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Tasks belonging to N classes arrive for processing in a multi-server facility. Each
arriving task has a due date (deterministic or random) associated with the com-
pletion of its service. If the service of a task is completed at a time other than
the task’s due date, an earliness or tardiness penalty is incurred. We determine
properties of dynamic nonidling nonpreemptive and dynamic nonidling preemp-
tive scheduling strategies that minimize an infinite horizon expected discounted
cost due to the earliness and tardiness penalties. We provide examples that illus-
trate the properties of the optimal strategies.

1. INTRODUCTION — PROBLEM FORMULATION

We consider multi-server queueing systems where the tasks to be processed have
constraints on their service completion times. Each arriving task belongs to one
of N different classes and has a due date associated with the completion of its
service; this due date either is random or becomes known at the arrival instant.
Interarrival times, service times, and due dates form sequences of independent
random variables that are also independent of each other. We assume that inter-
arrival times have a general probability distribution.
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Consider a task of type /, i = 1,2, ..., N, whose service completion time and
due date are s and d, respectively. If s < d, an earliness penalty at a rate o, per
unit time is incurred from time s to time d. If s > d, a tardiness penalty at a rate
$; Is incurred from time d to time s. We study problems with deterministic and
stochastic due dates. We determine properties of dynamic nonidling nonpre-
emptive as well as nonidling preemptive scheduling strategies that minimize the
infinite horizon expected y-discounted cost due to the earliness and tardiness
penalties.

Work on scheduling with tardiness and earliness penalties is motivated by
production problems in manufacturing systems, where the emphasis is on Just-
in-Time production (see Baker and Scudder [4]). In such a scheduling environ-
ment, both earliness and tardiness are penalized, because an early completion
of a job may create the need for storage, thus incurring inventory costs, whereas
a late completion may result in, for example, customer dissatisfaction or loss
of sales. Applications involving tasks with priorities and due dates are also
found in communication networks (see Bhattacharya and Ephremides 6D,
where, for example, a single channel is used for the transmission of different
types of messages (voice, video, data files, etc.) that have different priorities and
constraints on the completion of their transmission, thus incurring tardiness
costs when their due dates are not met.

Various versions of the deterministic scheduling problem with tardiness
and/or earliness constraints are discussed in Baker and Scudder {4, and refer-
ences therein], Szwarc [24], Du and Leung [8], Kubiak, Lou, and Sethi [15],
Hall and Posner [11], Hall, Kubiak, and Sethi [10], and Potts and Van Wassen-
hove [22], where optimality and computational complexity issues are investi-
gated and algorithms for the solution of these problems are proposed. Most of
the research on stochastic scheduling with time constraints has concentrated on
performance evaluation (e.g., Kaspi and Perry [13,14], Baccelli, Boyer, and
Hebuterne [2], Baccelli and Trivedi [3], Perry and Levikson [20), and Bhat-
tacharya and Ephremides [7]), rather than on optimization. For results on opti-
mization see Panwar, Towsley, and Wolff [19], Bhattacharya and Ephremides
[5], Frostig [9], and Pandelis and Teneketzis [18], where tasks have individual
strict deadlines (i.e., the tasks incur zero penalty if their service begins or is com-
pleted before their due date, and they incur a fixed penalty depending on their
priority otherwise), and Nain and Ross [16], Ross and Chen [23], and Altman
and Shwartz [1], where there are constraints on the average delay of the tasks.
For problems with tardiness penalties, Pinedo [21] and Huang and Weiss [12]
study the optimality of the expected earliest due date service discipline when the
due dates have a known probability distribution. Towsley and Baccelli [25] show
the optimality of the earliest due date policy for a tandem network, where the
due dates are known. Finally, Bhattacharya and Ephremides [6] consider a
scheduling problem with tasks that belong to two different classes and show that
the optimal policy is characterized by thresholds.
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Our work deals with stochastic scheduling problems. It differs from Bhatta-
charya and Ephremides [6] and Pinedo [21] in that it deals with many servers
and from Huang and Weiss [12] and Towsley and Baccelli [25] in that it deals
with many classes of tasks: furthermore, our work incorporates earliness pen-
alties.

The contributions of this work are the following: we characterize qualitative
properties of optimal dynamic nonidling nonpreemptive as well as of optimal
dynamic nonidling preemptive scheduling strategies for the single- and multi-
server problem with tardiness and/or earliness penalties. We provide examples
that illustrate the properties of the optimal strategies.

The remainder of the paper is organized as follows: In Section 2 we con-
sider nonpreemptive policies. In Section 3 we consider preemptive policies,
where preemptions are allowed at service completions and arrival times.

2. NONPREEMPTIVE POLICIES
2.1. Deterministic Due Dates

We consider a queueing system with M identical parallel servers S,,S,,...,S,,,
M = 1. In the case of nonpreemptive policies decisions have to be made at ser-
vice completion times.

Let £p,4, 2 0, be such a decision point and Mi(t)),i=12,...,N, be the
set of tasks of type / that are present in the systemn at time £,. From the decision
maker’s point of view, a task with due date less than I is equivalent to a task
with due date equal to f,, because for any scheduling strategy and any realiza-
tion of the arrival, service, and due dates processes the two tasks incur the same
cost after time #,. Adopting the convention that tasks with due dates less than
to have due dates equal to 1,, we define for Mi(1,) # 0 Di(ty) = {di, . .. ,dy 3,
n; = 1, to be the set of due dates of tasks of type / present in the system at time
Io arranged in increasing order. From now on d! will denote both the time
instant d] and the task that has due date d;.

We assume that service times for tasks in class L,i=12,...,N, have a gen-
eral probability distribution denoted by F;. For a decision instant ¢y, if M ’,
M’ < M, is the number of empty servers, the problem is to determine the M’
tasks to be processed. The following theorem describes the characteristics of the
optimal policy.

THEOREM 1: Let ty be a decision instant for which servers SnysSnas e Snys
M’ < M, are idle. Consider server Spy 1 <0< M. Then:

() Within a class of tasks, it is optimal to assign to S, the one with the
earliest due date.

(i) For each pair of classes Lj (L= 12,...,N,i #j) with Mi(t,) + 0,
M/(1y) # 0, there exists a time instant (threshold) t; such that it is
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optimal to assign to S, task d| instead of di if di = ty, and vice versa
otherwise.

Consider a class 7/ of tasks with at least two tasks waiting to be pro-
cessed at time Zy. For every policy = that assigns to S, task dik # 1,
we construct policy # as follows: a time ¢, # assigns to S, task d! and
is identical to = when = processes tasks other than d{. When = pro-
cesses (if ever) task d at some server, 7 processes task d} at the same
server. Let V'™ and V'™ be the costs incurred under policies = and #,
respectively. For any sample path all tasks except d!,d} incur the same
cost along 7 and . Let o’ be the time 7 starts processing d! (¢’ = o if
m never processes di) and o and 7 be the processing times of tasks d|
and dj (respectively, d and d!) under = (respectively, 7). Then,

E(V™ - V*]o’ =0) =E[C(d},ty + 1) + Cci(d],t + o)

- Ci(d{,to + T) - C,(d/:’e + U)]a (1)
where C(d, s) is the cost incurred by a task of class i with due date ¢
and service completion time s. We have
(s—d)*

e drt+ Bie“df e dt
0

(d—s)*

Ci(d,s) = a,»e“”f

0

1
= - laie™ + Be™ ~ (a; + B;)e rmds1] (2
Y

From Egs. (1) and (2), we get
E(WV™ - V*]o’ = {)

o; + 3, E[e—ymaxld{.t(ﬁrl + e—ymax[d,{;.é’i»ol

_ e—ymax(d/(ﬁ,l(ﬁ-rl _ e—ymax{df,t’-ﬂrl]

Since o and 7 have the same probability distribution F;, the preceding
expectation will not change if we replace them with a random variable
Ji that has distribution F;. Therefore,

E(V™~V*|g =)
Tl E[e-vmax{di.o+fil | o—ymax(df.t+/]
¥

— o TyYmaxtdi, ty+f) _ e ~ymaxtdi,i+/;) 1.
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The expression over which the expectation is taken is nonnegative for
d| < d} and t, < (. Therefore among all tasks of type / it is optimal to
process the one with the earliest due date.

(ii) Let d' and d’ be tasks of type i and j that are present in the system at
time #,. Let the due dates of all tasks except d’ be fixed. It suffices to
show that if for d/ = k it is optimal to process d' instead of d”, then
for d/ = ¢, where ¢ > k, it is still optimal to process d'.

To avoid confusion we will attach to each policy a subscript denot-
ing the value of d”. For example, 7, would be a policy applied to the
set of tasks with d’ = k.

Let m, be a policy that processes task d’ at time 1, and 7, a policy
identical to m,. Let also o be the service time of task d”. Then we have
from Eq. (2)

E(V™ — V™) = E[C/(k,ty + 0) — C/({, 15 + 0)]
=1 E[Bj(e ™ —e")
Y

. (aj + Bj)(e~'ymax[k,l()+a] — e—'ymax(&’,10+ol)]‘ (3)

By assumption there exists a policy 7, that processes task d' at ¢, and
does better than m,; that is,

E[V™ — V™) = (. C))

Let 7, be a policy identical to &, and 7 be the time the service of task
d’ starts under 7, #;. Then we have from Eq. (2)

E(V* —V™|r=171") = E[C/(k,7" + o) — C/({, 7" + 0)]
1
= ; E[Bi(e™™ —e ™) — (a; + B;)
% (e—ymax[k,7'+u] . e—'ymaXH’,T'*'O])]. ;)

It is straightforward to show that for ¢, < 7’ the right-hand side (RHS)
of Eq. (3) is less than or equal to the RHS of Eq. (5). Therefore,

EWV™ — V™)< E(V™ — V7r)
= E(V™ — V™) = E(V™ — V) >0,

where the last inequality follows from Eq. (4). Therefore, it is optimal
to process d‘ when d’ = ¢. ]

Remark 1: If the service times for classes / and j are identically distributed, and
a; <, 8; = B;, then the threshold ¢#; in part (ii) of Theorem 1 is less than dj.
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According to Theorem 1 and the preceding remark, to determine which task
is optimal to process we need to make at most N — 1 pairwise comparisons —
in other words, compute at most N — 1 thresholds. The selection of the M’ tasks
to be processed is done sequentially. First, we determine the “best” task by com-
puting the appropriate thresholds: then we determine the “best” among the rest
of the tasks, and so on.

Remark 2: Note that the threshold t;; (in part (ii) of Theorem 1) may not only
depend on d{, d{ but on the whole set of tasks present in the system as well as
on the number of servers. These points are illustrated by examples in Pandelis
[17].

2.2, Stochastic Due Dates

Contrary to the problem examined in Section 2.1, the tasks’ due dates do not
become known at the arrival instants. Consider a task of type i,i = L,2,...,N,
that arrives at time p. Its due date is equal to p + X;, where X; is a random
variable with probability distribution function denoted by G;. We assume that
a task’s due date becomes known at the time of its service completion.

For a decision instant fo, we denote by M(1,),i = 1,2, . .. , IV, the set of
tasks of type / that are present in the system at time ¢,. For M(ty) # 0, we
define A'(1y) = {al, ... .@;.}, n; = 1, to be the set of arrival times of tasks of
type / present in the system at time ¢, arranged in increasing order. From now
on a/ will denote both the time instant a/ and the task with arrival time aj.

We assume that service times for tasks of type s, i=1,2,...,N, have a gen-
eral probability distribution denoted by F;. The properties of an optimal pol-
icy are given in the following theorem.

THEOREM 2: Let t, be a decision instant Jor which servers SnisSnys v vy Snrgs
M’ < M, are idle. Consider server Spe» 1 <0< M. Then:

(i) Within a class of tasks it is optimal to assign to Sy, the one with the
earliest arrival time.

(ii) For each pair of classes i,j (i,j = 1,2, . .. sIN, 1 # j) with M'(1y) # 0,
MY(1,) # 0, there exists a time instant (threshold) t; such thar it is
optimal to assign to S, task ai instead of ai if ai = t,;, and vice versa
otherwise.

Proor:

(i) Consider a class i of tasks with at least two tasks waiting to be pro-
cessed at time ¢,. For every policy = that assigns to Sy, task al  k #1,
we construct policy 7 as follows: at time ¢, 7 assigns to S, task a{ and
is identical to = when 7 processes tasks other than a{. When = pro-
cesses (if ever) task a; at some server, # processes task a/ at the same
server. The due dates of @ and 4/ are a{ + x| and a} + Xi, respectively,
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where x{ and x{ are random variables with distribution G;. Let ¢’ be
the time 7 starts processing a{ (¢’ = oo if 7 never processes a{) and o, 7
be the processing times of tasks aj,a; under w (respectively, #). Then,

E(VT—V™o = 1)
= E[C'(aj + x{, 1o + 7,1) + C'(al + xi,0 + o, to)
= C'laj + x{,1g+ 7,1y) ~ C'a} + x[ .0 + a,lp)],  (6)

where C'(d, s, 1y) is the cost incurred after time ty by a task of class i
with due date ¢ and service completion time 5. We have
(d-s)*

Ci(d,s, fo) = a,e—”f e Y dr
0

(s—max{d, o))"

+ Bie~’7maxld»lolf e~ dt

0
1
=3 [aje™ + remrmaxidiol — (o 4 B;)e~rmaxidsi]  (7)

From Egs. (6) and (7), we get
E(WV™ - V*|a’ = ()

— o + B, E[e«ymaxla{+x{,10+7l + e~—-ymax|a,';+xj.,l’+a]
Y
— e—ymax{aj+xf,lo+r) _ e—ymax!a{+x{,?+u)]
The preceding expectation will not change if we replace o, 7 with a ran-

dom variable f; having distribution F,, and x{,x} with a random vari-
able x; having distribution G,. Therefore,

E(V" = Vi|e =)

_ath Efe~Ymaxiai+x,to+fi} 4 p~ymaxiaf+x,o+f)
Y
— eoymaxtaf+x, io+f;] _ e—ymax[a{+x,.é’+f,-|]

The expression over which the expectation is taken is nonnegative for
a] < ajand t, < (.

Therefore among all tasks of type i it is optimal to process the one
with the earliest arrival time.

Let a’ and a’ be tasks of type i and j that are present in the system at
time f,. Let the arrival times of all tasks except a”’ be fixed. It suffices
to show that if for @/ = k it is optimal to process @' instead of a’, then
for @’ = ¢, where ¢ > k, it s still optimal to process a’.
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For a specific sample path, the due date of @/ when @/ = k and
a’="{is k + X; and € + x;, respectively, where X; 1s the realization of
the random variable X, for this sample path. Since k + x; <  + X;, we
can use the arguments in the proof of part (ii) of Theorem 1 to prove
the result. [ |

Remark 3: If the service times and the due dates for classes ; and j are identi-
cally distributed, and @; < oy, 8 = B, then the threshold t; in part (ii) of Theo-
rem 2 is less than a!.

It is interesting to note the similarity between Theorems 1 and 2. By replac-
ing due dates with arrival times, we get the statement of Theorem 2 from that
of Theorem 1. Both theorems combined with Remarks 1 and 3 assert that the
tasks that are optimal to process can be sequentially determined, each one by
at most N — 1 pairwise comparisons.

3. PREEMPTIVE POLICIES

3.1. Deterministic Due Dates

We consider a queueing system with M parallel exponential servers §,,S,, . . .,
Snm, with rates uy, us, . .., pay, respectively. The assumption of exponential ser-
vice times is crucial when we consider preemptive policies. Because we consider
preemptive policies, at any event, arrival, or service completion, a decision has
to be made on how to assign the tasks present in the system to the M servers.
We investigate the multi-server allocation problem by considering two cases: @)
when the number of tasks is greater than or equal to the number of servers, and
(i) when the number of tasks is smaller than the number of servers.

Consider first a decision instant for which the number of tasks is greater
than or equal to the number of servers. Properties of the optimal policy are
described in the following theorem.

THEOREM 3:

(i) Let ty be a decision instant Jor which the number of tasks is greater
than or equal to the number of servers and S; be the fastest server.
Then, within a class of tasks it is optimal to assign to S; the one with
the earliest due date.

(i) In the single-server problem (M = 1), for each pair of classes Lj(i,]=
L2, . N, i # J) with M(1y) # 0, M (1) # 0, there exists a time
instant (threshold) li such that it is optimal to process task d| instead
of di if di = t;;, and vice versa otherwise.

Proor:

(i) Consider a class i of tasks with at least two tasks present in the system
at time f,. Let 7 be a policy that at time fo assigns to S, task dj k + 1,
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and proceeds optimally after 1,. We construct policy # as follows: at
time /o 7 assigns tasks in the same way as =, except that it assigns task
dj to S; and, if = has assigned d| to some other server, it assigns task
dj. to the same server. After time 1, # proceeds optimally. We also con-
struct policy = as follows: at time 7, =” assigns task d/ to S; and is
identical to = when = processes tasks other than d{. When 7 processes
(if ever) task d| at some server, 7’ processes task d; at the same server.

We consider first the case when 7 assigns d| to some server S, at
fo. When the first event after time #, is an arrival or a service comple-
tion at some server other than S, or S,, then, because of the exponen-
tiality of the service times, policies 7 and # are coupled, thus incurring
the same costs. With Q being the basic sample space, we define events
A°, L7, and LY as follows:

A? = {w € Q|first arrival after £, occurs after time o},
L7 = {w € Q|first event after #, is service completion at server
S; at time o,
t={weq | first event after ¢, is service completion at server
S, at time o}.

Then, we have

E[V™ - VF) =me(V"-— V*[E}’)P(A“)[ II e““""”""’]

lo m#j, e

X e“#r(d—lo)y_je“#j(ﬂ"’o) do

+me(V"- V*]E‘;)P(A")[ I1 e—ﬂmw-w}

1) m#j, ¢

X e_l"j(a_’())‘u?e’ﬁ‘-l’(a_”()) do

=f E(WVE = VI)P(A°) [T e =) (u; — p,) do, (8)
to m
where V¢ (respectively, V7?) is the cost incurred by the optimal policy,
denoted by ¢ (respectively, w'), after time o given that task dj
(respectively, df) completes its service at time ¢ and no other event has
occurred until time 0. We construct policy #* as follows: 7| is identi-
cal to w7 when =} processes tasks other than d{. When 7} processes (if
ever) task dj, 7" processes task d/. Let 7 be the service completion time
of di and d{ under 7 and #, respectively. We take 7 = oo if 7} never
processes df. Let V7 be the cost incurred under policy #; after time
o. Then,

Vi~ VH = Ci(di,o,0) + Ci(di,r,a)
- Ci(dliyo-’ 0) - Cl(d/’(y T’G)‘ (9)
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From Egs. (9) and (7), we get

QI+BI
Y

V- Vil =

[e‘ymaxfd,"al + e~7ma.\'ld,(v,rl

—ymax{d}, —ymax|d},
__e“ym\lAﬂl_eV IIT}],

which is a nonnegative expression for di<dland o < 7. Therefore,
EWVH =z EWV ) = E(VY), (10)

where the second inequality follows from the fact that policy = is
optimal, while #; is not necessarily optimal. From Egs. (8) and (10)
and u; = p,, we conclude that E(V™) = E(V™y.

We now consider the case when = does not process d| at t,. We
define events 4, and L, as follows:

A; = {w € Q[first event after 1, is an arrival or a service comple-
tion at a server other than S},

L; = {w € Q|first event after 1, is service completion at server S;.

Using the same interchange argument as in the proof of part (i) of
Theorem 1, we get

E(V"|L,)<E(VT|L). 1)

Moreover, because # acts optimally after ¢y, while =’ does not neces-
sarily do so, we have

E(VT|L,) < E(V™|L)). 12)
Finally, because of the exponentiality of the service times, we have
E(V”]Aj)zE(V*]Aj). 13)

From Egs. (11)-(13), it follows that E(V™) = E(V7y.
Therefore, among all tasks of type / it is optimal to assign to S; the
one with the earliest due date.

Let d' and d’ be tasks of type i and j that are present in the system at
time #,. Let the due dates of all tasks except d” be fixed. It suffices to
show that if for d’ = k it is optimal to process d' instead of d/, then
for d’/ = ¢, where ¢ > k, it is still optimal to process d".

As in the proof of part (i) of Theorem 1, we attach to each policy
a subscript denoting the value of d/. Let 7, ™ be the policies that pro-
cess task d” at time ¢, and proceed optimally afterward, 7, #, the pol-
icies that process task d' at time fo and proceed optimally afterward,
and =, a policy that is identical to 7. For sample paths for which the
first event after ¢, is an arrival, policies m;, 7, and 7, %, are coupled at
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the time of the arrival because of the exponentiality of the service times.
Therefore,

E(V™ — V*k'A):E(V”— ViflA)=0. (14)

We consider now sample paths for which the first event after 7, is a
service completion. Let o be the time of the first service completion and
o’ the time the service of d’ is completed under policies 7, ;. We
have from Eq. (2)

Vi — V&= Cl(k,0) ~ C/(¢,0)

i

1
'7‘ [Bi(e™ —e ") — (a; + B))

X (e-ymaxlk,al _ e—'ymaxlt’,a;)] (15)

and
Vi — Vi = Cl(k,0') — C/(1,0")

1
= ; [5](3_7/( —e ) — (a; + B;)

X (e~vmaxikio'}l _ e—-ymaxlt’,a'l)]. (16)
From Egs. (15) and (16), we get for k < ¢ and ¢ < ¢
E(V™ ~ V™ |E) < E(V® — pri |Z). a7

Moreover, because 7, acts optimally after the first service completion,
while 7/ does not necessarily do so, we have

E(V™ — V”]E)sE(V*k— V*"IE). (18)
From Eqs. (14), (17), and (18), we get
EW= -y = E(V™ — V*"IE)P(E)
Z E(V™ — V™ |L)P(L) = E(V™ — V)
=0,

where the last inequality follows from the assumption that d’ is opti-
mal when @’ = k. Therefore, d' is optimal when d” = ¢. [ |

Next, we consider decision instants for which the number of tasks is smaller
than the number of servers. In such a situation the problem is to determine
which servers will process the tasks and how to allocate the tasks to these serv-
ers. We restrict attention to list scheduling strategies, that is, strategies that select
the servers according to a prespecified priority rule (S¢,5Se;5---,S;,,), where
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(€,,05, ...,04) is a permutation of (1,2,...,M). The following theorem
describes properties of the optimal policy.

THEOREM 4: Assume that we have only one class of tasks and only tardiness
penalties are incurred. Let t, be a decision instant Jor which the number of
tasks is smaller than the number of servers. Then: ‘

(1) Once the servers have been selected, it is optimal to assign the task with
the earliest due date to the fastest server.

(it) The optimal list scheduling policy ranks the servers in decreasing order
of their service rates, that is, uses the fastest servers.

Proor:

(i) The proof uses the same arguments as the proof of part (i) of Theorem 3.

(i) Let 7 be a policy that follows the priority rule (S, 3Seys S, )and i =
min{j: me, < pe,,, ). Let 7o be the first time 7 selects Sy, instead of S, _,.
We construct policy 7' as follows: «' is identical to 7 until 7o, selects
Sy,,, instead of S;, at 7y, and follows the same priority rule as « afterward.
Let g;,j = 1,2,...,i + 1, be the service completion times at servers
S¢»Sey .48, ., and p be the time of the first arrival after 79. Let 7 =
min{p,0,,0,,...,0,,} and Fits probability distribution. Then, because

of the exponentiality of the service times, we have

E(Vw_ V’rl ,T< U,’,U,‘+|) :O.

Therefore,
EWw™ -y
=f f E(V"——V”l|0,+|=m,0,=n,72n)
To m

X py,, @ MOy, e~k (1O} — F(n)] dn dm

+f f E(V”—V"],Ui=m,0,-+,=n,72n)
TO m

x #t,ie—w,(m—m)w e—w,,,(n—ro)“ —_ F(n)] dndm

+J

4]

x p,(_“e—""m(”’_T“)e“‘"z(”_’“) dF(n)dm

i+

f E(V -y~ |ois) =m,7=n,0, = n)

m

+f f E(V’r—~V”'la,-=m,1=n,o,~+,2n)
70 m

X g € THOMTT0) g i, (1=T0) GE (Y (. (19)
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Because of the construction of policies = and 7', we have for m < n

E(V?r_ I/7rl ’0’,‘.,,] =m,o; = n,TZn)

=E(V”'—V"}o,=m,o,+1=n,72n), : (20)
E(V’T‘ VTI 'U,‘_,_] =m, T = n,O’,‘Zn)
=E(V”'—V”[o,zm,rzn,o,+12n). 21)

We also have for m < n
E(V™" = V™ |61y =m,0;=n,72n) =0, (22)

because only tardiness penalties are considered and the difference in the
costs incurred under = and 7' comes from the task that is completed
at time m under 7' and time » under =, that is, a task that is completed
earlier under w!. Finally, we have

E(V* = V™ |y, =m,7=n,0,2n) 0. (23)

This is true for the following reason: from time m until time n, there
1s one extra task in the system under = (the one that completed service
at time m under «'). After time n, depending on the sequence of
arrivals and service completions, there is either one extra task in the Sys-
tem under 7 (in service or waiting) or at some time the service of this
task is completed and policies = and ! are coupled afterward. From
Egs. (19)-(23) and p,, < p,,,,, we get E(V™') < E(V'™).

We can now construct a modification 72 of 7! in the same way 7!
modifies 7; that is, the first time «! prefers S;, instead of S, , =* uses
Si,., instead of S, and follows the same priority rule as 7' afterward.

Therefore, E(V"Z) =< E(V"' ). Continuing the construction of such
modified policies, we conclude that E(V7) < E (V'™), where 7 follows
the priority rule (Se,s- - 5Sti12Se 3 St - - +»Sey,)

If we keep improving policy # by interchanging the order in each
pair of consecutive servers for which the slowest server has the highest
priority, we will eventually get that the optimal policy ranks the serv-
ers in decreasing order of their service rates. n

If in Theorem 4 only earliness penalties are incurred, it is optimal to use the
slowest servers, assigning the task with the earliest due date to the fastest among
these servers. When both tardiness and earliness penalties are incurred, then,
depending on the state of the system, it may be optimal to use either the fast or
the slow servers. We illustrate this point by the following example.

Example 1: We have one task with due date 4 and two servers S, and S, with
rates u; and u,, respectively, where u, > 2. Earliness and tardiness penalties
are incurred at rates « and 8, respectively. We have no discount (v = 0) and no
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arrivals. Let 7, and 7, be the policies that assign d to servers S, and S,, respec-
tively. With x being the service completion time of task d, we get that the
expected cost due to policy , is

d o0
E(V’”)zf a(d~x)u,e“‘""dx+f B(x —d)p e ™™ dx
0 d

cadt+ Lemd_ X B ua 24)

M By iy

Similarly, the expected cost due to policy =, is

EVo)=ad+ Lewmd_ % | B a 25)
H2 (%) H2

From Eqs. (24) and (25), we get for d — 0

Evmy-Ev L B

i K2

and for d - o

E(vm)y —E(ymy -2 -2 5,
"2 2y
We see from this example that when d is sufficiently small it is optimal to use
the fast server, and when it is sufficiently large it is optimal to use the slow
server,

3.2. Stochastic Due Dates

The development of Section 3.2 parallels that of Section 3.1. We maintain the
same assumptions as in Section 3.1, namely, that there are M parallel exponen-
tial servers S,,S,,...,Sy, with rates u;, us, . .., pups, respectively.

We consider first a decision instant where the number of tasks is greater
than or equal to the number of servers. Optimal policies are characterized by
the following theorem.

THEOREM 5:

() Let ty be a decision instant for which the number of tasks is greater
than or equal to the number of servers, and let S ; be the fastest server.
Then, within a class of tasks it is optimal to assign to S, the one with
the earliest arrival time.

(i) In the single-server problem (M = 1), for each pair of classes i, j (i,j =
L2, . N, i # j) with M'(ty) # 8, M/(t,) + 0, there exists a time
instant (threshold) t;; such that it is optimal to process task a; instead
of ai if ai = t;, and vice versa otrherwise.



PRrROOF:

(@)

OPTIMAL STOCHASTIC DYNAMIC SCHEDULING 505

Consider a class / of tasks with at least two tasks present in the system
at time ty. Let = be a policy that at tp assigns to S; task af,k # 1, and
proceeds optimally after f,. We construct policy # as follows: at #, #
assigns tasks in the same way as , except that it assigns a{ to S, and,
if 7 has assigned a! to some other server, it assigns a/ to the same
server. After f, 7 proceeds optimally. We also construct policy 7’ as
follows: at ¢, 7 assigns a! to S; and is identical to = when 7 processes
tasks other than a{. When = processes (if ever) al at some server, T’
processes aj at the same server.

We consider first the case when 7 assigns aj to some server S, at f,.
Similar to the proof of Theorem 3, we get

E(V"—V7)

= f E(VE = VI)P(A) [T e ™"~ (u, — p) do,  (26)

to

where
A° = {w € Qfirst arrival after 1, occurs after time o},

and V¢ (respectively, V7) is the cost incurred by the optimal policy,
denoted by w; (respectively, wy), after time o given that task aj
(respectively, a{) completes its service at time o and no other event has
occurred until time . We construct policy #; as follows: 71 is identi-
cal to m¢ when 7} processes tasks other than a{. When =} processes (if
ever) af, #; processes aj. Let V" be the cost incurred under 7y after o.
As in the proof of Theorem 3, with @ + x{ and a] + x{ being the due
dates of a and ajl, respectively, we get

E(V{ - V#) = i+ B E[e vmaxtai+x{,o} | ,—ymaxiaj+xf,7]
. e—ymax{a,ﬁ+x,£,al - e—ymax{a{+x{,rl]

The expression over which the expectation is taken is nonnegative for
a; < a; and ¢ =< 7. Therefore,

EWVH) =z EWVT)y = E(V?), QN

where the second inequality follows from the fact that policy = is
optimal, while #; is not necessarily optimal. From Eqs. (26) and 27)
and y; = u,, we conclude that E(V™) = E(V'7).

For the case when 7 does not process aj at t,, using the same argu-
ments as in the proof of part (i) of Theorem 3, we can show that E(V'™) =
EWVm.
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Therefore, among all tasks of type /it is optimal to assign to S; the
one with the earliest arrival time.

(ii) Let @' and a’ be tasks of type i and j that are present in the system at
time £,. Let the arrival times of all tasks except a” be fixed. It suffices
to show that if for @/ = k it is optimal to process a' instead of @/, then
for @/ = ¢, where ¢ > £, it is still optimal to process a'.

The proof uses the same arguments as the proof of part (ii) of
Theorem 3, because for a specific sample path the due date of @/ when
a’=kanda’ = lis k + x; and { + x;, respectively, where x; is the real-
ization of the random variable X for this sample path. [ |

For decision instants where the number of tasks is smaller than the num-
ber of servers, we restrict attention to list scheduling strategies, that is, strategies
that select the servers according to a prespecified priority rule (S¢,,Se,s- -, Sens)s
where (€,,0,...,0,,) is a permutation of (1,2,...,M). Properties of the opti-
mal policy are described by the following theorem.

THEOREM 6: Assume that we have only one class of tasks and only tardiness
penalties are incurred. Let t, be a decision instant Jor which the number of
tasks is smaller than the number of servers. Then:

(i) Once the servers have been selected, it is optimal to assign the task with
the earliest arrival time 1o the Jastest server.

(i1) The optimal list scheduling policy ranks the servers in decreasing order
of their service rates, that is, uses the Jastest servers.

PRrookr:

(1) The proof uses the same arguments as the proof of part (i) of Theorem 5.
(it) The proof is identical to the proof of part (ii) of Theorem 4. ]

Theorems 4 and 6 exhibit the same similarities as Theorems 1 and 2; that
is, one can get the statement of Theorem 6 from the statement of Theorem 4
by replacing due dates with arrival times.

If in Theorem 6 only earliness penalties are incurred, it is optimal to use the
slowest servers, assigning the task with the earliest arrival time to the fastest
among these servers. When both tardiness and earliness penalties are incurred,
it may be optimal to use either the fast or the slow servers, as the following
example illustrates.

Example 2: Consider decision instant fo- We have one task with arrival time D
and two servers S, and S, with rates #r =2 and pu, = 1, respectively. Earliness
and tardiness penalties are incurred at rates o = 10,8 = 1. We have no discount
(v = 0) and no arrivals. Due dates are exponential with rate 1. Let 7, and =,
be the policies that assign task p to S; and S,, respectively. With d being the
due date of p, we get for the expected cost of policy ,
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E(V’”):E(V’”}d<t0)P(d<to)+f E(V™|d=m)e="" dm. (8)
{

o}

Let x be the service completion time of p. Then,

E(V’r"d<f0):f B(X_to),ule_“l(x_’())dx: '6“ i (29)
iy K
As in Example 1, we can show that
E(V*ld=mm> 1) = a(m— 1) + 238 gm0 _ & 3¢
Hy By
From Eqgs. (28)-(30), we get
E(V”‘) = _@. — o+ 6 e~ (o—p) + qe~Uo—p) 31
pio L+
Similarly, the expected cost of policy =, is
E(VU) = ﬁ — o+ B e~ lo—p) + qe = Uo—o) 32
p2 1+,

From Eqgs. (31) and (32), we get for p — 1,
B B o o

EWV™y —-E(V™) > — - + >0 (33)
mi(L+ ) ol +p)  T+p 1+p,
and for p —» —o
E(V’”)—E(V’rz)aﬁ—£<0. 34)
Hi H2

We see from this example that when p is sufficiently small it is optimal to use
the fast server, and when it is sufficiently large it is optimal to use the slow
server.

4. CONCLUSIONS

A careful comparison of the results for deterministic due dates and stochastic
due dates reveals many similarities between these two classes of problems. The
role of due dates in deterministic due date problems is replaced by the arrival
times in stochastic due date problems. The results of this paper referring to sto-
chastic due dates can be obtained from the corresponding results for determin-
istic due dates by replacing due dates with arrival times.

The qualitative properties of optimal policies derived in this paper can guide
the search for optimal dynamic scheduling strategies in multi-class queues with
earliness and/or tardiness constraints. However, the determination of optimal
scheduling policies still remains a formidable task, because, in general, optimal
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thresholds may depend on all the tasks present in the system as well as on the
arrival process.
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