and repeating 
the above argument for j = 2, we get (4.12). This com- 
pletes the proof of a). 

Proofofb): We take advantage of the structure of the 
optimal policy to prove that V,+, (x)  is convex. Since the 
optimal policy takes different forms depending on whether 
x(l) 2 T or not, we break the proof in three cases: x(l) 2 
T ,  x(l) I T - 2, and the boundary case x(l) = T - 1. 
Throughout this proof, we let 

A A V , + , ( x  + e ,  + e,) - Vk+, (x  + e , )  

- V k + l ( X  +e,)  + V k + l ( X ) ,  (4.16) 

and we remind the reader that our objective is to show 
that A 2 0. 

Case 1: x(l) 2 T.  
Applying Theorem 3.5a), we obtain 

V k + ] ( x  + e, + e , )  = Gk+, (x  + e, +e , ,%)  

V , + , ( x  + e,)  = G,+,(x + e,,Te,) 

V k + l ( X  + e,) = G,+,(x + e,,Te,) 

V , + , ( x )  = G,+,(x ,%) .  

One finds that 

A = P E [ I / , ( Y + x + e , + e , - T e , )  

- V , ( Y + x + e , - T e , )  

- V,(Y + x + e, - Te,) + V,( Y + x - Te,)] 

so that by the convexity of V,((.)+) [cf. property P3)1, 
V,+ ,(x) is convex. 

Case 2: x(l) I T - 2. 
Let V,+,(? + e ,  + e,) = G,+,(x + e, + e , , w , >  for 

some w *  E A.  Then by the remark following the proof of 
Theorem 3.7, 

V k + l ( X + e i  + e , )  =Gk+l (O,a*)  (4.17) 

for some a ,  A (a( ' )  * 7  T - x(l) - d2) - 2 - a:)) such that 

w, = x + e , + e , + a , .  (4.18) 

To simplify the notation, we define a?) A T - x(l) - d2) 
- 2 - a$). Our immediate goal is to show that 

b + 1 ( x  + e , )  = G,+l(O, a* + e , )  (4.19) 

for some m. Using the optimality of w, when the state is 
x + e, + e, and applying a), we get 

V k + l ( ~ + e , )  = G k + l ( ~ + e , , w *  - - ,+em)  (4.20) 

for some m such that w, - e, + em is well defined, i.e., 
m = j if w$) = 0. By Theorem 3.7 a) and b), we also 
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obtain This difference can be written in the equivalent form 

V,+,(x + e i )  = G,+,(O, 6 , )  (4.21) 

for some 6, 4 (6") * ,  T - x( l )  - x(') - 1 - Sf)) such that 

w *  - ej + e m  = x  + e, + 6,. (4.22) 

A = ( ( c ( O ~ [ ( y ( O  - (+$) - 1)' - ( y ( l )  - a$))+ ] 
+PE[ h ( [ Y  - (+* - er]+ )])  
- (c(m)E[(y(m) - - I)+ - ( y (m)  - (+(*")+I 

From (4.18) and (4.22), we deduce that 6, = U *  + em. 
Equation (4.19) is now immediate from (4.21). We next 
establish an inequality that will be useful in the sequel. 
From (4.191, G,+,(O, (+* + em> I G,+,(O, U *  + e , )  for all 
1 or, equivalently, 

c(m)E[(y(m) - ,(m) - I ) +  - ( y (m)  - *(*m))+]  

+ PE[  v,([Y- (+* - em]+ ) ]  

+ I  I c")E[ ( y m  - (+'*'I - 1) + - (yco - (+p) 

+ PE[V,( [Y - (+* - e , ] ' ) ]  V I .  (4.23) 

By a similar argument as above, we also obtain 

Vk+I(x + ej) = G,+,(O, (+* + e n )  (4.24) 

V,+,(X) G,+,(x, (+* + en + e , )  (4.25) 

for some n and 1. We now show that A L 0 by considering 
all the possible combinations of m, n, and 1. In each of 
the cases below, the calculation of A is based on (4.171, 
(4.19), (4.24), and (4.25). 

i ) m  = n  =1.  
In this case. 

The first term in { } on the RHS of the above is nonnega- 
tive by the convexity of ( e ) + ,  and the second term in { I is 
nonnegative by the convexity of V,((.)+). Thus, A 2 0. 

ii) m = n and 1 # m. 
One checks that 
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by the convexity of V,((.)+). Thus, A 2 0. This finishes 
the proof of Case 2. 

Case 3: x ( l )  = T - 1. 
We only consider the case i = j = 1 in (4.16) because 

all of the other possible combinations of i and j are 
covered in Case 2 above. By Theorem 3.5 a), 

V,+,(x + 2e1) = G , + , ( x  + 2e,,Te,) 

V,+,(x + e , )  = G , + , ( x  + e l , T e l ) .  (4.26) 

Using (4.26) and applying a), we obtain 

K +  1(x) = G,+ 1(x, Te1 - e1 + em) 

for some m. If m = 1, then 

first component, 

V,(Y(" + 1,Y'2' + X O )  - V,(Y(') ,Y(')  + x(2) )  

2 V k ( Y ( l ) , Y ( 2 )  +x(')) - V,(Y(I)  - l ,Y'2'+X'2)).  
(4.30) 

BY Lemma 3.3, v,(Y(') - 1 , ~ ' ~ )  + d2)) I v,(Y('),Y(~) + 
xc2) - 1) .  Combining this result with (4.30) yields (4.28). 
This concludes the proof of Case 3, and hence b). 

Proof ofc): As in the proof of b), we take advantage 
of the structural properties of the optimal policy to show 
that Vk+ , ( x )  is submodular. Since the optimal policy takes 
different forms depending on whether x ( l )  2 T or not, we 
break the proof into three cases: x( ' )  > T ,  x(') < T, and 
the boundary case x(') = T.  Throughout this proof, we let 

D V,+ ,( x + e, - e j )  - V,+ ,( x - e j )  

Since for any realization Y( ' ) ,  Y ( ' )  - ( Y C 1 )  - 1)+ I 1, the 
first term in ( ) on the RHS of the above is nonnegative. 
In addition, since the second term in { ) is nonnegative by 
the convexity of V,((.)+), then A 2 0. If m = 2, then 

- ( ~ ( 2 )  + x(2) - 1)' 1) A = (,(l,&)E[ ( y @ )  + 

+ p ( ~ [  V,(Y + x - ( T  - 2)e1) 

-2V,(Y+x- ( T -  l ) e l )  

+ V , ( [ Y  + x  - ( T  - l ) e ,  - e 2 ] ' ) ] ) .  (4.27) 

Since for any realization Y ( ~ ) ,  (F2)  + d2)) - ( Y ( ~ )  + x ( ~ )  
- 1)'s 1, and dl) 2 d2), then the first term in ( ) on the 
RHS of (4.27) is nonnegative. For A to be nonnegative, it 
is then sufficient to show that the second term in ( 1 on 
the RHS of (4.27) is nonnegative. In fact, for any realiza- 
tion (Y( ' ) ,  Y(2)) ,  we claim that 

V,( Y ( l )  + 1, Y(2) + d2)) - V,(Y(I) ,  Y @ )  + XQ)) 

11+ ). 2 V,( yo) ,  y(2) + p)) - V yo, ym + p) - k (  > [  
(4.28) 

The nonnegativity of the second term in { ) on the RHS 
of (4.27) then immediately follows from (4.28). We break 
the proof of (4.28) into cases. If Y ( 2 )  + d2) = 0, then 
(4.28) is immediate by the monotonicity of V,(.) in the 
first component. We next consider the other possibility, 
Y(') + x(') 2 1. Suppose first that Y( l )  = 0. Then by the 
convexity of V,(-) in the second component, 

q o ,  Y Q )  + x(2 ) )  - Vk(0, Y @ )  + d2) - 1) 

5 V,(0,Y'2' + d2) + 1) - Vk(0,Y'2' + d2)) .  (4.29) 

Since by Lemma 3.3, VJO, Y(') + x ( ~ )  + 1 )  I V,(l, Y(') + 
x(*)),  then (4.28) follows from this observation and (4.29). 
Finally, if Y ( l )  2 1, then by the convexity of V,(.) in the 

D 2 0 whenever i f j .  
Case I :  x ( l )  > T.  Applying Theorem 3.5a), we obtain 

V,+ x + e; - e j )  = G,+ ,( x + e j  - e j ,  Te,) 

Vk+, (x  - e j )  = G , + , ( x  - e j ,Te , )  

V k + , ( x  - e i )  = G , + , ( x  - e i , T e , )  

V,, 1(x) = G,+ 1(x, Te,)  
so that 

D = c ( i )  1 - E ( y ~ i )  + x ( i ) )  - ( Y C O  + .(i) - 1) + I} 
+ P(E[V,([Y + x - Te, + ei - e j ] + )  

- V , ( [ Y + x -  Te, - e j ] ' )  

- V , ( [ Y + X - T ~ , ] ~ )  + V , ( [ Y + x - T e ,  - e j ] + ) ] ) .  

Since for any realization Fi), ( Y ( ~ )  + di)) - (Y")  + 
- 1)'s 1,  the first term in ( ) on the RHS of the above is 
nonnegative. In addition, the second term in { ) on the 
RHS of the above is nonnegative by the submodularity of 
V,((.)) [cf. property P4)J Thus, D 2 0. 

( 1  

Case 2: x ( l )  < T or ( x ( ' )  = T and i = 2). 
By Theorem 3.7 a) and b), there exists U *  = ( U ; ) ,  U$ )>  

V k + l ( x  + e; - e j )  = G,+,(O, U * ) .  (4.32) 

Using (4.32) and applying a), then by the argument in the 
first paragraph of the proof of Case 2b), 

such that 

V,+ 1(x - e j )  = G,+ '(0, U *  + em) 

~ + I ( x )  = G,+,(O, U *  + em - e,)  

(4.33) 

(4.34) 

Vk+l(X - e , )  = G,+l(O, U *  + e, - e, + e,) (4.35) 

for some m, n, and 1. In addition, by the optimality of 
U *  + e ,  when the state is x - e j ,  m is such that 
G,+,(O, U *  + em)  I Gk+l(O, U *  + e , )  for all I or, equiva- 
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lently, 

We next show that D 2 0 by considering all the possible 
combinations of m, n ,  and I .  In each of the cases below, 
the calculation of D is based on (4.321H4.35). 

D is equal to zero in this case. 

By a straightforward calculation, 

i ) m = n = l .  

ii) m = n and 1 # m. 

so that D 2 0 by (4.36). 
iii) m f n and 1 = m. 

One checks that 

The first term in { } on the RHS of the above is nonnega- 
tive by the convexity of ( e ) + ,  while the second term in { } 
is nonnegative by the submodularity of V,((.)+). Thus, 
D 2 0. 

In this case, 
iv) m # n and 1 = n.  

+ P ( E [ V , ( [ Y -  , * I +  1 

-v,([Y- U *  - ell+ ) + I / , ( [ Y -  U *  - e m ] +  I]) * 

-v,([Y - u* - em - e l ] +  ) 

The first term in { } on the RHS of the above is nonnega- 
tive by (4.36), the second term in { } is nonnegative by the 
convexity of ( a ) + ,  and the third term in { } is nonnegative 
by the convexity of V,((-)+). Thus, D 2 0, and the proof 
of Case 2 is complete. 

Case 3: x ( ' )  = T and i = 1. 
By Theorem 3.5a), 

Vk+,(x + e ,  - e, )  = G,+,(x + e,  - e2,Te,) (4.37) 

V,+,(x - e21 = G,+,(x - e , , % )  (4.38) 
Vk+l(X) = G,+,(x7Te,). (4.39) 

Using (4.39) and applying Theorem 4.3a), we obtain 

V,+,(x - e , )  = G , + , ( x  - e,,Te, - e ,  + e m )  (4.40) 

for some m. If m = 1, then calculating D using 
(4.37)-(4.401, we find that 

D = c(l) 1 - E y ( I )  + ( Y ( l )  - 1)' 1) ( 1  
+ P(E[v,([Y + x  - Te, + e,  - e 2 ] + )  

-V,([Y + x  - Te, - e , ] ' )  

-V,(Y + x - Te,) + V,([Y + x - Te, - e , ] ' ) ] )  

The first term in { } on the RHS of the above is nonnega- 
tive because for any realization Y(l) ,  Y ( l )  - (Y( ' ) - l )+s  1. 
Since by the submodularity of V,((.)+) the second term in 
( } on the RHS of the above is nonnegative also, then 
D 2. 0. If m = 2, then 

D = &) - c'2)E[ ( y m  + x ( 2 ) )  - (Y(2) + x ( 2 )  - 1) + 1) ( 
+ P { E [ V , ( [ Y + x - T e , + e , - e 2 ] + )  

-V,(Y + x - Te,)])  . (4.41) 

Since E[(Y'2) + x',)) - (Y(2)  + x(,) - 1)+] I 1 and c(') 2 
d2), the first term in { 1 on the RHS of (4.41) is nonnega- 
tive. Then D 2 0 if we show that the second term on the 
RHS of (4.41) is nonnegative. In fact, we claim that for 
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any realization (Y( ' ) ,  ~ ( ' 9 ,  

V,(Y(l) + 1, [Y@)  + x @ )  - 1]+ ) 2 V,(Y'",Y'2' + x(2)). 
(4.42) 

The nonnegativity of the second term in { } on the RHS 
of (4.41) is then immediate from (4.421. To prove (4.421, 
we first suppose that Y(,) + x(*) = 0. In this case, (4.42) 
follows from the monotonicity of V,(.) in the first compo- 
nent. If Y(,) + d2) > 1, (4.42) follows from Lemma 3.3. 
This completes the proof of c) and the theorem. 
As for the finite horizon, we have the following results 

for the infinite horizon when p < 1. 
Corollary 4.4: a) V(x) is convex and submodular. b) Let 

V(x) = G ( x , w * )  for some w, E A. Then 

derived as follows. If x(l) 2 T ,  then w * (x('), x'") = ( T ,  0); 
otherwise, for 1 I x(') < T ,  w*(x( ' ) ,  d2)) is obtained re- 
cursively from the known values of w * (0, x(') + x'") using 
(4.44). We conclude this section with the following re- 
marks. 1) The computation of {w *(O, x'~)): x(,) > 1) is 
reduced using Theorem 4.3a) (Corollary 4.4b) for the 
infinite horizon case). Given w * (0, O), {w * (0, d2)): x(') 2 
1) are recursively computed, using the property that 
w * (0, d2) + 1) equals either w * (0, x@)) or w * (0, d2)) + 
e2 - e,. 2) The computation of an optimal policy requires 
knowledge of the value function for all states. 3) The 
computation of t(0) may not result from a finite calcula- 
tion; t(0) = is possible. 

v. A FURTHER PROPERTY OF OPTIMAL POLICIES FOR 
Two STOCHASTICALLY ORDERED ARRIVAL STREAMS 

min,=,,,G(x + e , , w ,  + e, - e,) In this section, we further characterize optimal policies 
when the message generation at the transmitter (trans- 
mitter one) of higher holding cost is stochastically larger 
than the message generation at the other. We prove the 
intuitive result: when the state of transmitter one is no 

if w$) < T I if w$) = T .  

(4.43) 
G(x  + e , , w * )  

V ( x  + e , )  = 

Proofi As the limit of convex (submodular) functions 
is convex (submodular), a) is immediate from Theorem 
4.3b) and c). The proof of b) follows in the exact same 
manner as the proof Theorem 4.3a) using the analogous 
properties of V(x). 

We next use Theorem 4.3a) and Corollary 4.4b1 to 
strengthen the result of Corollary 3.4. 

Theorem 4.5: If w,(x1 denotes an optimal allocation 
when the state is x for either the finite or infinite horizon 
problem and d2) 2 1, then 

w*(x + e ,  - e21 

w,(x) + e ,  - e 2  ifw',)(x) 2 1 

if w$)( x)  = 0. 
(4.44) 

Proofi If w$)(x)  2 1, then by Corollary 3.4, w,(x + 
e ,  - e,) = w , ( x )  + e ,  - e2. If w',)(x) = 0, then applying 
Theorem 4.3a) (respectively Corollary 4.4b) for the infi- 
nite horizon case) twice, we obtain w , ( x  - e,) = w , ( x )  
and w , ( x  - e ,  + e , )  = w , ( x  - e,), thus establishing 
(4.44). 

As stated in Theorem 3.5a), when x(') 2 T ,  it is optimal 
to allocate all of the T slots to transmitter one. The 
determination of an optimal policy is thus reduced to the 
subset of the state space, {x: x ( l )  < T } .  Since the optimal 
allocation for each transmitter is monotone in its state 
and the allocation space is finite, then for every x(') < T ,  
there exists a threshold t ( x ( ' ) )  E Z +  such that it is opti- 
mal to make the same allocation of slots for all states 
(x('), x(*)) for which x ( ~ )  2 t ( x ( ' ) ) .  

We now show that it is sufficient to calculate t(0) and 

lower than the state of transmitter two, it is optimal to 
allocate at least as many slots to transmitter one as to 
transmitter two. The application of this result is a reduc- 
tion by a half of the allocation space to determine w * (0,O). 

Theorem 5.1: 
a) If Y ( ' )  Y(2)  and x(l) 2 x ( ~ ) ,  then there exists w *  E 

Asatisfying w$) 2 w$) such that V,(x) = G , ( x , w * ) .  
b) Property a) above holds for the infinite horizon cost 

V(X). 
Proofi We only prove a) as the proof of b) follows the 

same lines using the analogous properties of V(x). The 
method of proof is as follows: for every optimal policy that 
does not satisfy the property of a), there exists an optimal 
policy with this property. 

Suppose that VJx) = G,(x,w*), but w$) < w$). We 
first consider the allocation c' * = w * + e ,  - e, and show 
that 

V,(X) I G,(x,u*). (5.1) 

By a straightforward calculation using (2.71, 

L ( x , u * )  - L(x,w*) = C(*)P[Y(*)  > w',' - X Q )  - 13 

- c'"p[ y(1) > w(l)  - * x I .  (5-2) ( 1 )  

Since w$) < w$) and x(') 2 x(,), then ~ $ 1  - x( l )  - < w',) - 
x(,) - 1. This then implies that P[Y( ' )  > w$!) - x(')I > 
P[Y(2)  > w',) - x(*) - 11 because Y( l )  $ Y(,). Combining 
this result with the hypothesis d2)  I d') ,  we obtain 

w * (0, x( ' ) )  for all x(,) I t (O1 to determine all of the opti- 
mal allocations over {x: x(l) < T } .  By Theorem 4.5, opti- 

We now show that 

(5.3) 

E [ v, - 1( [ Y + x - U *  1 + I] 2 E [ V, - I (  [ y + x - w * 1 + 11 . mal allocations w * (x('), x ( ~ ) )  are simply derived from 
w * (0, x ( ' )  + x(*)). Indeed, if t(0) and {w * (0, x(~)) ,  d2) I 
t(O)} are known, then given any (x('), x ' ~ ) ) ,  w * ( x ( ' ) ,  d2)> is (5.4) 
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Define 

K E [  V,- ,( [ Y + x - U*]+ ) - V,- ,( [ Y + x - W, ]+  )] 
(5.5) 

- V,- , (x ,  - 1,O) if x1 2 1 
if x, I 0 

(5.7) 

We first note that both W(-)  and U(.) are nonnegative 
functions because Vk- ,(e,* ) is monotone in each of its 
arguments. Moreover, both W(- )  and U(. )  are nondecreas- 
ing functions because V k - l ( * , . )  is convex [cf. Theorem 
4.3b)l. Since for all realizations (Y('), Y(2))  such that Y C 1 )  
2 w$) + 1 - and Y(2)  2 w(*2) - d2), V,- ,([Y + x - 
U* 1') 5 V,- ,([Y + x - w,]') by Lemma 3.3, then 

K I P [  YC1)  I w$) - x" ']E[U( Y(') + x'') - w(*) + l ) ]  

- P [  Y(*) I ~ $ 1  - d2) - 1 ] E [  W( Y(I) + ~ ( l )  - w$))]. 
(5 .8)  

By an earlier observation, P[Y("  I w$) - x("1 5 P[Y '2 )  
- < w(*) -d2) - 11 I 1, so that 

K I E [  U( Y(2) + x(*) - w(*2) + l ) ]  

- E [  W( Y( l )  + X ( l )  - w',")] . (5.9) 

By repeated applications of the submodularity of V,- ,(.,e 

[cf. Theorem 4.3c)l, we obtain for x1 2 1, 

V,-,(X,,O) - V,-,(X, - 170) 

2 Vk-1(1,~1 - 1) - V, -~ (O,X~  - 1). (5.10) 

Since Vk- ,(l, x, - 1) 2 Vk- ,(O, x) by Lemma 3.3, then 

V, - , (Xl ,O)  - V, - , (x ,  - 190) 

2 V,-,(O, X I )  - V k _  I(0, X I  - 1). (5.11) 
Thus, 

W( X I )  2 U( XI) vx,. (5.12) 

Since Y( l )  + xc1) - dl) g Y(,) + x(') - d2) + 1 because 
Y(')  5 Y('), x(') > - d'), and w(') < d2), then by the mono- 
tonicity t of W(.), 

+ 1) W( y(1) + - w(l)) g W( y(2) + x ( 2 )  - w ( 2 )  

(5.13) 

so that, by (5.12), 

W(Y'" + - w(l)) U(Y'2' + x ( 2 )  - w ( 2 )  + 1). 
(5.14) 

Hence, E[U(Y(,) + x(') - w(') + 1) - W(Y(')  + d1) - 
w( ' ) ) ]  5 0, and thus by (5.9), K s 0. This establishes (5.4). 

Combining (5.3H5.4) and the optimality of w,, then 
V,(x) = G,(x,w* + e ,  - e2). If w?) + 1 2 w(*2) - 1, the 
claim is proved; otherwise, by the same argument as 
above, we obtain V,(x) = G,(x,w* + 2e, - 2e2). Pro- 
ceeding in this fashion, we get V,(x) = G,(x, w ,  + nel - 
ne,) where n is the smallest integer such that w$) + n 2 
w ( 2 )  * - n. 

VI. EXISTENCE AND PROPERTIES OF TIME-AVERAGE 
OPTIMAL POLICIES 

In [4], we investigated the time-average holding cost 
with equal weighting at the respective nodes. The time- 
average cost for phase length T is defined as 

n M  
V , < r , x >  4 lim supn-' ~ " [ ~ j j )  I X ,  = X I  

k = l  j = l  n + x  

(6.1) 

where r is the control (allocation) policy and E" denotes 
the corresponding expectation. By comparing this cost 
with the waiting time for the G/G/ l  queue and using 
results in [9], we found that the necessary conditions for 
the existence of finite cost policies were phrased in terms 
of the first two moments of the arrival stream by 

Sufficiency of the same conditions (6.2) was proved by 
exhibiting a pure policy for which the time-average cost 
(6.1) is finite. We further showed there exist pure policies' 
such that the average cost (6.1) converges to zero as the 
phase length T -+ m.2 In each case, the results hold for 
any initial state x. 

For differing holding costs, the time average generaliz- 
ing (6.1) is 

(6.3) 

Since there are a finite number M of holding cost coeffi- 
cients d j ) ,  we have 

0 < min c ( j )  < max c( i )  < W. 

It follows from (6.4) that (6.3) is finite (respectively, con- 
verges to 0 with T )  ifl the same is true of (6.1). Thus, (6.2) 
is also necessary and sufficient for the existence of finite 
time-average cost when the holding costs differ among the 
transmitters. Finally, there exist for unequally weighted 
holding costs pure policies such that the cost (6.3) con- 
verges to zero as T + W. 

The characterization of optimal policies for equally 
weighted holding costs on all transmitters implies that 
there is a finite set of allocations such that an optimal 

(6.4) 

' These policies are not only pure, but even static. 
* This ignores any holding costs that accumulate in the phase in which 

a packet arrives. 
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allocation can be chosen from the finite set for every 
discounting factor p, 0 < p < 1; this is shown in [31. We 
were then able to argue in [4] that there is a sequence 
{ p,,} such that p, + 1 with f,, = f for all n, where f, is 
an optimal stationary allocation policy corresponding to 
the discount factor p,,. Moreover, f is then a time-average 
optimal policy possessed of all the properties proved in [31 
for discounted cost optimal policies. 

When the holding cost coefficients are unequal, we can 
no longer assert the existence of a finite set of optimal 
allocations. Nevertheless, the arguments in [4] continue to 
apply without modification, so that we again obtain from 
[ll] a somewhat weaker version of the results stated 
above. These are summarized by the following. 

Theorem 6.1: Every sequence of discount factors p 
converging to unity has a subsequence {p,,} such that 
corresponding optimal stationary policies { f , , }  converge, 
i.e., there exists an integer N ( x )  such that f , ( x )  = f ( x )  
for all n 2 N ( x ) .  The stationary policy f is average cost 
optimal with average cost 

[7] M. Gerla and L. Kleinrock, “Flow control: A comparative survey,” 
IEEE Trans. Commun., vol. COM-28, pp. 533-574, 1980. 

[8] -, “Flow control protocols,” in Computer Network Architectures 
andProrocols, P. E. Green, Jr., Ed. New York Plenum, 1982, pp. 
361-412. 

[9] J. Kieffer and J. Wolfowitz, “On the theory of queues with many 
servers,” Trans. Amer. Math. Soc., vol. 78, pp. 147-161, 1956. 

[lo] L. Kleinrock, Queueing Sysfems, Vol. I ,  Theory. New York: 1975. 
1111 L. I. Sennott, “Average cost optimal stationary policies in infinite 

state Markov decision processes with unbounded costs,” Oper. 
Res., vol. 37, pp. 626-633, 1989. 
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g = lim (1 - p ) P ( x )  

where the limit does not depend on x. 

(6.5) 
6- 1 

satisfies all of the properties of the optimal discounted 
policies derived in Section 111 and in Section IV for 
M = 2. 

VII. CONCLUSIONS 
We have generalized the optimal allocation problem of 

[31-[6] to the case of nonidentical holding costs at the M 
transmitters. We derived qualitative properties of optimal 
discounted and time-average policies that reduce the com- 
putational complexity of the M-dimensional optimal flow 
control algorithm. For M = 2, we established a simple 
relationship between optimal allocations for states x and 
x + ei (i = 1,2) that leads to significant computational 
savings in the optimal algorithm. We have been unable to 
prove this desirable relationship for M > 2, and leave this 
problem open for future investigation. 
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