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OPTIMAL SCHEDULING OF
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We consider the optimal scheduling of a finite capacity shuttle in a two-node
network with imperfect information. When shuttle trips do not depend on the
number of passengers carried, we prove optimality and monotonicity of thresh-
old policies. We derive conditions for dispatching that reduce the computational
effort required to compute an optimal threshold policy. We prove a counter-
example to the optimality of threshold policies for finite horizon problems
where trip lengths increase stochastically in the number of passengers carried,

1. INTRODUCTION

The significant role of transportation, communication, and manufacturing net-
works in today’s society motivates the need to develop further insight into the
fundamental issues of control and optimization associated with these networks.
An open issue for networks is control in the absence of complete state obser-
vations. Transportation and communication networks are often characterized
by nodes that act individually, each possessing only a local knowledge of its im-
mediate environment. Even when information can be exchanged among nodes,
there are propagation and processing delays; also, faults and transmission er-
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rors may render the data inaccurate. Thus, an understanding of the effects of
partial information on optimal control policies will be useful for effectively de-
signing and controlling networks in which incomplete (imperfect) information
is a realistic consideration. As a modest step in this direction, we focus on the
effect that delayed observations have on an optimal shuttle scheduling policy
in a simple two-node transportation network.

In discrete time, we examine a two-terminal network with a single, {inite ca-
pacity shuttle providing transportation between the terminals. Passengers arrive
at either terminal and must be transported to the other terminal, whereupon
they exit the system. At a given terminal at any tinie ¢, the controller’s (shuitle
dispatcher’s) decisions are based on the following information: (i) the history
of the arrival process to that terminal through time ¢ and (ii) the history of the
arrival process of the other terminal through time ¢ — /. By imposing a holding
cost per passenger per unit time held at either terminal, we provide an incentive
for prompt service. On the other hand, a dispatching cost is incurred by each
shuttle trip, thus discouraging frequent dispatching.

The objective is to characterize a shuttle dispatching policy that is a func-
tion of the aforementioned information and minimizes an expected discounted
cost due to passenger waiting and the dispatching of the shuttle.

Results for this type of network have implications for many existing sys-
tems, mass transit and shipment of goods being obvious examples. The queue-
ing network considered here captures fundamental features of transportation
networks because (i) it models service occurring in batches of up to Q custom-
ers and (ii) it incorporates a switching cost that reflects the cost of initiating
service.

The preceding transportation problem was introduced by Ignall and Kole-
sar [4,5], who investigated various dispatching schemes for the case where the
shuttle carries at most one passenger and the case of infinite shuttle capacity.
For the sake of practical application, Ignall and Kolesar devoted considerable
attention to ad hoc schemes based solely on the number of customers at the ter-
minal where the shuttle waits. Deb [2] was the first to solve the optimal dis-
patching problem for a two-node network under perfect information. For a
continuous time version of the problem with complete state observations and
with equal linear holding and dispatching costs at both terminals, Deb charac-
terized the nature of an optimal dispatching policy as being of threshold type:
Dispatch the shuttle if, and only if, the number of customers at the present ter-
minal exceeds a threshold depending on the number of customers at the other
terminal. Moreover, Deb discovered that the threshold is a monotone nonin-
creasing function of the queue length at the terminal opposite the shuttle and
takes values in only a finite set. Dror [3] treated the problem of Deb for the case
where the shuttle can carry at most one passenger. Interestingly, Dror used an
idea proposed by Ignall and Kolesar [4] to analyze the network as a modified
M/G/1 system and thereby determined the monotonicity property for the thresh-
old function.
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Our contribution is the analysis of the shuttle dispatching problem with de-
layed information as stated at the beginning of this section. (i) We prove that
an optimal shuttle dispatching policy at any terminal at any time is character-
ized by a threshold that depends on the probability distribution of the number
of customers at the other terminal. In addition, we prove that the thresholds are
monotone functions of the most recent delayed observation. (ii) We expose fur-
ther qualitative properties of an optimal policy that reduce the computational
effort required to determine optimal threshold functions; these results are new
even in the special case of perfect information (/ = 0). First, for the case of lin-
car holding and dispatching costs, which are not equal at the two terminals, we
derive one necessary and several sufficient conditions for optimally dispatching
the shuttle from a given terminal. Second, for the case of linear and symmet-
rical costs in the network, we prove that the thresholds characterizing an opti-
mal dispatching policy take values in a finite set. This feature simplifies the
search for an optimal policy.

We formulate the dispatching problem with imperfect information in Sec-
tion 2. In Section 3, we determine the structure of an optimal policy for the gen-
eral problem of Section 2. Section 4 presents further qualitative properties of
an optimal policy for the case of linear holding costs. In Section 5, we discuss
problems in which the shuttle trip length distribution depends on the load car-
ried. Conclusions are presented in Section 6.

2. PROBLEM FORMULATION

Consider a single shuttle that provides transportation between two passenger ter-
minals labeled one and two. Let § € {1,2} represent the terminal number and
denote by N (resp. Z*) the positive (resp. nonnegative) integers. In discrete
time, customers arrive to each terminal according to an arbitrary, prespecified,
independent batch arrival process. The arrival processes at the two terminals are
independent of each other and all else. All arrivals to one terminal desire pas-
sage to the other and exit the system upon reaching this destination. The shut-
tle may carry at most Q € N passengers per trip. Interterminal trips made from
a given terminal require durations that are i.i.d. integer random variables that
are independent of the load carried and all else. Denote by (2,Q,P) the prob-
ability space underlying the previously defined random variables. Let the prob-
ability mass function (p.m.f.) governing the number of arrivals to terminal § at
time £ be @ 2 (a?(0),al(1),...,a’(M)) for some M € Z* and the p.m.f. gov-
erning trip durations from node § be b® 2 (b°(D,), b5(D, + 1),.. ., b%(D,))
where 0 < D; = D, < oo.

During shuttle trips, no control actions are possible. However, if at time ¢
the shuttle has either just arrived to or is waiting at one of the terminals, one
of two control actions, U, € {0,1}, must be taken: dispatch (U, = 1) or wait
(U, = 0). We assume the shuttle controller exercises decisions immediately fol-
lowing the instant at which potential arrivals enter the system. Control U, =0
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causes the shuttle to be held at the present node until time ¢ + 1, whereas U, = 1
dispatches the shuttle (and no further control actions are possible until reach-
ing the destination). Upon dispatching the shuttle, as many passengers as pos-
sible are boarded, but never more than Q (the shuttle capacity).

The control decision at time ¢ is based on the information available to the
shuttle controller up to and including time ¢. The controller has perfect mem-
ory of its observations and control actions. When at a given terminal § at time
{, the controller knows (i) the initial (£ = 0) queue length of both terminals, (ii)
the history of the arrival process for terminal 6 up to and including time ¢, and
(ii1) the history of the arrival process up to and including time (¢ — /) * for the
other terminal, where I € Z* and (¢t — IN* 2 max (¢ — 1,0). Clearly this infor-
mation combined with prior control decisions yields the queue length of termi-
nal é at ¢ and that of the other terminal at (¢ — I)*. Thus, at any time ¢ the
controller has imperfect information about the state of the system (the queue
lengths at both nodes). We make the important assumption that / < D,: The
information delay does not exceed the lower bound on interterminal transit
time. As a result of the preceding information pattern, the controller’s infor-
mation state at time ¢ can be represented by the triplet (x,, y,-,+,1) (resp.
(X~ ¢y ¥:,2)), which has the following interpretation: (i) the last component,
1 (resp. 2), indicates the terminal at which the shuttle is at time ¢; (ii) x, (resp. y,)
indicates the number of customers seen by the controller when the shuttle is at
terminal 1 (resp. 2) at time ¢; (iii) y(,-,+ (resp. x,-p+) is the queue length of
terminal 2 (resp. 1) at time (¢t — I)*. The p.m.f. for the queue length of termi-
nal 2 (resp. 1) at time ¢ can be easily computed from y(,_;+ (resp. x,_+) and
the arrival process {a2: (t=I)"+ 1 <s<t}(resp. {al: (¢t =T+ 1=<s=<t}).

We consider real valued nondecreasing convex instantaneous holding cost
rate functions ¢, (x) and ¢, (y) for the customers in terminals one and two, re-
spectively. We assume that

¢;(0) = 0. 2.1

We also include an affine dispatching cost, thus introducing a tradeoff between
the incentive to provide prompt service and the competing incentive to minimize
the number of trips. That is, a dispatching (switching) cost of K; + R;z units
is incurred at each instant the shuttle is dispatched carrying z customers from
terminal 6. We assume that

0=<R;=<c5(1), 2.2)

and that passengers incur no further holding or carrying costs after boarding the
shuttle.

The objective is to determine a nonanticipative policy g* that minimizes,
over an infinite horizon, the total expected 3-discounted cost (0 <3 < 1) due to
the waiting as well as the dispatching of customers at the two terminals under the
information pattern described earlier. If nf (¢) is the number of customers held
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at terminal 6 from time  until ¢ + 1, and n{(¢) is the number dispatched from
terminal § at time £, then an optimal policy g* is one that minimizes

E”*{ZB’ > les(nf (1) + LU, =1, 8, = 8)(K; + R;s”éj(f))]}, 2.3)
(=1 LES

where §, denotes the terminal at which the shuttle resides at time ¢, and 1(s) is
the indicator function of event s. Without loss of optimality (see Chapter 6 of
Kumar and Varaiya [6]), we restrict attention to the class of policies that are
functions of the information state.

We proceed as follows. In Section 3, we consider the problem formulated
above with nondecreasing convex holding costs and derive qualitative proper-
ties of the optimal policy g* using stochastic dynamic programming arguments.
In Section 4, we examine the case where the holding costs are linear. We derive,
via coupling arguments, necessary and sufficient conditions for dispatching
from a given terminal. These conditions simplify the search for an optimal
threshold policy.

3. OPTIMALITY OF THRESHOLD POLICIES

We adopt the stochastic dynamic programming approach to the problem for-
mulated in the previous section. We start with the finite horizon problem and
then extend the results to the infinite horizon by limiting arguments.

We note that for the finite horizon problem our results hold when 8 = 1 and
the arrival process is time-varying (provided the independence assumption is re-
tained). We believe that the finite horizon undiscounted problem with time-vary-
ing independent batch arrival processes is not unrealistic for shuttle dispatching
systems such as people movers (see Barnett [1]). For this reason, our finite ho-
rizon solution treats the case of time-varying arrivals and the possibility of 3 = 1.

3.1. The Finite Horizon Problem

Consider a finite horizon Tand 0 < 8 < 1. Let V”(x, y,6) be the minimal ex-
pected B-discounted cost-to-go from time ¢ through 7 conditioned on the infor-
mation state (x, y,8). Let x, yv€ Z*, 6 € {1,2},and r &€ {1,2,..., T}. Because
3 is fixed, we let V, & V,B . The optimality equation is

Vi(x, y,6) = min(h,(x, ,6),d,(x, y,8)), 3.

where #,(x, y,6)(d,(x, y,6)) is the minimal expected §-discounted cost-to-go
from time ¢ through 7 conditioned on state (x, y,8) and the decision to hold
(dispatch) at ¢. The functions 4, and d, are given by

hT+l('a'a') éoa (3-2)
he (6, 0, 1) = ¢ (x) + E{ca(Y,) + BV 1 (Xip, Y(,+]_,)+,l)l
X, =x,Y,p+=y U =0} 3.3)
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B, 0,2) = ca(y) + E{ei (X)) + BV (Xuvion Yii1,2) |
Xony =x, Y, =y U =0 (3.4)
dro(-,0,0) 20, 3.5)
d(x, 1) =K, + R (xA Q)

(1+r|~~l)/\7" . _
+E{ 2 BT (X) + ea(Y)

j=t

HH+ 7, < T8V, (Xiwr, oty Yiru,,2) |

XI =X, )/(I«I)"L =0 (jt = 1} (3'6)
di(x,3,2) =Ky + Ry(y A Q)
(f+717=1)YAT ] . _
+ E[ 2 BTe(X) + e (Y))
J=t

+ l(t + Ty = T)BTZ I/I+72(XI+721 )/t+72—«l’l)!
Xu-nr=x% Y =y, U = 1} 3.7

where the following notation has been used: a v b and a A b denote the maxi-
mum and minimum, respectively, of ¢ and b and (¢)* =av 0; X, and Y, are
random variables describing the queue lengths of terminals one and two, respec-
tively, at time # just prior to the application of U,; X, and Y, are random vari-
ables denoting the queue lengths of nodes one and two immediately following
the application of U,; and the expectations are with respect to the arrival pro-
cesses and trip durations. Let 75,6 € {1,2} be the random variable defining the
duration of the shuttle trip from node 6 to the other node. According to Sec-
tion 2, the p.m.f. of 75 is b® 2 (b*(D,), ..., b%(D,)). Define

!
Al(T,m) éP( >, = m) (3.8
J=t—1+1
where «f is the number of customers that arrive to terminal & at time j. For
t =1, A%(7, m) is the mth element of the 7-fold convolution al ko xal.
Define A%(0, m) = 1(m = 0).
Based on the preceding terminology, we obtain the following alternative
form for Egs. (3.3), (3.4), (3.6), and (3.7):

(ADM
h(x, y,1) =ci(x)+ D A7(tALlc(y+ )

=0

M
+8 D al(kak (Vi (x+ k, y+ n,1), (3.9)

k, n=0
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(aAlYM
h(x, n,2) =c(»)+ D, Al(UALDc (x+ 0)

¢ =0

M
+ 0 Z atz+|(k)ahlw-l(n)VrH(x+”,}’+ky2), 3.10)

k, =0

di(x, 3, 1) =K, + Ri(x A Q)

14 (t+r—1)AT , (j—t)M
+ zb'm{ 5" B[ ST AN = b k)es(x— )+ k)
k=0

r=10) J=t

=(=D*M
+ 2 AU=Uu—=DNDe(y+ 3)}

?=0
(r—=IYM (1+1—(~DI)M

+1(t+7=<T)3" ] >,
m=0 n=0
X A{l+T—~I(T“ 11 m)AI%FT(t + 7 (t - [)+) n)
X %+T((X~Q)++m,y+n,2)z, 3.11)

dt(xvy92) = K2 + R?.(yAQ)

Dy (t+r=DAT (j—1)M
.S bzm{ D a[ SV AR G= 6K (9 — O)F + )
r=0 J=t k=0
(J— =DM
+ > A,‘-(j——(t-1)+,e)c,(x+e)J
=0

(r—DM (+r— (="M

+1(t+7<T)B" D >,

m=0 n=0

X A%—H’»—I(T - [sm)Atl—i—T(t + 7= (t - 1)+9 n)
X K+T(x+n,(y—Q)++m,l)}. (3.12)

We point out that in Eqs. (3.9) and (3.10) we have a’.,_,(n) = 1(n = 0) (i.e.,
no arrivals) for ¢ < I because delayed observations are received only at times
I'+1,1+2,... . The expression for d,(x, y,1) explicitly uses the fact that once
the shuttle is dispatched, no further control actions are possible until time ¢ +
7y, when the shuttle arrives at node two. Upon arrival at two, the shuttle con-
troller observes X,,, _; because 7, = D, = /. Similar comments apply to
d,(x, y,2).

We note that the symmetry of the problem with respect to the two termi-
nals, which can be seen in the dynamic programming equations, implies that any
property proved for one terminal will hold analogously for the other as well. In
the proofs, we frequently refer to this symmetry.
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Our investigation of the qualitative properties of the optimal dispatching
policy is based on the study of the properties of expected incremental 3-dis-
counted cost-to-go functions, which we define below. Let

Aklu/l(x’ys(‘})é [’V;(X‘*‘ 1»}’,5)" l’Vz(x»}’,a) (3‘13)
A?,M(—xsy’&) & VV,(X,)/ + 116) - "VI(X,)’,CS), (3014)

where W may be replaced by the symbols 4, d, and V. Thus for state (x, y,8)

at time {, AsV,(x, »,8) is the expected incremental (3-discounted) cost-to-go

function resulting from the placement of an additional customer in node § at

t. 1f i # 6, then A, V,(x, y,8) is the expected incremental (8-discounted) cost-to-

go induced by an extra customer in node / at (¢ — I)*. Similar interpretations

can be given to A,d,(x, y,8), A,d,(x, ,8), A h,(x, »,8), and A, h,(x, ¥,6).
Using Egs. (3.2), (3.5), and (3.9)-(3.12), we find that

A,‘h'[‘+;(',‘,‘) =0 for i = 1,2, (3.15)

Avhi(x, p,1) =ci(x+ 1) — ¢ (x)

M
+B8 3 al (kKar,  (MAV, (x+ky+nl), (3.16)

k, n=0

(enlyM
Arh (e, 1) = 3, AIUALO(c(y+ 14 0) —ca(y+ 1))
=0

M
+8 3 al (kak (M)A, (x+ky+nl), (317

k, n=0
Adro (-,-,-)=0 fori=1,2, (3.18)
A]d{(x,y,l) = 1(x< Q)RI
D, (t+7—DAT  (j=OOM
+ 2, b‘(r){ 2 BTN D A —tk)
r=[) j=t k=0

X(a((x+1-0Q)" +k)—c((x—Q)" + k)

(r—IM

+1(t+7=<T)3" ),

m=0

(U+r— (=DM
x Z AII+T—I(T—_I’”1)AIZ+T(t+T_ (t_1)+an)

n=0

X (l/1+7'((x+ 1 - Q)+ +m,y+ n’2)

- l/;-!—r((x - Q)+ + m,y + ’192))1 y (3019)
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Dy (t+r—1D)AT 4
Aryd (x5, 3, 1) = 2] b'(r){ 2 B
r=D, J=1

(FERYETIRSY.% ,
X AU =Dy + L+ ) =iy + )
=0

(r—=DM (t+7—-U~-1YDIM

F1+ =TI S AN (= Lm)

=0 n=0
X A7 b+ 7= (L= D5 AV, (x— Q)Y +m,y+ n,Z)}.

3.20)

Having defined the incremental expected cost-to-go functions, we now proceed
to investigate the qualitative properties of an optimal dispatching policy. We
proceed via several lemmas. Lemma 3.1 states that the incremental expected
cost-to-go induced by an additional customer is nonnegative.

LEmMMA 3.1: Forany x,y € *, 1 <t <T,and i,6 € {1,2};
AVi(x,6) =0.

Proor: Consider an arbitrary information state (u, v,8) at time ¢. Let g*
denote an optimal policy. Along each realization w € Q of the arrival process
and trip durations, let o(w) be the vector of times at which the shuttle is dis-
patched under g* from time ¢ upon given the information state (u, v,8) at f.

Subtract a customer from either node at ¢, thus yielding (v — 1, v,68) or
(u,v — 1,6). Consider this new information state at ¢, and a policy g that,
along each w € (1, dispatches the shuttle at the times indicated by o(w). Such
a policy is feasible. Denote by V#(u — 1,v,8) (resp. VF(u,v — 1,8)) the ex-
pected B-discounted cost-to-go corresponding to g when the information state
at tis (u — 1,v,9) (resp. (u, v — 1,8)). Because of the definition of g,

Vitu,v,6) = Vi(u — 1,0,8), 3.21)
Vi(u,v,6) = VE(u,v — 1,8). (3.22)
Moreover, because g may not be optimal,
Vi(u - 1,v,8) = Vi(u—1,0,8), 3.23)
VE(u,v — 1,6) = V(u,v — 1,8). 3.24)
Combination of Eqgs. (3.21)-(3.24) yields the result. [ |

The following two lemmas are presented in an abstract light to emphasize
their fundamental nature. Lemma 3.2 can be interpreted as follows. If the in-
cremental expected cost-to-go from ¢ given that the shuttle is held at ¢ is greater
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than the incremental expected cost-to-go given the shuttle is dispatched at ¢, then
the incremental expected optimal cost-to-go lies between them and can be no
smaller than that given when the shuttle is dispatched at «.

LemMma 3.2: Let h(x),h(y),d(x),d(y) € R, and V(-) & min(h(-),d(-)). If
h(x) = h(y)=zd(x) —d(p), then h(x) — h(y) = V(x) = V(y)zd(x) —d(y).

Discussion. This property is most easily seen graphically and is merely due
to the nature of the minimum function. The result is similar to that in Deb [2]
but the proof differs. We can interpret A(x) — A(y) and d(x) — d(y) as
incremental cost-to-go functions for state y and time ¢ given that at ¢ the shuttle

must be held and dispatched, respectively.

Proor: We consider three cases.

Case I: Let h(y) = d(y). Then beginning with the hypothesis, we find 0 <
hix) —h(y)+d(y) —d(x) < h(x)—d(x). Hence, d(x) < h(x) and conse-
quently V(x) = V(y) =d(x) —d(y) < h(x) — h(y).

Case II: Let h(y) < d(y) and h(x) < d(x). Then V(x) — V(y) = h(x) —
h(y) = d(x) —d(y).

Case III: Let h(y) <d(y)and h(x) = d(x). Because V(x) — V(y) =d(x) —
h(y), we use the Case III hypothesis directly to conclude A(x) — h(y) =
Vix) = V(y) =z d(x) —d(y). u

Remark: Note that Lemma 3.2 would still hold for V(-) £ max(h(-),d(-)).

Lemma 3.3 gives a sufficient condition for the minimum of two submodular
functions to be submodular (see Chapter 1, Section 4 of Ross [7]). This result
will be used in Lemma 3.4 to prove the submodularity of the value function. Be-
fore proceeding with Lemma 3.3, consider functions A, d, and V, where A (a, b) :
L xZ*-R,d(a,b):L*xXL*— R, and define V(a, b) =min(h(a, b),d(a, b)).

LEMMA 3.3: [f the following relations hold for all a,b € Z*:

(i) ha+ 1,b) —h(a,b)=h(a+ 1,b+ 1) -~ h(a, b+ 1),
(i) d(a+ 1,b) —d(a,b)=d(a+ 1,b+1) ~d(a, b+ 1),
(iii) h(a+ 1,b) — h(a,b) =d(a + 1,b) — d(a,b),

(iv) h(a,b+ 1) — h(a,b) =d(a,b+ 1) —d(a,b);

then V(a+ 1,b) = V(a,by=V(a+ 1,b+ 1)~ V(a,b+ 1) foralla, b, L".

Discussion. Assumptions (i) and (ii) require 4 and d to be submodular
functions. In (iii) and (iv), we require 4 to increase at least as quickly as d with
respect to either argument.

Proor: The proof makes use of four cases.
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Case I: Let h(a,b) > d(a,b). Then
Vie+ 1,b)—V(a,b)=d(a+1,b)—d(a,b) by Lemma 3.2 applied to (iii)
zd(a+1,b+1)—d(a,b+ 1) by (i1)
=d(a+1,b+1)—=V(a,b+1) because the
hypothesis and (iv) imply h(a, b+ 1) > d(a, b+ 1)
=V(a+L,b+1)—V(a,b+1).

Cuse II: Let h(a,b) <d(a,b)and h(a+ 1,b) =d(a+ 1,b). Then

Via+ 1,b) — V(a,b) =h(a+ 1,b) — h(a,b)
=h(a+ 1,b+1)—h(a,b+ 1) by (i)
=2V@a+1,b+1)—V(a, b+ 1)
by Lemma 3.2 applied to (iii).
Case I1l: Let h(a,b) < d(a,b), h(a +1,b) >d(a+ 1,b), and h(a,b + 1) >
d(a,b + 1). Then
Vie+ 1,b) — V(a,b) =2d(a+ 1,b) —d(a,b) by hypothesis
zda+ 1,b+1)—-d(a,b+ 1) by (ii)
=da+1,b+1)-V(ag,b+ 1) by hypothesis
=V(a+ L,b+1)—V(a, b+ 1).

Case IV: Let h(a,b) =d(a,b), h(a+ 1,b)>d(a+ 1,b),and h(a,b+ 1) <
d(a,b+ 1). Then

Via+1,b)—-V(a,b)—[V(a+1,b+1)—V(a, b+ 1)]
=d(a+1,b)—h(a,b)—-V(a+1,b+ 1)+ h(a,b+1)
>d(a+1,b)—h(a,b)—d(a+ 1,b+ 1)+ h(a,b+1)
zd(a,b+1)~d(a,b)+d(a+1,b)—d(a+1,b+ 1) by (iv)
=d(a,b+1)—-d(a,b+1)+da+ ,b+1)—d(a+1,b+1) by (ii)
=0. [ ]
We now present Lemma 3.4, the backbone of our analysis. The result of

Lemma 3.4 is a sufficient condition that guarantees the threshold property of

an optimal dispatching policy as well as the monotonicity of the optimal thresh-
old functions.
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LEMMA 3.4 Forany x,y €', 1 <t < T+ 1,and i, je (1,2} such that i # j;
() Ad,(x, v, i) <Ak (x,p,1),
(i) A di(x,0,/) < Ach (X, 9,)),

and the following relations hold for the value function:

(ia) AV, (x, v, 1) = A,V (x,y + 1,1),
(iib) A,V (x, »,2) = A,V (x + 1, 3,2),
(iva) A2V (x, p, 1) = AV (x + L,y 1),
(ivb) AV, (x, »,2) = AV, (x,y + 1,2).

Discussion. Part (i) is the key statement of the lemma as it is sufficient to
guarantee the threshold property of the optimal policy. Its meaning becomes
more clear when rewritten as follows (let / = 1 for convenience; the interpreta-
tion is similar for /i = 2):

hi(e, 1) —di(x, p,1) s h(x+ 1y, 1) —d,(x+ 1, y,1).

The difference h,(x, y,1) — d,(x, y,1) provides the incentive to dispatch the
shuttle at time 7 when the information state is (x, y,1). For i = I, part (i) states
that the incentive to dispatch from terminal one increases as the number of cus-
tomers waiting at that terminal increases and the controller’s perception of the
number of customers at terminal two (expressed by y) remains fixed.

Part (ii) of the lemma establishes the monotonicity of the threshold with re-
spect to the delayed observation. Again considering / = 1 for convenience, re-
writing (ii) as

hl(xay’l) “dz(x’)’,l) = h[(x’y+ 1’1) —d[(x’y + 171)5

we see that the incentive to dispatch the shuttle from terminal one at time ¢ in-
creases as the number of customers observed [ time units ago at terminal two
increases and the queue length at terminal one remains fixed.

Combining (i) and (ii), we see that if it is optimal to dispatch at ¢ while at
state (x, y,1), then it is also optimal to dispatch under both states (x + 1, y,1)
and (x,y + 1,1) at time ¢.

Parts (i) and (ii) imply the main results of the paper. The remaining parts,
(iiia), (iiib), (iva), and (ivb), express the submodularity of the value function and
are used to support the proof of (i) and (i1).

Proor: The proof proceeds by induction. Because Ar,;(-,-,-) = 0 and
dyo(-,-,+) = 0, all the statements of the lemma are true for time 7 + 1.
Assume the lemma holdsat r+ 1, r+2,..., T+ 1.

PRrROOF OF (1): We prove part (i) for / = 1 by considering three cases. In each case
we prove the result by a series of inequalities and explain how these inequalities
are obtained. The result holds for i = 2 by symmetry.
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Cuse I: Suppose x < Q. Then, using Eq. (3.16) we obtain
Arh(x, 0, 1) = ci(x + 1) — ¢ (x)
+ B3 e (Kyaiy AV ek y + o)
k,
= (x+ 1) — ¢ {x)
> R,
= Aldl(x»,yyl)-
The first inequality follows by Lemma 3.1 and the second by Egs. (2.1) and
(2.2) and the convexity of ¢, (-). The last step follows from Eq. (3.19) because
under the hypothesis, (x + 1 — Q)" = (x — Q)" =0.
Case II: Suppose x = Q and t + D, < T. Then
Arh(x, 0, 1)
=ci(x+ 1) —c(X)+B 2 al (kal - (M)A Vi (x+k,y+n1)
k,n

zo(x+1=-Q)~c(x—Q)+0 Zarl+1(k)a:2+1~/(”)A1dr+1(x+k,)’+’7,1)

k,n
3.25)
Dy
=c(x+1-Q)—-c(x~-Q)+8 Zarl+l(k)a12+l~l(n){ Z b'(r)
k,n 7‘—'—1)]
(t+7)AT '
X [ by Bf“’“'ZA}(j——t—— LO(ci(x—Q+ 1+ k+10)
J=t+1 ¢
—C(xXx=Q+k+ )N+ 1t +1+7<T)B" DAL\, (r =1, p)
nq
XAt (t+ 1+ 7= (t+1=D%q)
><A1K+1+T(X—Q+k+p,y+n+q,2)H (3.26)

Dy (t+r)AT
= b‘(r){ D0 A= L)B e (x=Q+T+L)—c (x—Q+L))

T:Dl j:t L

F1t+ 1 +7<T)B™ S Al (r=T+1,m)

i,

XAfp 1, (17— (=D " MA YV (x—OQ+m, v+ n,Z)} 3.27)



42 M. P. Van Oyen and D. Teneketzis

1}’2 (t+r—1yAT ]
-Bool Y Sau-ane-

r =i, J=t L.

X (('I(X*‘*Q+1+L)"C|(X‘Q+L))
FLt+r=T) DAL (1,087 (c(x=Q+ 1+ 0) —c (x =0+ 1)

FUH+r=T=DB™" 20 AL (1= T+ 1,m)

m,n

X A12+~lfr(t+ 1 +7 - ([* [)+; n)Al %+|‘f1(X~Q+m!y+n$2)} (3~28)

DA (t+r—1yAT ‘
- Soo "y Bau- e

r=0), J=t L

X(c(x+1=-Q+L)y—c(x—Q+ L))
+1t+7=T 2 Al (r =L)AL (t+ 17— (t = DY)
k,i

X [ZA,‘M([,m)(c.(x+ 1 - Q+k+m)—c (x—Q+k+m))

+3 Z all+l+r-[(p)a{2+]+*r(Q)Al Viersr, (x—Q + k+p,y+i+q,2)”

»q
(3.29)
Dy ({+7—1YAT ’
.S b'm{ > S AN 1, LB
r=D) J=t L
X(CI(X‘!‘I—Q'*‘L)“"CI(X"‘Q"{“L))
+ 1t +r=s TR DAL, (r—=LKk)AZ (t+7— (t=1D)" i)
k,i
XA (x— O+ k,y+i,2)} (3.30)
DA (t+7r—-1)AT '
= 3, b‘(T){ >0 MA(—t LB
r=0), j=t L
X (ci{(x+1-Q+L)-c(x—Q+ L))
1t +7= B AL, (1= LKk)AL (t+7— (=D, i)
ki
xAJQAx—Q+hy+Lm} 3.31)

=A4,d,(x, »,1).
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The first step merely restates Eq. (3.16). In Eq. (3.25), we cite the convexity of
¢, (-) and use (i) of the induction hypothesis at time ¢ + 1 to apply Lemma 3.2.
Equation (3.26) is immediate from Eq. (3.19). We group terms and condense the
convolutions defining the expectation with respect to the arrival processes to
conclude Eq. (3.27). One must be careful in determining A7, (t + 1 + 7 —
(t — I)*, n) of Eq. (3.27) to realize that if r + | </, then a?,,_,(0) = 1. Equa-
tions (3.28) and (3.29) present rearrangements of the terms appearing in
Eq. (3.27). The intent of this rearrangement is to group terms appropriately
so that we relate A, h,(x, y,1) with A A, (-,-,2). After using the fact that
A Vi (+,-,-) =0in Eq. (3.29), such a relationship is achieved in Eq. (3.30).
By the induction hypothesis and Lemma 3.2, Eq. (3.30) leads to Eq. (3.31), and
finally we conclude the result by Eq. (3.19).

Case III: Suppose x = Q and ¢t + D; > T. Then
Al hl(x’ Y l)

zox+1—-Q)—c(x—0Q)

+ B> al, (k)ak _ (M)A d (x+ Kk, y+n1) 3.32)
k,n
T .
=c(x+1—-Q)—c(x—Q)+ BZa,'H(k){ >, g/t
k J=t+1

X A=t —=1L0(c(x+1=-Q+k+ 0 —-c(x—Q+k+ t’))}
¢

(3.33)
T .
= (x+1=-Q)—c(x=Q)+ 2] B/
J=1+1
X YA —t,m)(c(x+1—=Q+m)—c(x—Q+m)) (3.34)

= Aldt(x’y’l)'

Equation (3.32) merely abbreviates the first two steps in the proof of Case I
and Eq. (3.33) uses Eq. (3.19) where x = Qand t + 7= ¢ + D, > T. Equation
(3.34) merely condenses the expectation with respect to arrivals and the last step
follows directly from Eq. (3.19).

PRrooF oF (ii): The proof of (ii) for i = 1 follows in three cases. The first case
is the most involved and requires (iiib) of the induction hypothesis. The result
holds for i = 2 by symmetry.
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Case I: Suppose x < Q and t + D, < T. Then
AZhl(x’ Vs l)

=2 ATUALD(GY+ 1+ ) =y +0)
:

+ 3 ZatlH(k)azz—{»lwl(n)AzV/H(x + K,y +nl)

k,n

= 3 ATUALO(C(y+ 1+ 0) —cy(p + 1))

‘)

+8 2 al (kya _(n)Axd, (x + k,y + n,1) (3.35)
k.on

= DATUALD(c(y+ 1+ 0) —ca(y + 0))
[4

Dy (1+T)AT
+Bzafl+l(k)arz+lﬁ/(n){ Z bl(T)[ Z Bi=i=1

k,n r=D J=t+1
X AU =+ 1 =Dy (y+n+1+10) —cy(y+n+i))
+ 1+ 1+7=T)E" DA 14,7 =1 p)
2

XA, (t+ 1+ 1=+ 1=D7%q)
xAJ%HMx+k—QV+ny+n+mDH (3.36)

= DA UALO(c (Y + 1+ £) — (v + 0))
¢

Ds (t+7)AT
+ Zat{kl(k)a,?}]_[(ﬂ){ Z b](T)[ Z ﬁj-—t
k,n

T=Dl j2’[+1

xZA}(j—(tJrl—[)*,z‘)(cz(y+n+1+1)~c2(y+n+i))
+1t+1+7<T)B™' Y AL, (7= 1)
p.q

XAL i, (t+ 1+ 7= (t+1 =Dt q)

X AZI/I+1+T(k +p,y+n+ q’z]} (3037)
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Dn ({+r)AT ‘
= DATUALO(G(y+ 1L+ ) —c(y+ 0)+ D, 1)'(7){ >, B
¢ r=0) J=t+1
X DA = (=D LY (e (y+ 1+ L) —cy(y+ L))
I3
+ 1t + 1+ 7T D AL, (r =1+ 1,m)
m, k
X Afy e, (t+ 1L+ 7= (=D KA (myy + k,2)} (3.38)
Dy (1+7)AT '
= b'(T){ D BTN AN = (=D 0)
r=D i=t ¢
X (C(y+1+0)—c(y+ 1)
+ 1+ 1+ 7=T)B™ ' D Al (r =T+ 1,m)
m, k
X AIZ+I+7“(t +1+7- (t - l)+3k)
X A2K+|+T(’n1y + k,Z)} (3039)
D, (1+17-1)AT )
= 3, b’(r){ >, BT AN - (=D
r=D J=t 4

X (c(y+ 1+ 8)—c(y+ )
+1(t+7=T) [BTZA,2+T(t+ r—(t =Dt L)
L

X (ca(y+1+L)—cy(y+ L))
+ B8 Y Al =T+ L,m) AL+ L+ T — (t = DY k)
m, k

X A, V,+|+,(m,y + k,Z)J} (3.40)

D,
= > bl(1)

T=0)

X((y+1+0)—c(y+£)
+ 1t +7=T)B DA (r— L)AL (t+7— (t = )", L)

i, L

(U+7—-1DAT . ]
{ 2, BITIYANG - (r—= DY)
J=t ¢

X [(Cz(}’+ 1+ L) ~c(y+ L)

+ B Z all+r—1+l(p)a12+-r+l (Q)AZ l/H—”r-é—l(i +P,)’ + L + Q72)}} (3°41)

P q
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1y (t+r7—1DYAT ’ )
= 2, b‘(r){ 2. BTIRAG - =DN0)
r=1) J=t 4

X (c(y+ 14+ 0)—c(y+ 1)

FUt+ 7<= TS AL, (r=1,i)

i L

X A2 (L4 7= (1 = D)% LYAyhys, iy + L’Z)I (3.42)
D (thr=D)AT

=Y b'(T){ 2. BTINANG - —-Dh
r=0 St 4

X (c(y+1+0)—c(y+ 1)

+ 1+ 7<) DAL, (r— 1)
i L

X AL+ 7= (6= DY LAY, (G y + L,Z)} (3.43)

= A,d, (x, y,1).

We begin in the first step by merely restating Eq. (3.17) and invoke (ii) of
the induction hypothesis together with Lemma 3.2 to yield Eq. (3.35). Equa-
tion (3.36) invokes Eq. (3.20). We apply (iiib) of the induction hypothesis pre-
cisely Kk — (x + k — Q)™ times (because x < Q in Case I) for each k£ and each
time ¢ + 7 + 1 to obtain Eq. (3.37). The expectation convolutions are con-
densed in Eq. (3.38) by recalling that if £ + 1 < 1, ¢ ,_;(0) = 1 and so A7 (j —
(t = )%, L) = A3(j, L). Equation (3.39) further simplifies Eq. (3.38) by not-
ing that for i = ¢, A?(i — (t — I)*,¢) = A*(¢t A I,£). We use the fact that
Vieior(oy-,-) =0if £ + 7 = T to justify Eq. (3.40) and expanding the expecta-
tion convolutions yields Eq. (3.41). Equation (3.42) is immediate from the def-
inition of A, h, . (i, y + L,2) (analogous to Eq. (3.16)). Part (i) of the induction
hypothesis and Lemma 3.2 yield the inequality in Eq. (3.43). The proof of Case

I concludes by applying Eq. (3.20).

Case [I: Suppose x = Q and t + D, < T. The proof of this case is the same as
for Case I with one exception. The step of Eq. (3.37) and its appeal to (iiib) of
the induction hypothesis is no longer necessary because for X = Q, (x + k —
0)" =x— Q + k;i.e., none of the k arrivals at time ¢ + 1 will be dispatched
(see Eq. (3.35)) at ¢t + 1. The remainder of the argument proceeds as before.
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Case lII: Lett+ D, > T. Then
Azh,(x,y,l)
2 YALUALD(C(y + 1+ 0) = (y + 1)
.

+ B2 al (kyats, (mAyd,  (x + k,y+ n,1) (3.44)
k.n

= Y ATUALO (e (y+ 1+ 0) =y (y + 1))
4

r

+Bzar2+1(k)a,2+1_,(n){ Z BJ’*IAI
k.n

J=t+1
X ZA_?(/'—&- (t+1-=D5L)y (e (y+ 1 +n+L)y—c(y+n+ L))}
L
3.45)

=2 AIUALO((y + 1+ 0) =y + 0)
¢

T
+ BTN AN~ U =Dk (v + L+ k) — (v + k) (3.46)

J=1] k
= A2dt(-x’.y1 1)

We begin in Eq. (3.44) by using the first two steps of the proof in Case I. Equa-
tion (3.45) follows from Eq. (3.20) and the fact that 1 + 7 = ¢ + D, > T. Recal-
ling that @ ,_,(0) = 1 for t + 1 — I < 0 yields Eq. (3.46). We conclude the
result by using Eq. (3.20) and noting that j — (¢t — I)* = A [ for j = .

PROOF oF (iii): Statement (iii) was used in the proof of (ii); the proof of (iii) (as
well as (iv)) is based on Lemma 3.3. Proving (iii) for the functions A4 (-) and
Ad(-) allows us to apply Lemma 3.3 and conclude the property for the value

function.
We begin by verifying that A, h,(x, y,1) = A A, (x, y + 1,1). By Eq. (3.16)
and (iiia) of the induction hypothesis at time ¢ + 1 we obtain

Ak (x,p,1)
=ci(x+ 1) —ci(x)+ B2 al  (kK)ak (M)A V.. (x+ k,y+n,1)
k,n

zo(x+1)—ci(x)+ B2 al,(k)ak, [ (MAV,, ((x+k,y+1+n,1)
k., n

=Ah(x,y+ 1,1).
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We prove a similar property for Ad,(-) by considering two cases, x < Q and
Xz Q. Ifx < Q, wesimply note that A, d,(x, »,1) =R, =4,d,(x,y+ 1,1). On
the other hand, if x = @, then by Eq. (3.19) and the induction hypothesis (ivb)
at time ¢ + 7 for each r we get

Avd (x, p,1)
Dy (r-DAT
- zjb,m{ 51 B S AN — k)
=0 =t k

X((x+1=Q+k)—ci(x—Q+ k)
+ 1t +7=T)B D Al (r=LLm)A? (t + 71— (t = 1), n)

m,n

X A Vt+-r(x - Q +m,y + I'I,Z)}

D (t+1=DAT
=) blm{ 2 BTIXANU - LK)
r=0 J=t k

X(c(x+1=-0Q+k)—c(x—Q+k))
+ L+ T T S AL, (1= Lm)AZ, (t+ 17— (1 = )", n)

m,n
XAV x=Q+my+1+ n,2)}

= Aldl(x1y + 1’1)

Hypotheses (i) and (i) of Lemma 3.3 correspond to A A, (x, y,1) = A h,(x,y +
I,1) and A, d,(x, y,1) = A,d,(x,y + 1,1), respectively. The remaining hypothe-
ses of Lemma 3.3 correspond to A, i, (x, y,1) = A,d,(x, y,1) and A, h,(x, y,1) =
A,d,(x, y,1), which hold by (i) and (ii) of Lemma 3.4. Since all the hypotheses
of Lemma 3.3 are satisfied, it follows that

Allfl(x,y’l) = All/l(-x’.y + 1,1)
Because of symmetry, (iiib) holds as well.

PRrROOF OF (iv): Property (iv) is complementary to (iii) and the structure of its
proof is the same as that of (iii). We omit the details. |

The structural properties presented in Lemma 3.4 are sufficient to prove
that there exists an optimal dispatching strategy that is of a threshold type and
to prove a monotonicity property for the threshold. These statements are for-
mally proved in Theorem 3.1. Let §’(w) denote the threshold function for ter-
minal 6 € {1,2} at time ¢ given that w customers are known to have waited at
the other terminal at time (¢ — /)*. Then let 6 :Z* — Z* U {+o0} such that
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0 (w) 2inflzE L :d(z, w,1) < h,(z, w, 1)}, 3.47)
97wy 2inflz 4" d (w,2,2) < h(w, ,2)}; (3.48)
where inf(&J) = +oo.

THEOREM 3.1: Let u be the number of customers observed at terminal § at time
t und v be the delayed cbservation of the queue length of the other terminal
at (t =N Forallu,oe L', s & (1,2 and t € {1,2,. .., T, there exist thresh-
old functions 07 (+) :L* — L+ U { +oo} defined by Eqs. (3.47) and (3.48) such
that the following shuttle control policy is optimal:

dispatch the shutile jrom terminal § at time t if and only if u = 0%(v). (3.49)

Mozveover,
92(v) = 02 (v + 1). 3.50)

Discussicn.  The threshold property of the optimal policy is stated in Eq.
{3..49) and expresses the following relationship. It at time ¢ it is optimal to dis-
pateh h(, stittle when inostate (i, v, 1) (resp. (x, »,2)), then it is optimal to dis-
nateh ot 2owvhen instate (x + 1,y 1) (resp. (x, v + 1,2)). The threshold function
for mxie 5 at time ¢ depends on the probability distribution of the queue length
at 1 the other node, which in turn is determined by the most recent delayed
abservation, v,

Equaticn (3 50) states that the threshold function is monotone nonincreas-
ing in the delayed observation. That is, the threshold at ¢ cannot increase (the
shuttle is dispatched more readily) if the number of customers at time (¢ — /)™
i che terminal not occupied by the shuttle is increased.

Pronr: We begin with Eq. (3.49) and present only the case where 6 = | because

of svmmetry.
Suygficiency: Applying (i) of Lemma 3.4 1 — 6/ (v) times in succession gives

Btu, v 1y —didu, o) = 1000y, v, 1) — 4,8} (v), v, 1)
> 0 by Eq. (3.47).

Necessity: By Eq. (3.47), V.(u,v,1) = d,(u, v,1) implies u > 02(v).
Finally, we prove £q. (3.50). Rewriting (ii) of Lemma 2.4,

DO Y, s LY LBy, e R L = A (8 0y o) - (81 (Y, 0, 1)
>0 by Ea. (3.47).

Usirg Eq. (3.47) again, we conclude that 8/ (v) = 8)(v + 1). |
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3.2. The Infinite Horizon Problem

For the problem with the infinite horizon expected 3-discounted (3 < 1) cost
criterion, we restrict attention to i.i.d. batch arrival processes and holding cost
rate functions that are of polynomial order; i.e., there exists ¢ <= IN such that

cs(2) < ¢z¢ vze Lt 3.51)

Because times 1,2, ...,/ represent a transient period in the evolution of the in-
formation state, we restrict attention to characterizing the structure of a station-
ary Markov policy that is optimal at time ¢ = [/ + 1.

In the analysis that follows, the superscript on V, d, and A indicates the ho-
rizon of optimization. Recall that the dependence of V, d, and 4 on 3 is implicit.
We begin by observing that forall t, TE N, x,y&€ Z*, and 6 € {1,2};

VItH(x, »,8) = V/(x, »,8) (3.52)
and because of Eqs. (3.9)-(3.12)

A (x, »,8) = hl'(x, »,6), (3.53)

d "' (x, »,6) = d/(x, y,8). (3.54)

Because of Eqgs. (3.52) and (3.9)-(3.12), we obtain by taking the limit as 7" - oo
and applying the monotone convergence theorem

V=(x,y,06) = min(hA®(x, y,06),d*"(x, y,0)) (3.55)
where we define
Vm(x’ya(s) = llm VtT(X,)’,(S),
T— oo
hm(xyy)é) - 7]"1m hIT(xayyé)’

d>(x, y,6) = ;im dl (x, y,6).

Denote by II the space of all policies that are functions of the information state
specified in Section 2. let V'™ (x, y,6) be the infinite horizon expected §-dis-
counted cost for « & I1 with (x, »,6) as the initial information state at some time
t = I+ 1. Define

Vix,y,6) 2 inf V™ (x, y,0) (3.56)
rell

We show that V(x, y,6) is finite. To bound V(x, y,6), we compute V&(x, y,6),
where policy g never dispatches the shuttle. Using Eq. (3.51) we find
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VE(xe, 3, 1) = E"’{ B (X)) + (Y )| X =xY,  =y5= 1}

i=0

< DIBe(x+ MY+ c(y + M(j+ 1))

J=0

< 00,

Similarly, V¥4(x, y,2) < oo.

Because V(x, y,6) is finite, Propositions 1-3 of Sennot [8] yield V(x, y,6) =
limy ... VI(x,96) = V>(x,»46) and the stationary policy = determined by the
right-hand side of Eq. (3.55) is 8-discounted optimal. Therefore, to determine
the properties of the infinite horizon 3-discounted optimal policy, we study Eq.
(3.55).

We begin by considering Lemma 3.4 as the horizon of optimization goes to
infinity. This yields

A;dT(x, 3, 0) S Ah™(x, 0, 0), (3.57
Aid™(x,0,J) = AR™(x, 0, ). (3.58)

forall x, v€ Z* and i, j € {1,2} such that j # i. The threshold property is im-
plied by Eq. (3.57); the monotonicity of the threshold is implied by Eq. (3.58).
The following result follows from Eqgs. (3.57) and (3.58) by the arguments of
Theorem 3.1.

THEOREM 3.2: Let u be the number of customers observed at terminal 6 at time
t, where t = I + 1, and let v be the delayed observation of the queue length of
the other terminal at (t — I*. For all u,v € IL* and 6 € (1,2}, there exist
threshold functions 0°(-) : " — L+ U {+o} (defined similar to Egs. (3.47)
and (3.48)) such that the following stationary shuttle control policy is optimal.:

dispatch the shuttle from terminal & at time t if and only if u = 6°(v).
3.59)

Moreover,
6%(v) = 8%(v + 1). 3.60)

4. LINEAR HOLDING COSTS: COMPUTATIONAL REDUCTION

In Section 3, we showed that a threshold type policy is optimal. This reduces
the computational effort required to determine an optimal dispatching policy
by limiting the search to the class of policies possessing the threshold property.
Moreover, the determination of the threshold functions that define an optimal
policy is further simplified by the monotonic dependence of the threshold on the
delayed observation, as expressed by Eq. (3.60) of Theorem 3.2. However, the
determination of the threshold functions defining an optimal policy still remains
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a difticult computational problem. Thus, further characterization of the opti-
mal threshold functions is of great interest. In this section, we consider the prob-
lem of Section 2 with linear holding costs, that is, for 6 € {1,2} and z € Z*,

¢s(2) = ¢52. .1

We present one necessary and several sufficient conditions for dispatching that
reduce the computational effort required to determine optimal threshold func-
tions. Because the ideas are similar under either the finite or infinite horizon cost
criterion, we develop the results in the infinite horizon context (assuming 0 <
B3 < 1) and merely state them for the finite horizon case (assuming a horizon 7'
and 0 <3 < 1). As before, the infinite horizon results assume i.i.d. arrival pro-
cesses and focus on the characteristics of a policy that is optimal at times / +
1 and beyond.

LEMMA 4.1: Letu = Q, 6 € {1,2}, and
Y2 -B)""esQ - K5 — R Q.

Suppose y" = v* where m, k € {1,2} and m # k; then the following actions are
optimal:

(i) when the shuttle is at terminal m with u customers in terminal m, dis-
patch if and only if v > 0,
(i1) when the shuttle is at terminal k with u customers in terminal k, hold
the shuttle if v < 0,
(ili) in (i), dispatch if v* > 0. ’
PROOF OF SUFFICIENCY IN (i): For simplicity, assume m = 1 and v' > 0. Con-
sider at time ¢ (f = I + 1) the information state (u,v,1), where u = Q. For
a policy, =, define J,(w, 7, (u, v,1)) as the cost-to-go from information state
(u,v,1) at f along the sample path w € @ (Q is the underlying sample space de-
fined in Section 2). Suppose that the optimal policy, g, holds the shuttle at ¢ for
state (u, v,1). We construct an alternative policy, &, which dispatches the shuttle
at ¢ for state (u, v,1) and achieves for all w € Q

Ji(w, g, (u,0,1)) < J(w,g,(u,,1)). 4.2)

Therefore, g does not achieve the minimum expected cost-to-go and is not op-
timal. Thus it is optimal to dispatch the shuttle at ¢, i.e., d(u, v,1) < h(u,v,1).

We consider the arrival and service process realizations along w €  and
present a coupling argument to prove Eq. (4.2). We begin with the case where
g never dispatches the shuttle along w. We construct policy £ so as to dispatch
at time ¢ and never to dispatch thereafter. This construction is feasible because
after dispatching at ¢, g uses the delayed observations of the arrival history at
node one and its knowledge of the arrival history at node two to determine that
g never dispatches. Then J,(w, g, (4, v,1)) — J(w, &, (4, v,1)) = y' > 0.
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To complete the proof, we consider the case where g dispatches the shut-
tle along w at time o(w), where t < o(w). Let 7(w), D, < 7,(w), denote the
trip duration along w. Thus, the shuttle arrives at node two at o(w) + 7, (w).
Along w, the duration of the trip begun at ¢ under g is equal to 7, (w) (because
the durations of trips made from node one are i.i.d.). Upon arriving to node
two, ¢ holds the shuttle there until o(w) + 7, (w). Because I < D,, along w the
same information state exists at g(w) + 7,(w) under policies g and § (see Fig.
1). From time o(w) + 7, (w) on, we make g identical to g. We pause to justify
the construction of g by examining two distinct scenarios. Suppose o(w) < +
71(w) — 1. Then upon arrival to node two at ¢ + 7,(w), & knows the history of
the arrival process of node one through time o (w) and thereby determines that
policy g dispatched the shuttle at ¢(w). Having determined o(w), £ uses its own
trip length realization in determining to follow g from time o(w) + 7, (w) on.
On the other hand, if o(w) > ¢ + 7,(w) — I, then g cannot determine o(w)
upon arrival to node two. Instead, g waits at node two until 6 (w) + I, at which
time ¢ determines o(w). Because I < D, ¢ always determines o (w) at or before
time o(w) + 7, (w).

Comparing policy g with g, we find that along w, ¢ holds Q additional cus-
tomers in node one at times ¢ through o(w) — 1 and matches g thereafter. No
difference exists at node two. The policies differ with respect to dispatching only
in that g dispatches at o(w), whereas g dispatches at ¢. Thus,

peeii--
: 2 = ™ -~
2 g matches g
pre
;-]
&
Q
o}
2
5
Fod |
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1 1 1 1
1 1 1 1 o
t o t+ 1 (@ oW+ (0) Time
1 I

FiGuURe 1. Illustration of policies ¢ and g.
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glw)—1

Jl(w’gy(uy Uyl)) - Jl(wy g,(u, v, 1)) = Z Bjﬁ[CIQ-i‘ (IBO(M)MI - 1)(](l + RIQ)

J=t
=1 =" (c; (1 = B)!
- (K1 + R Q))
= (1= B7D")y!
> 0.

PROOF OF (ii) AND NECESSITY IN (i): Because the argument is the same for both
statements regardless of the value of /n, simply assume v! < 0,v2 < 0 and con-
sider the state (u, v,1) at any time ¢, £ = I + 1. Suppose policy g is optimal and
dispatches at time f. We present a coupling argument to show that there is a
policy, g, that never dispatches the shuttle and performs at least as well as g.
Thus, A, (u,v,1) < d,(u,v,1).

Consider the arrival and service process realizations alongwe Q. Let 0y (w),
o2(w), ... denote the sequence of dispatching epochs at times ¢ (o, (w) = t) and
beyond made under g along w. Let g be a policy that never dispatches the shuttle.
Denote by b4,(w) the node from which the shuttle is dispatched under g at time
0;(w). Then, becausec, 2 Ry, c; = R,, ¥' <0, y2 <0, and each dispatch clears at
most Q) customers from the system, the cost advantage of policy § vs. g for any dis-
patch, say the one at time oy (w), is bounded below by 37 (*)(—~ %), which is
positive. Hence, along w, the cost advantage of policy § vs. g is

Ji(w, g (1, v0,1)) — J(w, &, (1, 0,1)) = Y, BU D™=y,
J

> 0.
Consequently, it is optimal to hold at .

PRoOF OF (iii): The result follows by the argument made for the sufficiency
statement of (i). n

For y” = y*, Theorem 3.2 and Lemma 4.1 yield §' = §2 = +oo provided
v" = 0; otherwise, they reduce the range of 8™ to a finite set, thus yielding
07 L - {0,1,2,...,Q0}. Moreover, a sufficient condition is given for this re-
duction to apply to 6*. This is the essence of the following theorem.

THEOREM 4.1: Suppose v = v* where m,k € (1,2}, m = k, v e L*;
(i) ify™ >0, then 6" (v) < Q;
(i) if v* >0, then 6'(v) < Q and 9*(v) < Q;
(iii) if y" <0, then 0'(v) = 0%(v) = +oo.
PRrOOF oF (i): Without loss of generality, suppose m = 1. If y' > 0, Lemma 4.1

yields A(Q, v,1) > d(Q, v,1). In light of Eq. (3.57), the result holds by the def-
inition of ',
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Proor oF (i1): This case follows by the argument of (i) and the fact that yv™ >

vk

Proor oF (iii): By Lemma 4.1, ¥ < 0 implies A(u,v,1) < d(u,v,1) and
h(v,u,2) = d(v,u,2) for all u = Q. This in turn implies by Eq. (3.57) that it is
optimal to hold the shuttle for ¥ < Q. To be consistent with Theorem 3.2, we
set #'(v) = 0%(v) = +oo. ]

The following corollary is an immediate consequence of Theorem 4.1 for
the case of cost symmetry in the network.
COROLLARY 4.1: Let ¢; = ¢, Ky =K, and Ry = R,. Then forallve L*; ' =
v? and

(i) ify'>0, then 0'(v) < Q and 8*(v) < Q,

(i) ify' <0, then 8" (v) = 6*(v) = +oo.

It is possible to derive a finite horizon result analogous to that of Theorem
4.1. This is the following:

THEOREM 4.2: Forte {1,2,...,T}, let
T—t '
’Y;SécaQZ«BJ—Ka‘“RaQ
j=0

and suppose " = v where m, k € {1,2} and m # k. Then

() if vi" > 0, then 6;"(v) < Q;
(i) if v > 0, then ! (v) < Q and 67 (v) < Q;
(i) ify" <0, then 0} (v) = 07 (v) = +oo.

In some cases, it may be possible to determine that the maximum value of
an optimal threshold lies below Q. Lemma 4.2 and Theorem 4.3 present a suf-
ficient condition for this to be the case.

LEmMMA 4.2: Suppose that the shuttle is at terminal & with u, u < Q, passengers
waiting in that terminal. It is optimal to dispatch the shuttle if

csu =B =B)"'e(Q —u) = (1 = B)(Ks + Ryu) > 0. 4.3)

Proor: We begin by noting that Eq. (4.3) implies y° > 0, because ¢, = R,,
¢, = R,, and u < Q. Let g denote an optimal policy. Suppose g holds the shut-
tle at node 6 at time ¢ when u passengers wait there. We construct a modified
policy, g, that dispatches the shuttle at 7 and achieves a smaller cost-to-go from
time 7 on for every w & Q.

Fix w € (. We begin with the case where g never dispatches the shuttle along
w. We construct policy g so as to dispatch the shuttle at time ¢ and never dis-
patch thereafter. Along w, the cost advantage of g over g is ¥° > 0. On the
other hand, g may dispatch the shuttle at time o(w), where o(w) = ¢+ 1. As in
the proof of the sufficiency statement of (i) in Lemma 4.1, we construct a policy
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unloading times for larger loads. Thus, the idea is to model the shuttle trip
length as a random variable 7 (u), which increases stochastically in «, the num-
ber of passengers carried.

Under this new assumption, the issue we investigate is whether or not the
threshold property continues to characterize an optimal policy. We provide a
counterexample, which demonstrates that for a finite horizon problem, even
with perfect information, threshold policies are not always optimal. The infi-
nite horizon problem remains open.

Counterexample: Using the same notation as before, we consider a determinis-
tic two-stage optimization problem (7 = 2) with complete observations ( = 0).
Assume the shuttle’s capacity is at least two (Q = 2). If u is the number of cus-
tomers carried, the length of a trip made from either node depends on u accord-
ing to 7(u) = u v 1. We study three initial conditions for (X, Y,,8) at time ¢ =
1:(0,3,1); (1,3,1); and (2,3,1). Because any arrivals at ¢ = 1 are included in the
initial condition, we need only specify the arrival process at ¢t = 2. We consider
the case of deterministic arrivals at = 2: 3 at node one and 1 at node two. Let
B=lLe=1c=2%K =1,K,=1}, and R, = R, = 0. We derive the optimal
control action at ¢ = 1 for each of the initial conditions.

State (0,3,1): If the shuttle is held at ¢ = 1, the state at ¢ = 2 is (3,4,1), and
it is optimal to dispatch at that time. Thus, 4,(0,3,1) = 6.25. Dispatching at
t = 1 yields state (3,4,2) at = 2, and thus it is optimal to dispatch a second time.
We find d,(0,3,1) = 6.75.

State (1,3,1): If held at ¢ = 1, the shuttle must be dispatched from state
(4,4,1) at ¢ = 2; thus, A,(1,3,1) = 7.25. On the other hand, d,(1,3,1) =
d,(0,3,1) = 6.75.

State (2,3,1): We find h,(2,3,1) = 8.25. If dispatched at ¢ = 1, the trip
length of two units precludes a second dispatch: d,(2,3,1) = 9.25.

To conclude, the threshold property is violated at ¢ = 1 because the shut-
tle must be held for states (0,3,1) and (2,3,1) but must be dispatched for state
(1,3,1).

6. CONCLUSIONS

We have analyzed a simple two-node shuttle system under imperfect state ob-
servations. We have shown that under the conditions specified in Section 2 an
optimal dispatching policy is of the threshold type; furthermore, we proved that
the optimal thresholds are monotone functions of the most recent delayed ob-
servation. Knowledge of these properties of an optimal policy can guide its com-
putation by reducing the search to functions described by a threshold. The
results of Section 4, which present necessary and sufficient conditions for opti-
mally dispatching the shuttle from a given terminal, further reduce the computa-
tional effort required to determine the optimal threshold functions, because, in
certain cases, they limit the range of the thresholds to a finite set. The counter-
example of Section 5 demonstrates that the threshold property does not hold in
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general for finite horizon problems in which the trip length increases stochas-
tically with increasing shuttle load.

With an analysis in hand for the problem with trip durations longer than
the information delay, we are interested in the cases where (with positive prob-
ability) the information delay exceeds the trip duration. An important example
is the case where the shuttle controller observes only those customers waiting at
the terminal at which the shuttle currently waits. Thus, upon leaving a termi-
nal, no new information about that terminal is gained until returning there (this
corresponds to an infinite delay in our formulation). Such problems remain
open. Although we still believe that a threshold-type scheduling rule is optimal,
we have not been able to extend either the dynamic programming approach of
Section 3 or the coupling arguments of Section 4 to more general information
patterns.

The insight gained from this work can guide the design of dispatching pol-
icies in more realistic transportation networks and can support future analyses
of more than two nodes, multiple vehicles, and decentralized information.
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