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Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

We analyze service systems where Nservers (N> 2) move one at a time along
an array of stations to satisfy a known number of requests for service. Process-
ing a request consists of determining the server to satisfy the request. The cost
of processing a request is determined by the distance the server that performs
the request has to move. We determine qualitative properties of sequencing
strategies that minimize the expected cost incurred by the service of all requests
when the array of stations is on a circle or an interval.

1. INTRODUCTION-PROBLEM FORMULATION

The problems investigated in this paper are motivated by disk storage systems.
Requests for information on the disk are received; to process a request a read-
write head is moved to the address of the required information and the read-
write operation is performed. There are Af arms each with a read-write head.
It is assumed that the cost of moving a head to the position of the requested
information is a major fraction of the total cost of processing the request. Fur-
thermore, it is assumed that all the arms are controlled by one controller. The
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objective is to minimize the cost of processing a known number of requests that
occur according to a given distribution. Similar problems arise in (i) multiple
access mechanisms for high-performance computers [1] and (ii) storage sys-
tems where loading/unloading mechanisms are moved individually along a com-
mon track.

The mathematical model used to formulate and analyze the preceding prob-
lems is the following. We consider a service facility consisting of a linear array
of K stations or a continuum of stations located along a circle or an interval and
N servers moving one at a time from station to station to satisfy requests for
service. We assume that the number of requests that have to be served is fixed
and known. Requests for service, each designating one station on the circle or
the interval, arrive singly. The positions for requests for service are distributed
according to an arbitrary probability distribution on the circle or the interval.
Processing of the Arth request does not begin until processing of the (k - l)th
request is completed. The location of a request becomes known at the time it
is requested. Processing a request consists of determining the server to satisfy
the request based on the current server positions, the position where service is
requested, and the number of the remaining requests. The server selected is then
moved to the position of the request. Processing of the next request is done
based on the new server positions. We assume that the cost of processing a re-
quest is determined by the distance the server that performs the request has to
move. The objective is to determine a server-selection policy that minimizes the
expected cost incurred by the service of all the requests.

Two-server models similar to the preceding have been studied by Calder-
bank, Coffman, and Flatto [2,3]. Under the assumption that the positions of
the requests are uniformly distributed, they obtained the following results: (i) the
optimal server-selection policy on the interval is characterized by a threshold
rule, and (ii) the optimal policy on a /f-dimensional sphere (K > 2) is the one
that uses the nearest server. Variations of the two-server models of Calderbank
et al. [2,3] have been investigated by Hofri [5], where both servers are allowed
to move at the same time, and by Calderbank et al. [4], where the servers are
separated by a fixed distance.

The contributions of this paper are the following. We determine properties
of optimal server-selection strategies for systems with an arbitrary number of
identical servers and requests that are arbitrarily distributed on a circle or a line
interval. More specifically, we prove that requests are served by the server imme-
diately to their right or to their left; furthermore, the optimal selection is based
on a threshold rule. We prove that optimal thresholds possess a monotonicity
property. We extend the results to situations where some parts of the circle are
more expensive to traverse than others, and we investigate systems with non-
identical servers. We also provide an alternative proof of the fact that the
nearest-server policy is optimal for a system with two servers and requests uni-
formly distributed on a circle or a sphere and show by counterexample that for
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multiserver systems and requests uniformly distributed on a circle the nearest-
server policy is not optimal in general.

The paper is organized as follows. In Section 2, we first investigate the two-
server problem on the circle and present a proof of the optimality of the nearest-
server policy; this proof is different from the one presented in Calderbank et al.
[2]. Then, we analyze the multiserver sequencing problem. Finally, we show that
the sequencing problem on the interval is a special case of the sequencing prob-
lem on the circle. In Section 3, we analyze systems with nonidentical servers as
well as systems where parts of the circle are more expensive to traverse than oth-
ers; finally, we present a proof of the optimality of the nearest-server policy for
two-server sequencing problems on the sphere. We conclude in Section 4 with
a summary of the main results.

2. OPTIMIZATION ON THE CIRCLE

We now analyze the problem where the service facility consists of stations along
a circle and each of the N servers can move either in the clockwise or the coun-
terclockwise direction. We proceed by first providing a proof of the optimality
of the nearest-server policy for the two-server problem; this proof is different
from the one appearing in Calderbank et al. [2]. Then, we study the Af-server
problem (N> 2). We first show by counterexample that for multiserver systems
and requests uniformly distributed on the circle the nearest-server policy is not
optimal in general. Then, we determine qualitative properties of optimal server
selection strategies. The main result of our analysis (Theorem 2) states that any
request is served by the server immediately to its right or its left and that the
optimal selection is based on a threshold rule. We prove a monotonicity prop-
erty of the optimal thresholds and discuss a recursive procedure for comput-
ing them.

2.1 . The Two-Server Problem

For a system with two servers, it has been shown by Calderbank et al. [2] that,
when the requests are uniformly distributed on the circle, it is optimal to serve
them with the nearest server. In this section, we provide an alternative proof of
that result. Without loss of generality, we assume that the circle is of unit length
and we denote by Vn(a), 0 < a s \, the minimum expected cost of serving n
requests when the servers are initially at a distance a on the circle (a is the
length of the shortest of the two arcs defined by the positions of the two serv-
ers). The following theorem holds.

THEOREM 1:

(i) For any n, V,,{a), 0 < a < {, is nonincreasing in a.
(ii) ft is optimal to serve any request with the nearest server.
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PROOF: The proof is by induction on n, the number of requests. Consider Fig-
ure 1, where the servers are located at points A and B (the length of arc AB
being equal to a ) , C is the midpoint of arc AB, and D and E are the diamet-
rically opposite points of A and C, respectively. Part (ii) is trivial for n = 1.
Because of symmetry, we can derive an expression for K, (a) by averaging over
the requests closer to B and multiplying by 2. With x being the distance of the
request from B, we get

Kr(a) = 2 I xdx+ I xdx\

[Jo Jo J
xdx\ =

a2+ (1 - a ) 2

where the two integrals correspond to arcs CB and BE. It is straightforward to
show that the first derivative of the right-hand side (RHS) of the preceding
expression is nonpositive for 0 < a < {, so part (i) is true for n — 1. We now
assume that parts (i) and (ii) are true for n = k and prove them for n = k + 1.

We prove part (ii) first. It suffices to show that it is optimal to serve the
requests that are closer to B than to A with the server at B. Consider a request
in arc CB at a distance x from B. The expected costs incurred by serving the
request with the servers at B and A are x + Vk(a - x) and a - x +Vk(x),
respectively. The result follows from a — x > x and the induction hypothesis for
part (i). For a request in arc BD at a distance x from B, the corresponding costs
are x + Vk{a + x) and a + x + Vk{x), and the result follows from a + x > x
and the induction hypothesis for part (i). Finally, for a request in arc DE at a
distance x from B, the corresponding costs are x + Vk{\ —a—x) and 1 - a -
x + Vk(x). Note that ( l - a ) / 2 > x, because (1 - a)/2 is the length of arc BE.
Then, the result follows from 1 - a - x > x and the induction hypothesis for
part (i).

We proceed now to prove part (i). To get an expression for Vk+l(a) we use
the fact that it is optimal to serve a request with the nearest server and then take

FIGURE 1.
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the average over the requests closer to B than to A twice. With x being the dis-
tance of the request from B, we get

V, ,
*+!/ =

Jo
= fO [x+ Vk(a-x)]dx+ I [x+ Vk{a + x)]dx

Jo Jo

+ [ ° [Jf+K*(l-a-jf)]dr

= a 2 + ( 8 " a ) 2 + ro
-a-x)dx,

(\/2)-a

where the three integrals correspond to arcs CB, BD, and DE, respectively.
Using Leibniz's rule for differentiating integrals, we get

2 da

After some straightforward algebra, we get

Because 0 < a < \, we have 0 < (a/2) < (1 — a)/2 < j , which by the induction
hypothesis for n = k implies that Vk((l - a)/2) < KA.(a/2). Therefore, the
RHS of Eq. (1) is nonpositive and the proof is complete. •

2.2. The /V-Server Problem (/V> 2)

In this section, we investigate optimal strategies for systems with more than two
servers. We start with some notation. We denote by Kn(S|,S2>.. . ,SN) the
minimum expected cost of serving n requests when the servers are initially
located at points S, ,S2, . . . ,S,v on the circle, by V^(SUS2,. .. ,SN) the
expected cost of serving n requests incurred under policy ir when the servers are
initially located at points St,S2, • • • ,SN and by VZ(S,,S2, • • • ,SN;R) the con-
ditional expected value of K^(Si,S2,... ,SN) given that the first request is lo-
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cated at point R. We also denote by CAB, lAB the distances on the circle from
point A to point B in the counterclockwise and clockwise directions, respectively,
and by iAB the length of the shorter arc AB, that is, tAB = min{ IAB,(AB}-

In contrast with two-server systems, even when the requests are uniformly
distributed on the circle, it is not, in general, optimal to serve a request with the
nearest server. We illustrate this point by the following example. Consider the
system of Figure 2. We have three servers, one located at point A and two at
point B and two requests with the first one located at point R, where iAB =
?AB = «. ?AR = /•> and r < (a/2). We will show that for certain values of r it is
optimal to serve the request with one of the servers at B, although the server at
A is closer to the request. Let TT and ir' be the policies that serve the request with
the servers at A and B, respectively, and proceed optimally afterward. We have

V{(A,B,B;R) - V{'(A,B,B;R) = r + VX{R,B,B) - (a - r + V,{A,R,B)).

(2)

Using the fact that for one request it is optimal to use the nearest server, we get

(- /• (a-o/2 /Mi-a+0/2 "I ( a - r ) 2 ( 1 - a - r ) 2

and

r fr/2 f (a-O/2 /«(l-o,)/2 ~|
Vl(A,R,B)=2\ xdx+ xdx+ xdx\

\_JQ JO JO J

4 +
4 4

From Eqs. (2) and (3), we get

V{(A,B,B;R) - V2
r(A,B,B;R) =2r-a+

FIGURE 2.
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Note that lim,_(o/2) V{(A,B,B;R) - V{'(A,B,B;R) = [a(l - a)]/4, which is
a positive expression for any 0 < a < [. This implies that for r sufficiently
close to a/2 it is optimal to serve the request with one of the servers at point B.

We now turn to the general TV-server problem. The following lemma is
needed for the establishment of properties of optimal strategies for systems with
N servers (N>2).

LEMMA 1: For any n, we have

\Vn(SuS2,...,SN)-Vn(S\,S2,...,SN)\stSlSi. (4)

PROOF: Let S and S' be the systems in which the servers are initially located at
points SltS2,... ,SN and S't,S2,... ,SN, respectively. Let ir be the optimal pol-
icy for system S and it be a policy that serves each request in system S' using the
same server as TT. For any sequence of requests, the costs due to policies ir and
i differ only the first time the server at S\ and S[, respectively, serves a
request. In this case, the distance moved by that server may be up to fs,s;
greater in system S' than in system S. Therefore,

Kn(s;,s2,...,s/V)< vz(S'us2 s*)< vn(sus2 sN) + eSlSi, (5)
where the first inequality follows from the fact that TT is not necessarily optimal
for system S'. By interchanging Si and S[ in Eq. (5), we get Lemma 1. •

Properties of an optimal policy are given in the following theorem.

THEOREM 2: Consider a request located at point D, and let S~, S+ be the posi-
tions of the servers closest to D in the counterclockwise and clockwise directions,
respectively {see Figs. 3 and 4). Then, we have the following:

(i) It is optimal to serve the request either with the server at S~ or the
server at S+.
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FIGURE 4.

(ii) There exists a threshold point T such that it is optimal to serve the
request with the server at S~ if 2J-o < (S~T and with the server at S+

otherwise.

PROOF:

(i) Let S| ,S2 , . . . .S/v-2 be the positions of the rest N— 2 servers and n be
the number of requests including the one at D. Let ir and ir' be the pol-
icies that serve the request by moving the servers at S" and 5*, 1 <
k < N - 2, respectively, in the clockwise direction, and proceed opti-
mally afterward. We have

v;\s1;....sN-2ts-,s+;D)-v;(su...,sN-2,s-,s+;D)
= ^sko + K i - i ( 5 i , . . . ,Sk-\,Sk+\y • • • ,S/v_2,5 ,S ,D)

-{n-D+K-i(Sl,...,Sk-l,SktSk+l,...,SN_2,S
+,D)}. (6)

The RHS of Eq. (6) is nonnegative because

yD)\

where the first inequality follows from Lemma 1. By the same argu-
ment, we can show that when we move clockwise, using the server at
S~ results in less cost than using the server at S+. Thus, by serving the
request with the server at S~ moving in the clockwise direction, we
incur less cost than by serving the request with any other server mov-
ing in the clockwise direction. We can similarly show that by serving the
request with the server at S+ moving in the counterclockwise direction
we incur less cost than by serving the request with any other server mov-
ing in the counterclockwise direction. Therefore, it is optimal to serve
the request either with the server at S~ or the server at S+.
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(ii) From the proof of part (i), we know that the servers at S + and S~ are
optimal for requests at points D such that f s -o = ?S-D

 an<3 ?S+D =
ts+D* respectively. Thus, to prove part (ii), we only need to consider
requests at points D such that F 5 - o = (S~D and ?S+D = CS+D-2 F ° r such
points, we first show that the incentive to use the server at S + instead
of the one at S~ increases as the request moves closer to 5 + . Let TT +

and 7r~ be the policies that use the servers at S + and S~, respectively,
and proceed optimally afterward. The incentive to use the server at S +

for a request at D is

C.MS,,... ,SN-2,S-,S*;D) - K*+(S,,... ,SN.2,S~,S+;D)

. (7)

For points Dx, D2, such that D2 is closer to S+ than D, , we will show
tha t / (£> 2 )> / (D, ) . We have

VZ'IS ,SN.2,S-,S+;D2) + V;+(Slt,.. ,SN.2,S-,S+;A)

= n-D2+Vn-i(S ,SN_2,S
+,D2)

+ K ; + ( S 1 , . . . , S / V _ 2 , S - , S + , £ ) 2 ) , (8)

where the inequality follows from Lemma 1 because fs"-D, — ts-Dt =
CJ+D, - ls*D2 = ?DlDy From Eqs. (7) and (8), we get I(D2) > /(Z),).
The proof of part (ii) is now complete when the points S~, S + are as in
Figure 4, that is, fs-s+ = PJ-S+- To complete the proof of part (ii) for
the case where points S~,S+ are as in Figure 3 (ts~s+ = ?s-s+)> ll su^~
fices to show that I(S+) > 0 and I(S~) < 0. From Eq. (7), we have

= e$-s+ + Vn^(S , S A / _ 2 , S + , S + )

~ ' n - \ ( S i , . . . , S / v / _ 2 , S , S )

and

— ?s+s-~" Ki-i ( S i , . . . ,S/v-2,S ,S ).

Then, / ( S + ) > 0 and I(S~) < 0 follow directly from Lemma 1. •

Let points SUS2,... ,SNbe located on the circle as shown in Figure 5: S^+i
is the closest point to Sk in the clockwise direction, k = 1,2,... ,N(we define
SN+i = 5|). For such a configuration, we denote by 7"*'(S|,S2,... ,SN), k =



386 D. G. Pandelis and D. Teneketzis

S2

1,2,... ,A/, the threshold point between Sk and Sk+] when we have n requests
and the servers are located at S , , S 2 , . . . ,SN. Then, 7"*(S|,S2, . . . .S/v) is given
by the point T that satisfies

*_|, 7",

k=

and

(9)

Equation (9) defines a recursive procedure for the computation of thresholds.
The computation of these thresholds is tedious, and we will not pursue it any
further in this paper. Instead, we prove a monotonicity property of the optimal
thresholds.

THEOREM 3:

(i) Suppose that the servers are located at positions 5 | , 5 2 , . . . ,SN, not
necessarily in that order. Let S~,S+ be the positions of the servers
closest to S2 in the counterclockwise and clockwise directions, respec-
tively. Then, for all S, between S2 and S+, we have for any n

ii/' i c C' *? ^ V (^ *?

dS\

where the preceding derivative is defined by

4r K,(5,,52 SN)

SN)] < 0,

= lim
Vn(S[,S2,...,SN)-
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(ii) Consider a request at position D. Let S(,Sr be the positions of the
servers closest to D in the counterclockwise and clockwise directions,
respectively. If it is optimal to serve the request at D with the server at
St when the servers are located at positions S\,S2, •.. ,SN, then it is
optimal to serve it with the same server when any server is moved in the
clockwise direction at a distance small enough that the order of the
servers around the circle is not changed.

PROOF: The proof is by induction on n. Part (i) holds trivially for n = 0. We
assume that it holds for n = k — 1 and prove that both parts (i) and (ii) hold
for n = k.

By successive application of the induction hypothesis for part (i), we can
show that

— [Vk.x(SuS'2,...,S'N)- * i - i (S 1 ,S 2 , . . . ,S A , ) ]s0 , (10)

where S'2 S'N are such that i^s;n > fs,sm> m = 2,...,N.
First, we prove part (ii) for n = k. Let irf and irr be the policies that serve

the request at D with the servers at St and Sr, respectively, and proceed opti-
mally afterward. We have three cases.

Case 1: A server located at some location S,,, =£ Se,Sr moves to location S,'n.
Then,

VZ'(SU • • .,S;,,,Se,Sr,.. .,SN;D) - VZ'(SU.. .,S'm,S(,Sr,.. .,SN;D)

= ?S,D+ Vk-i{Su...,S'm,D,Sr SN)

-its,o+ Kt-i(S, S'm,Se,D,...,SN)}

— ?st D •+• K t - 1 ( 5 1 , . . . , S m , D , S r , . . i ,

- [(srD+ Vk.,(Si,...,Sm,Sf,D,...,SN))

= Vp(Su...,Sm,S(,Sr SN;D)

-VZ'{Sl,...,Sm,S,,Sr,...,SN;D)£0. (11)

The first inequality in Eq. (11) is true because Eq. (10) implies

~ [K,_,(S,,.. .,S,,,,D,Sr,.. . ,SN) - K,_,(S,,... ,Sm,St,D,.. .,SN)} < 0.
dSln

The second inequality in Eq. (11) follows from the fact that it is optimal to use
the server at Se when a server is located at Sm. Therefore, when the server
moves from S,,, to S,',,, it is still optimal to use the server at S(.
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Case 2: The server at S( moves to a position Sf' between Se and D. Then,

K*"(S,,. • • ,S;,Sr, • • • ,SN;D) - K/ '(S, , . . . ,S'(,Sr,.. .,SN;D)

= ?siD+ Vk-i(Sl,...,D,Sr SN)

-l?srD+ Vk^(Su...,S'e,D,..

-HsrD+ ^ - . ( 5 , Se,D,...,SN)\

= Vl'iSt S,,Sr,.. .,SN;D) - VZ'(Si,.. .,St,Sr SN;D) < 0.

(12)

The first inequality in Eq. (12) follows from IS,D - ^s;o = ?sesi a nd Lemma 1.
The second inequality in Eq. (12) is true because it is optimal to use the server
at Sf. Therefore, when the server moves from Sf to S'(, it is still optimal to use
that server.

Case 3: The server at Sr moves to position S/. The proof is identical to that
of Case 2.

We now prove part (i) for n = k. By conditioning on the location of the first
request, we get

^ x , S 2 SN\D)\

E\Vk(Sj,S2 SN;D))-E[Vk(Si,S2 SN;D)Y

We can show by the coupling argument used in the proof of Lemma 1 that
for any D

\Vk(S[,S2 SN;D)- Vk(Sl,S2,...,Sn;D)\ < fSl5..

Then, by the bounded convergence theorem, it is valid to interchange the order
of limit and expectation to get

•£-Vk{SuS2,...,SN)
aS\

= J U m Vk(S[,S2,...,SN;D)-Vk(S ,S2 S»;D))

J
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Therefore, it suffices to show that for any D

-fL[Vk(SuS'2,...,SN;D)~ Vk(SuS2 SN;D)] sO.

We adopt the convention that if the optimal policy is indifferent between
the request's two adjacent servers, then it chooses the server counterclockwise
of the request. This convention implies that the optimal policy remains the same
when the position of the server at St is changed clockwise to a position S[ suf-
ficiently close to Si. This is because when the optimal policy for S, is indiffer-
ent between the two adjacent servers, the server counterclockwise of the request
is optimal by convention, and it is also optimal for S[ by part (ii). We denote
by S, S' the position of the server that the optimal policy uses to serve the request
at D for (SUS2, ...,SN) and (SUS2, • • • ,SN), respectively. There are several
cases to consider.

Case 1: S = S' = SX.

-^-[^(S,,S; SN;D)- Vk(Si,S2 SN;D))

= -£- [?S,D+ Vk.,(D,S2,...,SN) - fs,D- Vk-i(D,S2,...,SN)] = 0.

Case 2: S = Su S'= S2.
If D is such that ?s,o = ^S,D (see F'g- 6), then by part (ii) the server at

S| would also be optimal for (SitS{ SN). Therefore, PS | o = f J | D . We have

^ - [ K , ( S , , 5 ^ SN;D)- Vk(SuS2 SN;D)]
aS\

= a m

+ Kt_,(Slf A ...,SN)-e5lD- n - . ( A 5 2 5A,)]

._, (SJ, A . . . ,SN) - ts\D- Vk-i(SuD, ...,SN) + tSlD

Vk-l{S{,D,...,SN)-Vk.1(Sl,D SN)-tSl5{ •
- ] l m !_L < 0,

'•.?,.v,'-0 *S,S|

where the inequality follows from Lemma 1.

Case 3: S = SitS'* SUS'2.
The proof is similar to that of Case 2.

Case 4: S = S2, S' = St.
If D is such that fs, D = ^S,D (see Fig- 7), then by part (ii) the server at St

would also be optimal for (SUS2,.. .,SN). Therefore, PSlD = f^o- W e n a v e
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FIGURE 6.

•£rlVk(SuS2;...,SN;D)- Vk(.SuS2 SN;D)]

= - J - [ ? S , D + Vk-i(D,Si,...,SN)-eSlD- VkTl(SuD,...,SN)]

Isjp- Vk-\(S\,D SN)-1SID+ Kt.|(S|,A-,Sw)

Vk-i(SltD SN)- Vk_l(S'l,D,...,SN)-e5l5.

= lim

= lim

where the inequality follows from Lemma 1.

FIGURE 7.
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Case 5: S = S2, S' = S2.

•£rlVASuSi SN;D)- Vk(SuS2,...,SN;D)]

= — [tsiD + Kt-i (S,,A.- • • ,SN) - (SID ~ Vk-i (SUD SN)]= 0.

Case 6: S = S2, S' *• SUS{.
D is between S~ and S+ because the server at S2 is optimal for (Si, S 2 , . . . ,

SN). If D is between S2 and S+ (see Fig. 8), then by part (ii) the server at S{
would be optimal for (SitS2,... ,SN). Therefore, D is between S~ and S2 and
the server at S~ is optimal for (S{,Si,... ,SN). We have

^- [Vk(SuS2,... ,SN;D) - Vk(SitS2,... ,SN;D)]
aSi

= ^Us-D+Vk-i(Sl,D,Si SN)-eS2o-Vk-i(SuS-,D SN)]

so,
where the inequality follows from Eq. (10).

Case 7: S * SUS2, S' = S,.
The proof is similar to that of Case 4.

Case 8: S*St,S2, S'= S{.
D is between S~ and S+ because the server at S2 is optimal for (SUS2,

... ,S/v). If D is between S~ and S2 (see Fig. 8), then by part (ii) the server at
S2 would be optimal for (SltS2,... ,SN). Therefore, D is between S2 and S+

and the server at S+ is optimal for (SltS2,... ,SN). We have
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- ^ [Vk(SltSi,... ,SN;D) - Vk(SuS2 SN;D)}

^ ts+o-V^iSuSi.D SN)]

SO,

where the inequality follows from Eq. (10).

Case 9: S±SU S2, S' * S,,S{.
If D is between S~,S2 or S2,S

+, the servers at S~ and S+ are, respectively,
optimal for both (SUS2,.. -,SN) and (SUS{,... ,SN). Then the result follows
directly from the induction hypothesis. If D is between S2,S2, the server at S+ is
optimal for (Si,S2,... ,5/v) and the server at S~ is optimal for (S[,S2,... ,SN).
We have

•£-[Vk(Sl,Si,...,SN;D)-Vk(Sl,S2,...,SN;D)]

= -£-[ts-D+Vk-iiSi.D,Si,S+ SN)

where the inequality follows from Eq. (10).

Consider now the case when D is not between S~ and S+. If either the
server at Sf or the server at Sr is optimal for both (S | , 5 2 , . . . ,SN) and (Si,Sj,
. . . ,5^), the result follows directly from the induction hypothesis. The case
when the server at Sf is optimal for (St, S2,..., SN) and the server at Sr is opti-
mal for (Si,S2,.. .,SN) contradicts part (ii). Therefore, the only remaining
possibility is the server at Sr to be optimal for (S[,S2,.. .,SN) and the server
at 5,. to be optimal for (S,, S2,..., SN). We have

-£-[Vk(Sl,Si,...,SN;D)-Vk{Sl,S2,...,SN;D)]

- Vk.l(SuSt,D,S2,...,SN)] <0,

where the inequality follows from Eq. (10). •

Remark: Consider the problem where the stations are located along an inter-
val. The problem for the interval can be formulated as a special case of that for
the circle as follows. Assume that the TV servers are initially located within a cer-
tain semicircle and the probability distribution of the requests is such that they
always occur on that semicircle. It is then clear that it is not optimal for any
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server to move outside the semicircle. Therefore, the results obtained in this sec-
tion for the circle apply to the interval problem as well.

3. GENERALIZATIONS

3.1. Sequencing on a Nonuniform Circle

We consider the problem where it is more expensive to traverse some portions
of the circumference of the circle than others. With each location R on the cir-
cle, we associate a cost function p(R), so that the cost of moving a server from
point A to point B in the clockwise and counterclockwise directions is

P(R)dR, and cjB= f p(R)dR,

respectively, where £f denotes the line integral from A to B in the clockwise
direction.

A cost defined by the preceding expressions can be interpreted as a gener-
alized distance between two points on the circle. The results of Section 2 apply
in this case as well with the notion of the actual distance replaced with that of
the generalized distance. Properties of the optimal policy are given in the fol-
lowing theorem.

THEOREM 4: Consider a request located at point D, and let S~,S+ be the posi-
tions of the servers closest to D in the counterclockwise and clockwise directions,
respectively. Then, we have the following:

(i) It is optimal to serve the request either with the server at S~ or the
server at S+.

(ii) There exists a threshold point T such that it is optimal to serve the
request with the server at S~ ifcs-o ^ CS-T and with the server at S+

otherwise.
(in) If it is optimal to serve the request with the server at S~ when the

servers are located at positions Si,S2,- • • ,SN, then it is optimal to
serve it with the same server when any server is moved in the clockwise
direction at a distance small enough that the order around the circle is
not changed.

PROOF: The proof follows identical steps to the proofs of Theorems 2 and 3.

3.2. Nonuniform Server Sequencing

We consider the problem where some servers are more expensive to move
than others. We assume that we have N servers Si,S2>... ,SN and a cost c,,
/ = 1,2,..., N, associated with server S,. The cost of serving a request with
server S,, / = 1,2,..., N, is equal to c,£, where f is the distance traveled by S,-.
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It is easy to show by example that it is not necessarily optimal to serve a request
with one of its two adjacent servers. This fact considerably complicates the
problem of determining the optimal server for each request. One approach to
solving the problem is by pairwise comparisons of servers. Using this approach,
we get the following property of the optimal policy.

THEOREM 5: Consider two servers at positions S, and S2 and a request at point
D. Let S{ and S2 be the diametrically opposite points ofSx and S2, respectively.
Then, we have the following:

(i) There exists a threshold point T between S\ and S2 (see Fig. 9) such
that it is optimal to serve the request with the server at Sx instead of
the one at S2 if D is between S\ and T and vice versa if it is between T
and S2.

(ii) There exists a threshold point T' between S[ and S2 {see Fig. 9) such
that it is optimal to serve the request with the server at Sx instead of the
one at S2 if D is between S{ and 7" and vice versa if it is between T'

PROOF: The proof is along the lines of that of part (ii) of Theorem 2. •

We have been unable to obtain any results for requests located between
S|,S2 or S2,S{. For this case, we have the following conjecture.

Conjecture: Assume that the server at 5] is more expensive to move than the
server at S2. Then, we have the following:

(i) It is optimal to serve a request between S2 and S{ with the server at S2

instead of the server at S,.

(ii) There exists a threshold T" in the semicircle 5| S2S{ such that it is opti-
mal to serve the request with the server at S{ instead of the one at S2 if
D is between Sx and T" and vice versa if D is between T" and S[.

S'2
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Remark: Part (ii) of the conjecture does not contradict part (ii) of Theorem 5
for the following reason. If T" is between S{ and S2) then T coincides with S2.
On the other hand, if T" is between S2 and S{, then T" coincides with 7".

3.3. Sequencing on a Sphere

We consider the problem where the service stations are located on a sphere. Cal-
derbank et al. [2] showed for two-server systems that when the requests are uni-
formly distributed on the sphere it is optimal to serve them with the nearest
server. In this section, we provide a different proof of that result. We begin by
noting that the shortest path between two points on a sphere lies on the great
circle defined by those two points. We denote by tAB the length of the shortest
path on the sphere from point A to point B. We also define Vn{-) and ^'(-) as
in the beginning of Section 2.2. The following lemma holds.

LEMMA 2: For any n, we have

\Vn(SuS2)-Vn(S\,S2)\<:eSlsi.

PROOF: Let IT be the optimal policy for (SUS2) when we have n requests to
process. We construct policy •? for (S[,S2) as follows: TZ is identical to tr except
the first time ir serves a request with the server at Si. Then, i serves the request
by moving the server at S\ to S, and then to the location of the request.
Therefore,

. Vn(Sl,S2) s K*(S;,S2) = Kn(S,,S2) + fSlS|, (13)

where the inequality follows from the fact that T is not necessarily optimal
for (S[,S2). By interchanging S, and S\ in Eq. (13), we get Lemma 2. •

Lemma 2 can be used to prove the basic result of Section 3.3 that is given
by the following theorem.

THEOREM 6: For two-server systems and requests uniformly distributed on the
sphere, it is optimal to serve any request with the nearest server.

PROOF: Let Si, S2 be the locations of the two servers and D the location of the
request. Assume that (SID < fs,o- Then, there exists a point on arc Si D such
that lSiD = 1S2D- Let ir, and ir2 be the policies that serve the request at D with
the server at Si and S2, respectively, and proceed optimally afterward. For any
n, we have

K;'(S,,S2;£>) = lSlD+ Kn_,(S2,£>) = tSlD+ Vn_x(S'2,D), (14)

Vp(SuS2;D) = eS2D+ Vn.l(Sl,D) = lSiD+ Kn_,(S,,Z)), (15)

where the second equality in Eq. (14) follows from the fact that, because the
requests are uniformly distributed on the sphere, the expected cost depends only
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on the distance between the two servers and not their actual positions. From
Eqs. (14) and (15), we get

VZ<(St,S2;D) - Vp(SltS2;D) = tSlSi+ Vn_x{S'2,D) - K,.,(S1(fl)s0,

where the inequality follows from Lemma 2. Therefore, it is optimal to serve
the request with the nearest server. •

4. CONCLUSIONS

The main results of the paper present qualitative properties of optimal multi-
server sequencing strategies on the circle and the interval. For systems with iden-
tical servers, these strategies utilize the server immediately to the right or
immediately to the left of a request and are described by thresholds that depend
on the location of all servers, the number of the remaining requests, and their
distribution. The optimal thresholds possess a monotonicity property; their
computation remains a challenging and formidable task. We believe that our
analysis does provide a useful insight into the problem of designing sequencing
algorithms for the classes of problems mentioned in the introduction.
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Notes

1. In Figure 4, the set of such points are the arc S~T+ traversed in the clockwise direction,
and the arc S*T~ traversed in the counterclockwise direction, where T~ and T* are the diamet-
rically opposite points of S~ and S+, respectively. Such a situation does not arise in Figure 3.

2. In Figure 4, the set of such points is the arc T+T~ traversed in the clockwise direction. In
Figure 3, the set of such points is the arc S~S+ traversed in the clockwise direction.
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