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Abstract A discrete-time decentralized routing problem in a service system
consisting of two service stations and two controllers is investigated. Each
controller is affiliated with one station. Each station has an infinite size buffer.
Exogenous customer arrivals at each station occur with rate λ. Service times
at each station have rate µ. At any time, a controller can route one of the
customers waiting in its own station to the other station. Each controller
knows perfectly the queue length in its own station and observes the exogenous
arrivals to its own station as well as the arrivals of customers sent from the
other station. At the beginning, each controller has a probability mass function
(PMF) on the number of customers in the other station. These PMFs are
common knowledge between the two controllers. At each time a holding cost
is incurred at each station due to the customers waiting at that station. The
objective is to determine routing policies for the two controllers that minimize
either the total expected holding cost over a finite horizon or the average
cost per unit time over an infinite horizon. In this problem there is implicit
communication between the two controllers; whenever a controller decides to
send or not to send a customer from its own station to the other station it
communicates information about its queue length to the other station. This
implicit communication through control actions is referred to as signaling in
decentralized control. Signaling results in complex communication and decision
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problems. In spite of the complexity of signaling involved, it is shown that an
optimal signaling strategy is described by a threshold policy which depends
on the common information between the two controllers; this threshold policy
is explicitly determined.

Keywords Decentralized System · Non-classical Information Structure ·
Signaling · Queueing Networks · Common Information

1 Introduction

Routing problems to parallel queues arise in many modern technological sys-
tems such as communication, transportation and sensor networks. The major-
ity of the literature on optimal routing in parallel queues addresses situations
where the information is centralized, either perfect (see Akgun et al (2012);
Davis (1977); Ephremides et al (1980); Foley and McDonald (2001); Hajek
(1984); Hordijk and Koole (1990, 1992); Lin and Kumar (1984); Menich and
Serfozo (1991); Weber (1978); Weber and Stidham Jr (1987); Whitt (1986);
Winston (1977) and references therein) or imperfect (see Beutler and Teneket-
zis (1989); Kuri and Kumar (1995) and references therein). Very few results
on optimal routing to parallel queues under decentralized information are cur-
rently available. The authors of Cogill et al (2006) present a heuristic ap-
proach to decentralized routing in parallel queues. In (Abdollahi and Kho-
rasani (2008); Manfredi (2014); Reddy et al (2012); Si et al (2013); Ying and
Shakkottai (2011) and references therein), decentralized routing policies that
stablize queueing networks are considered. The work in Pandelis and Teneket-
zis (1996) presents an optimal policy to a routing problem with a one-unit
delay sharing information structure.

In this paper we investigate a decentralized routing problem in discrete
time. We consider a system consisting of two service stations/queues, called
Q1 and Q2 and two controllers, called C1 and C2. Controller C1 (resp. C2) is
affiliated with service station Q1 (resp. Q2). Each station has an infinite size
buffer. The processes describing exogenous customer arrivals at each station
are independent Bernoulli with parameter (λ). The random variables describ-
ing the service times at each station are independent geometric with parameter
(µ). At any time each controller can route one of the customers waiting in its
own queue to the other station. Each controller knows perfectly the queue
length in its own station, and observes the exogenous arrivals in its own sta-
tion as well as the arrivals of customers sent from the other station. At the
beginning, controller C1 (resp. C2) has a probability mass function (PMF) on
the number of customers in station Q2 (resp. Q1). These PMFs are common
knowledge between the controllers. At each time a holding cost is incurred at
each station due to the customers waiting at that station. The objective is to
determine decentralized routing policies for the two controllers that minimize
either the total expected holding cost over a finite horizon or the average cost
per unit time over an infinite horizon. Preliminary versions of this paper ap-
peared in Ouyang and Teneketzis (2013) (for the finite horizon problem) and



Signaling for Decentralized Routing in a Queueing Network 3

Ouyang and Teneketzis (2014) (for the infinite horizon average cost per unit
time problem).

In the above described routing problem, each controller has different infor-
mation. Furthermore, the control actions/routing decisions of one controller
affect the information of the other controller. Thus, the information struc-
ture of this decentralized routing problem is non-classical with control sharing
(see Mahajan (2013) for non-classical control sharing information structures).
Non-classical information structures result in challenging signaling problems
(see Ho (1980)). Signaling occurs through the routing decisions of the con-
trollers. Signaling is, in essence, a real-time encoding/communication problem
within the context of a decision making problem. By sending or not sending a
customer from Q1 (resp. Q2) to Q2 (resp. Q1) controller C1 (resp. C2) com-
municates at each time instant a compressed version of its queue length to
C2 (resp. C1). For example, by sending a customer from Q1 to Q2 at time t,
C1 may signal to C2 that Q1’s queue length is above a pre-specified threshold
lt. This information allows C2 to have a better estimate of Q1’s queue length
and, therefore, make better routing decisions about the customers in its own
queue; the same arguments hold for the signals send (through routing deci-
sions) from C2 to C1. Thus, signaling through routing decisions has a triple
function: communication, estimation and control.

Within the context of the problems described above, there is enormous
number of signaling possibilities. For example, there is an arbitrarily large
number of choices of the sequences of pre-specified thresholds l1, l2, . . . , lt, . . .
and these choices are only a small subset of all the possible sequences of binary
partitions of the set of non-negative integers that describe all choices available
to C1 and C2. All these possibilities result in highly non-trivial decision mak-
ing problems. It is the presence of signaling that distinguishes the problem
formulated in this paper from all other routing problems in parallel queues
investigated so far.

Some basic questions associated with the analysis of this problem are:

What is an information state (sufficient statistic) for each controller? How
is signaling incorporated in the evolution/update of the information state? Is
there an explicit description of an optimal signaling strategy? We will answer
these questions in Section 3-6 and will discuss them further in Section 7.

Contribution of the paper

The signaling feature of our problem distinguishes it from all previous rout-
ing problems in parallel queues. In spite of the complexity of signaling, we
show that an optimal decentralized strategy is described by a single thresh-
old routing policy where the threshold depends on the common information
between the two controllers. We explicitly determine this threshold via simple
computations.
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Station 1

Station 2

Fig. 1 The Queueing System

Organization

The rest of the paper is organized as follows. In Section 2 we present the model
for the queueing system and formulate the finite horizon and infinite horizon
decentralized routing problems. In Section 3 we present structural results for
optimal policies. In Section 4 we present a specific decentralized routing policy,
which we call ĝ, and state some features associated with its performance. In
Section 5, we show that when the initial queue lengths in Q1 and Q2 are equal,
ĝ is an optimal policy for the finite horizon decentralized routing problem. In
Section 6, we show that ĝ is an optimal decentralized routing policy for the
infinite horizon average cost per unit time problem. We conclude in Section 7.

Notation

Random variables (r.v.s) are denoted by upper case letters, their realization
by the corresponding lower case letter. In general, subscripts are used as time
index while superscripts are used to index service stations. For time indices
t1 ≤ t2, Xt1:t2 is the short hand notation for (Xt1 , Xt1+1, ..., Xt2). For a policy
g, we use Xg to denote that the r.v. Xg depends on the choice of policy g.
We use vectors in RZ+ to denote PMFs (Probability Mass Functions,) where
Z+ denotes the set of non-negative integers. We also use a constant in Z+ to
denote the corner PMF that represents a constant r.v.. i.e. a constant c ∈ Z+

denotes the PMF whose entries are all zero except the cth.

2 System Model and Problem Formulation

System Model

The queueing/service system shown in Figure 1, operates in discrete time.
The system consists of two service stations/queues, Q1 and Q2 with infinite
size buffers. Controllers C1 and C2 are affiliated with queues Q1 and Q2,
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respectively. Let Xi
t denote the number of customers waiting, or in service, in

Qi, i = 1, 2, at the beginning of time t. Exogenous customer arrivals at Qi, i =
1, 2, occur according to a Bernoulli process {Ai

t, t ∈ Z+} with parameter λ.
Service times of customers at Qi, i = 1, 2 are described by geometric random
variables with parameter µ. We define a Bernoulli process {Di

t, t ∈ Z+} with
parameter µ. Then {Di

t1{Xi
t 6=0}, t ∈ Z+} describes the customer departure

process from Qi, i = 1, 2. At any time t, a controller can route one of the
customers in its own queue to the other queue. Let U i

t denote the routing
decision of controller Ci at t (i = 1, 2); if U i

t = 1 (resp. 0) one customer (resp.
no customer) is routed from Qi to Qj (j 6= i). At any time t, each controller
Ci, i = 1, 2, knows perfectly the number of customers Xi

0:t, i = 1, 2, in its own
queue; furthermore, it observes perfectly the arrival stream Ai

0:t to its own
queue, and the arrivals due to customers routed to its queue from the other
service station up to time t − 1, i.e. U j

0:t−1, j 6= i. The order of arrivals Ai
t,

departures Di
t and controller decisions U i

t concerning the routing of customers
from one queue to the other is shown in Figure 2. The dynamic evolution of
the number of customers Xi

t , i = 1, 2 is described by

X1
t+1 = X

1

t − U1
t + U2

t , (1)

X2
t+1 = X

2

t − U2
t + U1

t , (2)

where for i = 1, 2,

X
i

t =
(
Xi

t −Di
t

)+
+Ai

t, (3)

and (x)+ := max(0, x). We assume that the initial queue lengths X1
0 , X

2
0 and

the processes {A1
t , t ∈ Z+}, {A2

t , t ∈ Z+}, {D1
t , t ∈ Z+}, {D2

t , t ∈ Z+} are
mutually independent and their distributions are known by both controllers
C1 and C2. Let π1

0 and π2
0 be the PMFs on the initial queue lengths X1

0 , X
2
0 , re-

spectively. At the beginning of time t = 0, C1 (resp. C2) knows X1
0 (resp. X2

0 ).
Furthermore C1’s (resp. C2’s) knowledge of the queue length X2

0 (resp. X1
0 ) at

the other station is described by the PMF π2
0 (resp. π1

0). The information of
controller Ci, i = 1, 2, at the moment it makes the decision U i

t , t = 0, 1, . . . , is

Iit :=
{
Xi

0:t, A
i
0:t, X

i

0:t, U
1
0:t−1, U

2
0:t−1, π

1
0 , π

2
0

}
, i = 1, 2. (4)

The controllers’ routing decisions/control actions U i
t are generated according

to

U i
t = git

(
Iit
)
, i = 1, 2, t ∈ Z+, (5)

where

git :(Z+)t+1 × {0, 1}t+1 × (Z+)t+1 × {0, 1}t×
× {0, 1}t × RZ+ × RZ+ 7→ U i

t . (6)
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Fig. 2 The order of variables

The control action space U i
t at time t depends on X

i

t. Specifically

U i
t =

{
{0} when X

i

t = 0,
{0, 1} otherwise.

(7)

Define Gd to be the set of feasible decentralized routing policies; that is

Gd = {(g1, g2) : gi = (gi0, g
i
1, . . . , g

i
t, . . . ), i = 1, 2

and git is of form given by (5)-(6)}. (8)

We study the operation of the system defined in this section, first over a
finite horizon, then over an infinite horizon.

2.1 The finite horizon problem

For the problem with a finite horizon T , we assume the holding cost incurred by
the customers present in Qi at time t = 0, 1, . . . , T −1 is ct(X

i
t), i = 1, 2, where

ct(·) is a convex and increasing function. Then, the objective is to determine
decentralized routing policies g ∈ Gd so as to minimize

Jg
T (π1

0 , π
2
0) := E

[
T−1∑
t=0

(
ct

(
X1,g

t

)
+ ct

(
X2,g

t

))∣∣∣∣∣π1
0 , π

2
0

]
1 (9)

for any PMFs π1
0 , π

2
0 on the initial queue lengths.

2.2 The infinite horizon average cost per unit time problem

For the infinite horizon average cost per unit time problem, we assume the
holding cost incurred by the customers present in Qi at each time is a con-
vex and increasing function ct(·) := c(·), i = 1, 2. Then, the objective is to

1 The expectation in all equations appearing in this paper is with respect to the probability
measure induced by the policy g ∈ Gd.
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determine decentralized routing policies g = (g1, g2) ∈ Gd so as to minimize

Jg(π1
0 , π

2
0)

:= lim sup
T→∞

1

T
Jg
T (π1

0 , π
2
0)

= lim sup
T→∞

1

T
E

[
T−1∑
t=0

(
c
(
X1,g

t

)
+ c

(
X2,g

t

))∣∣∣∣∣π1
0 , π

2
0

]
(10)

for any PMFs π1
0 , π

2
0 on the initial queue lengths.

3 Qualitative Properties of Optimal Policies

In this section we present a qualitative property of an optimal routing policy
for both the finite horizon and the infinite horizon problem. For that matter
we first introduce the following notation.

We denote by Π1
t and Π2

t the PMFs on X1
t and X2

t , respectively, condi-
tional on all previous decisions {U1

0:t−1, U
2
0:t−1}. Πi

t , i = 1, 2 is defined by

Πi
t(x) := P

(
Xi

t = x|U1
0:t−1, U

2
0:t−1

)
, x ∈ Z+. (11)

Similarly, we define the conditional PMFs Π
1

t , Π
2

t on X
1

t and X
2

t , respectively,
as follows.

Π
i

t(x) := P
(
X

i

t = x|U1
0:t−1, U

2
0:t−1

)
, i = 1, 2, x ∈ Z+. (12)

Note that for any policy g ∈ Gd all the above defined PMFs are functions of
{U1

0:t−1, U
2
0:t−1}. Since both controllers C1 and C2 know {U1

0:t−1, U
2
0:t−1} at

time t, the PMFs defined by (11)-(12) are common knowledge Aumann (1976)
between the controllers.

We take X
i

t, i = 1, 2, to be station Qi’s state at time t. Combining (1)-(3)
we obtain, for i = 1, 2,

X
i

t+1 =
(
X

i

t − U i
t + U j

t −Di
t+1

)+
+Ai

t+1

:=f it

(
X

i

t, U
i
t , U

j
t ,W

i
t

)
, (13)

where the random variables W i
t := (Ai

t+1, D
i
t+1), i = 1, 2, t = 0, 1, . . . are

mutually independent.
The holding cost at time t, t = 0, 1, . . . can be written as

ρt

(
X

1

t , X
2

t , U
1
t , U

2
t

)
:=ct+1

(
X

1

t − U1
t + U2

t

)
+ ct+1

(
X

2

t − U2
t + U1

t

)
=ct+1

(
X1

t+1

)
+ ct+1

(
X2

t+1

)
. (14)
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Note that for any time horizon T the total expected holding cost due to (14)
is equivalent to the total expected holding cost defined by (9) since for any
policy g ∈ Gd

Jg
T (π1

0 , π
2
0)

=E

[
T−1∑
t=0

(
ct

(
X1,g

t

)
+ ct

(
X2,g

t

))]

=E

[
T−2∑
t=0

(
ct+1

(
X1,g

t+1

)
+ ct+1

(
X2,g

t+1

))]
+ E

[
c0
(
X1

0

)
+ c0

(
X2

0

)]
=E

[
T−2∑
t=0

ρt

(
X

1,g

t , X
2,g

t , U1
t , U

2
t

)]
+ E

[
c0
(
X1

0

)
+ c0

(
X2

0

)]
. (15)

With the above notation and definition of system state and instantaneous
holding cost, we have a dynamic team problem with non-classical information
structure where the common information between the two controllers at any
time t is their decisions/control actions up to time t − 1. This information
structure is the control sharing information structure investigated in Mahajan
(2013). Furthermore, the independent assumption we made about the exoge-
nous arrivals and the service processes is the same as the assumptions made
about the noise variables in Mahajan (2013). Therefore, the following Proper-
ties 1-3 hold by the results in Mahajan (2013).

Property 1 For each t, and any given g1s(.), g2s(.), s ≤ t, we have

P
(
I1t = i1t , I

2
t = i2t |U1

0:t−1, U
2
0:t−1

)
=P

(
I1t = i1t |U1

0:t−1, U
2
0:t−1

)
P
(
I2t = i2t |U1

0:t−1, U
2
0:t−1

)
. (16)

Proof Same as that of Proposition 2 in Mahajan (2013).

Property 1 says that the two subsystems are independent conditional on past
control actions.

Because of Property 1 and (13), each controller Ci, i = 1, 2 can generate

its decision at any time t by using only its current local state X
i

t and past
decisions of both controllers. This assertion is established by the following
property.

Property 2 For the routing problems formulated in Section 2, without loss of
optimality we can restrict attention to routing policies of the form

U1
t = g1t

(
X

1

t , U
1
0:t−1, U

2
0:t−1

)
, (17)

U2
t = g2t

(
X

2

t , U
1
0:t−1, U

2
0:t−1

)
. (18)

Proof Same as that of Proposition 1 in Mahajan (2013).
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Using the common information approach in Nayyar et al (2013), we can refine
the result of Property 2 as follows.

Property 3 For the two routing problems formulated in Section 2, without
loss of optimality we can restrict attention to routing policies of the form

U1
t = g1t

(
X

1

t , Π
1

t , Π
2

t

)
, (19)

U2
t = g2t

(
X

1

t , Π
1

t , Π
2

t

)
. (20)

Proof Same as that of Theorem 1 in Mahajan (2013).

The result of Property 3 will play a central role in the analysis of the decen-
tralized routing problems formulated in this paper.

4 The Decentralized Policy ĝ and Preliminary results

In this section, we specify a decentralized policy ĝ and identify an information
state for each controller. Furthermore, we develop some preliminary results for
both the finite horizon problem and the infinite horizon problem formulated
in Section 2.

To specify policy ĝ, we first define the upper bound and lower bound on
the support of the PMF, Πi

t , i = 1, 2 as

UBi
t := max(x : Πi

t(x) 6= 0), (21)

LBi
t := min(x : Πi

t(x) 6= 0). (22)

UBt := max(UB1
t , UB

2
t ), (23)

LBt := min(LB1
t , LB

2
t ). (24)

Similarly, we define the bounds on the support of the PMF, Π
i

t, i = 1, 2 as

UB
i

t := max(x : Π
i

t(x) 6= 0), (25)

LB
i

t := min(x : Π
i

t(x) 6= 0), (26)

UBt := max(UB
1

t , UB
2

t ), (27)

LBt := min(UB
1

t , UB
2

t ). (28)

Using the above bounds, we specify the policy ĝ := (ĝ1, ĝ2) as follows:

U i
t = ĝit

(
X

i

t, UBt, LBt

)
=

{
1, when X

i

t ≥ THt,

0, when X
i

t < THt,
(29)

where

THt =
1

2

(
UBt + LBt

)
. (30)
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Under ĝ, each controller routes a customer to the other queue when X
i

t, i =
1, 2, the queue length of its own station at the time of decision, is greater than
or equal to the threshold given by (30).

Note that this decentralized routing policy ĝ is indeed of the form asserted
by Property 3 since the upper and lower bounds UBt and LBt are both func-

tions of the PMFs Π
1

t , Π
2

t . Therefore, the threshold THt, as a function of

Π
1

t , Π
2

t , is common knowledge between the controllers. Using the common
information, each controller can compute the threshold according to (30) in-
dividually, and ĝ can be implemented in a decentralized manner.

Under policy ĝ, the evolution of the bounds defined by (23)-(28) are deter-
mined by the following lemma.

Lemma 1 At any time t we have

UB
ĝ

t = UBĝ
t + 1, LB

ĝ

t =
(
LBĝ

t − 1
)+

. (31)

When (U1,ĝ
t , U2,ĝ

t ) = (0, 0)

UBĝ
t+1 = dTHte − 1, LBĝ

t+1 = LB
ĝ

t (32)

When (U1,ĝ
t , U2,ĝ

t ) = (1, 1)

UBĝ
t+1 = UB

ĝ

t , LBĝ
t+1 = dTHte (33)

When (U i,ĝ
t , U j,ĝ

t ) = (1, 0), i = 1, 2, j 6= i

UBĝ
t+1 = max

(
UB

i,ĝ

t − 1, dTHte
)

(34)

LBĝ
t+1 = min

(
LB

j,ĝ

t + 1, dTHte − 1
)

(35)

where bxc = maximum integer ≤ x, and dxe = minimum integer ≥ x.

�

Proof See Appendix A

Corollary 1 below follows directly form (31)-(35) in Lemma 1.

Corollary 1 Under policy ĝ,

UBĝ
t+1 − LB

ĝ
t+1

≤

{⌈
1
2

(
UBĝ

t − LB
ĝ
t

)⌉
when (U1,ĝ

t , U2,ĝ
t ) = (0, 0),

UBĝ
t − LB

ĝ
t otherwise.

(36)

Moreover, if UBĝ
t0 − LB

ĝ
t0 ≤ 1 for some time t0, then(
UBĝ

t − LB
ĝ
t

)
≤ 1 for all t ≥ t0. (37)
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�

Corollary 1 shows that the difference between the highest possible number of
customers in Q1 or Q2 and the lowest possible number of customers in Q1 or
Q2 is non-increasing under the policy ĝ. Furthermore, the difference is reduced
by half when there is no customer routed from one queue to another one.

5 The finite horizon problem

In this section, we consider the finite horizon problem formulated in Section
2.1, under the additional condition X1

0 = X2
0 = x0, where x0 is arbitrary but

fixed, and is common knowledge between C1 and C2.

5.1 Analysis

The main result of this section asserts that the policy ĝ defined in Section 4
is optimal.

Theorem 1 When X1
0 = X2

0 = x0 and x0 is common knowledge between
C1 and C2, the policy ĝ given by (29)-(30) is optimal for the finite horizon
decentralized routing problem formulated in Section 2.1, that is

J ĝ
T (x0, x0) ≤ Jg

T (x0, x0) (38)

for any feasible policy g ∈ Gd and any initial queue length x0.

�

Before proving Theorem 1, we note that when X1
0 = X2

0 = x0 Corollary 1
implies that

UBĝ
t − LB

ĝ
t ≤ 1 for all t ≥ 0. (39)

Equation (39) says that the difference between the highest possible number
of customers in Q1 or Q2 and the lowest possible number of customers in Q1

or Q2 is less than or equal to 1 under policy ĝ. This property means that

ĝ controls the length of the joint support of the PMFs Π
1

t , Π
2

t and balances
the lengths of the two queues. A direct consequence of (39) is the following
corollary.

Corollary 2 At any time t, we have⌊
1

2
(X1,ĝ

t +X2,ĝ
t )

⌋
= min

(
X1,ĝ

t , X2,ĝ
t

)
, (40)⌈

1

2
(X1,ĝ

t +X2,ĝ
t )

⌉
= max

(
X1,ĝ

t , X2,ĝ
t

)
. (41)

�
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As pointed out above, the policy ĝ balances the lengths of the two queues. This
balancing property suggests that the throughput of the system due to ĝ is high
and the total number of customers in the system is low. This is established by
the following lemma.

Lemma 2 Under the assumption X1
0 = X2

0 = x0, where x0 is common knowl-
edge, for any policy g of the form described by (19)-(20), we have

X1,ĝ
t +X2,ĝ

t ≤st X
1,g
t +X2,g

t , (42)

where Z1 ≤st Z2 means that the r.v. Z1 is stochastically smaller than the r.v.
Z2, that is, for any a ∈ R, P(Z1 ≥ a) ≤ P(Z2 ≥ a) (see Marshall et al
(2010)).

�

Proof See Appendix B

Using Lemma 2, we now prove Theorem 1.

Proof (Proof of Theorem 1) For any feasible policy g, since the functions ct, t =
0, 1, ..., T , are convex, we have at any time t

E
[
ct

(
X1,g

t

)
+ ct

(
X2,g

t

)]
≥E

[
ct

(⌊
1

2
(X1,g

t +X2,g
t )

⌋)
+ ct

(⌈
1

2
(X1,g

t +X2,g
t )

⌉)]
. (43)

Furthermore, using Lemma 2 and the fact that ct(·) is increasing, we get

E

[
ct

(⌊
1

2
(X1,g

t +X2,g
t )

⌋)
+ ct

(⌈
1

2
(X1,g

t +X2,g
t )

⌉)]
≥E

[
ct

(⌊
1

2
(X1,ĝ

t +X2,ĝ
t )

⌋)
+ ct

(⌈
1

2
(X1,ĝ

t +X2,ĝ
t )

⌉)]
=E

[
ct

(
min(X1,ĝ

t , X2,ĝ
t )
)

+ ct

(
max(X1,ĝ

t , X2,ĝ
t )
)]

=E
[
ct

(
X1,ĝ

t

)
+ ct

(
X2,ĝ

t

)]
. (44)

The inequality in (44) is true because X1,g
t + X2,g

t ≤st X
1,ĝ
t + X2,ĝ

t (Lemma
2) and ct(·) is increasing. The first equality in (44) follows from Corollary 2.
Combining (43) and (44) we obtain, for any t,

E
[
ct

(
X1,g

t

)
+ ct

(
X2,g

t

)]
≥ E

[
ct

(
X1,ĝ

t

)
+ ct

(
X2,ĝ

t

)]
. (45)

The optimality of policy ĝ follows from (9) and (45).
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5.2 Comparison to the performance under centralized information

We compare now the performance of the optimal decentralized policy ĝ to
the performance of the queueing system under centralized information. The
results of this comparison will be useful when we study the infinite horizon
problem in Section 6.

Consider a centralized controller who has all the information I1t and I2t
at each time t. Then, the set Gc of feasible routing policies of the centralized
controller is

Gc := {(g1, g2) : gi = (gi0, g
i
1, . . . , g

i
t, . . . ), i = 1, 2

and U i
t = git(I

1
t , I

2
t )}. (46)

By the definition, Gd ⊂ Gc. This means that the centralized controller can
simulate any decentralized policy g ∈ Gd adopted by controllers C1 and C2.
Therefore, for any initial PMFs π1

0 , π
2
0

inf
g∈Gc

Jg
T (π1

0 , π
2
0) ≤ inf

g∈Gd
Jg
T (π1

0 , π
2
0) (47)

inf
g∈Gc

Jg(π1
0 , π

2
0) ≤ inf

g∈Gd
Jg(π1

0 , π
2
0). (48)

When X1
0 = X2

0 = x0, Lemma 2 and Theorem 1 show that the cost given by
ĝ is smaller than the cost given by any policy g ∈ Gd. Furthermore we have:

Lemma 3 Under the assumption X1
0 = X2

0 = x0, where x0 is common knowl-
edge, we have

X1,ĝ
t +X2,ĝ

t ≤st X
1,g
t +X2,g

t , (49)

for any g ∈ Gc, and

J ĝ
T (x0, x0) ≤ inf

g∈Gc
Jg
T (x0, x0). (50)

for any g ∈ Gc.

�

Proof The proof of (49) is the same as the proof of Lemma 2, and the proof
of (50) is the same as the proof of Theorem 1.

Since ĝ is a decentralized policy, (47) and Lemma 3 imply that

J ĝ
T (x0, x0) = inf

g∈Gd
Jg
T (x0, x0) = inf

g∈Gc
Jg
T (x0, x0). (51)

Equation (51) shows that when X1
0 = X2

0 = x0 and x0 is common knowledge
between C1and C2, policy ĝ achieves the same performance as any centralized
optimal policy.
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5.3 The Case of Different Initial Queue Lengths

When X1
0 6= X2

0 , the policy ĝ is not necessarily optimal for the finite horizon
problem.

Consider an example where the horizon T = 1 (two-step horizon), λ =
0.1, µ = 0.5 and

P
(
X1

0 = 3
)

= 1, (52)

P
(
X2

0 = 1
)

= 0.9, P
(
X2

0 = 5
)

= 0.1, (53)

that is,

π1
0 =(0, 0, 0, 1, 0, 0, 0, . . . ), (54)

π2
0 =(0, 0.9, 0, 0, 0, 0.1, 0, . . . ), (55)

where π1
0 , π

2
0 denote the initial PMFs on the lengths of the queues.

Then, Π
1

0, Π
2

0 and the threshold TH0 are

Π
1

0 = (0, 0, 0.5, 0.4, 0.1, 0, 0, . . . ), (56)

Π
2

0 = (0.45, 0.36, 0.09, 0, 0.05, 0.04, 0.01, . . . ), (57)

TH0 =
1

2
(6 + 0) = 3. (58)

Consider the cost functions c0(x) = 0 and c1(x) = x2. Then, we have

Jg(π1
0 , π

2
0)

=E

[(
X1,g

1

)2
+
(
X2,g

1

)2]
=E

[(
X

1

0 − U
1,g
0 + U2,g

0

)2
+
(
X

2

0 − U
2,g
0 + U1,g

0

)2]
. (59)

Using (56)-(58) and the specification of the policy ĝ, we can compute the
expected cost due to ĝ. It is

J ĝ(π1
0 , π

2
0) =8.48. (60)

Consider now another policy g̃ described below. For i = 1, 2, i 6= j,

U i,g̃
t = g̃t

(
X

i

t, Π
1

t , Π
2

t

)
=

1, when X
i

t ≥ E
[
X

j

t |Π
j

t

]
,

0, when X
i

t < E
[
X

j

t |Π
j

t

]
,

(61)

Then, from (56)-(57) and (61) we get

U1,g̃
0 =

{
1, when X

1

0 ≥ 1,

0, when X
1

0 < 1,
(62)

U2,g̃
0 =

{
1, when X

2

0 ≥ 2.6,

0, when X
2

0 < 2.6,
(63)
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Therefore, the expected cost due to the policy g̃ is given by

J g̃(π1
0 , π

2
0) =8.28 (64)

Since J g̃(π1
0 , π

2
0) = 8.28 < 8.48 = J ĝ(π1

0 , π
2
0), policy ĝ is not optimal.

In this example, each controller has only one decision to make, the deci-
sion at time 0. As a result, signaling does not provide any advantages to the
controllers, and that is why the policy ĝ is not the best policy.

6 Infinite horizon

We consider the infinite horizon decentralized routing problem formulated in
Section 2.2, and make the following additional assumptions.

Assumption 1 µ > λ.

Assumption 2 The initial PMFs π1
0 , π

2
0 are finitely supported and common

knowledge between controllers C1 and C2. i.e. there exists M < ∞ such that
π1
0(x) = π2

0(x) = 0 for all x > M .

Let g0 denote the open-loop policy that does not do any routing, that is,
at any time t

U1,g0
t = U2,g0

t = 0. (65)

Assumption 3

lim
T→∞

1

T
Jg0
T (π1

0 , π
2
0) := Jg0 <∞ a.s., (66)

where Jg0 is a constant that denotes the infinite horizon average cost per unit
time due to policy g0.

Remark 1 Due to policy g0, the queue length {Xg0,i
t , t ∈ Z+}, i = 1, 2 is a pos-

itive recurrent birth and death chain with arrival rate λ and departure rate
µ1{Xg0,i

t 6=0}. Therefore, as T → ∞, the average cost per unit time converges

to a constant a.s. if the expected cost under the stationary distribution of
the process is finite (see (Bremaud, 1999, chap. 3)). Assumption 3 is equiv-
alent to the assumption that the expected cost is finite under the stationary
distribution of the controlled queue lengths.

We proceed to analyze the infinite horizon average cost per unit time for
the model of Section 2 under Assumptions 1-3.
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6.1 Analysis

When X1
0 6= X2

0 , the policy ĝ, defined in Section 4, is not necessarily optimal
for the finite horizon problem (see the example in Section 5.3). Nevertheless,
the policy ĝ still attempts to balance the queues. Given enough time, policy ĝ
may be able to balance the queue lengths even if they are not initially balanced.
In this section we show that this is indeed the case.

Specifically, we prove the optimality of policy ĝ for the infinite horizon
average cost per unit time problem, as stated in the following theorem which
is the main result of this section.

Theorem 2 Under Assumptions 1-3, the policy ĝ, described by (29)-(30), is
optimal for the infinite horizon average cost per unit time problem formulated
in Section 2.2.

�

To establish the assertion of Theorem 2 we proceed in four steps. In the
first step we show that the infinite horizon average cost per unit time due to
policy ĝ is bounded above by the cost of the uncontrolled queues (i.e. the cost
due to policy g0). In the second step we show that under policy ĝ the queues
are eventually balanced, i.e. the queue lengths can differ by at most one. In
the third step we derive a result that connects the performance of policy ĝ
under the initial PMFs (0, 0) to the performance of the optimal policy under
any arbitrary initial PMFs π1

0 , π
2
0 on queues Q1 and Q2. In the forth step we

establish the optimality of policy ĝ based on the results of steps one, two and
three.

Step 1

We prove that J ĝ(π1
0 , π

2
0) ≤ Jg0 . To do this, we first establish some preliminary

results that appear in Lemmas 4 and 5.

Lemma 4 There exists processes {Y 1
t , t ∈ Z+} and {Y 2

t , t ∈ Z+} such that

{Y i
t , t ∈ Z+} has the same distribution as {Xi,g0

t , t ∈ Z+} (67)

for i = 1, 2, and for all times t

X1,ĝ
t +X2,ĝ

t ≤ Y 1
t + Y 2

t a.s., (68)

max
i

(
Xi,ĝ

t

)
≤ max

i

(
Y i
t

)
a.s. (69)

�

Proof See Appendix C
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Lemma 4 means that the uncontrolled queue lengths are longer than the
queue lengths under policy ĝ in a stochastic sense. Note that (68) and (69) are
not true if Y i

t , i = 1, 2, is replaced by Xi,g0
t , i = 1, 2, as the following example

shows.
Example

When X1,g0
t = 4, X2,g0

t = 6 and X1,ĝ
t = X2,ĝ

t = 5, the analogues of (68) and
(69) where Y i

t are replaced by Xi,g0
t , i = 1, 2 are

X1,ĝ
t +X2,ĝ

t = X1,g0
t +X2,g0

t = 10, (70)

max
i

(
Xi,ĝ

t

)
= 5 ≤ 6 = max

i

(
Xi,g0

t

)
. (71)

However, if A1
t+1 = 1, A2

t+1 = 0 and D1
t+1 = 0, D2

t+1 = 1 we get X1,g0
t+1 =

X2,g0
t+1 = 5 and X1,ĝ

t+1 = 6, X2,ĝ
t+1 = 4, then

max
i

(
Xi,ĝ

t+1

)
= 6 > 5 = max

i

(
Xi,g0

t+1

)
, (72)

and the analogue of (69), when Y i
t is replaced by Xi,g0

t , i = 1, 2, does not hold.
The stochastic dominance relation asserted by Lemma 4 implies that the

instantaneous cost under policy ĝ is almost surely no greater than the instan-
taneous cost due to policy g0. This implication is made precise by the following
lemma.

Lemma 5 The processes {Y 1
t , t ∈ Z+} and {Y 2

t , t ∈ Z+} defined in Lemma 4
are such that at any time t

c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

)
≤ c

(
Y 1
t

)
+ c

(
Y 2
t

)
a.s. (73)

�

Proof See Appendix C

In order to apply the result of Step 1 as the time horizon goes to infinity, we
need the following result on the convergence of the cost due to {Y 1

t , t ∈ Z+}
and {Y 2

t , t ∈ Z+}.

Lemma 6 Let {Y 1
t , t ∈ Z+} and {Y 2

t , t ∈ Z+} be the processes defined in
Lemma 4. Let WT denote

WT :=
1

T

T−1∑
t=0

(
c(Y 1

t ) + c(Y 2
t )
)
. (74)

Under Assumptions 2 and 3,

lim
T→∞

WT = Jg0 a.s. (75)

Moreover, {WT , T = 1, 2, . . . } is uniformly integrable, so it also converges in
expectation.
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�

Proof See Appendix C

A direct consequence of Lemmas 4, 5 and 6 is the following.

Corollary 3 If limT→∞
1
T

∑T−1
t=0

(
c
(
X1,ĝ

)
+ c

(
X2,ĝ

))
converges a.s., then,

1

T

T−1∑
t=0

(
c
(
X1,ĝ

)
+ c

(
X2,ĝ

))
−→ J ĝ(π1

0 , π
2
0) (76)

in expectation and a.s. as T →∞. Furthermore,

J ĝ(π1
0 , π

2
0) ≤ Jg0 <∞. (77)

�

Proof See Appendix C

Step 2

We prove that under policy ĝ the queues are eventually balanced. For this
matter we first establish some preliminary results that appear in Lemmas 7
and 8.

Lemma 7 Let T0 be a stopping time with respect to the process {X1,ĝ
t , X2,ĝ

t , t ∈
Z+}. Define the process {St = Sĝ

t , t ≥ T0 + 1} as follows.

ST0+1 :=X1,ĝ
T0+1 +X2,ĝ

T0+1 (78)

St+1 :=St −D1
t −D2

t +A1
t +A2

t

+ 1{St=1}

(
1{X1,ĝ

t =0}(D
1
t −D2

t ) +D2
t

)
+ 1{St=0}

(
D1

t +D2
t

)
(79)

If µ > λ > 0, then {St, t ≥ T0 + 1} is an irreducible positive recurrent Markov
chain.

�

Proof See Appendix D

Lemma 7 holds for arbitrary stopping time T0 with respect to {X1,ĝ
t , X2,ĝ

t , t ∈
Z+}. By appropriately selecting T0 we will show later that St is coupled with

X1,ĝ
t +X2,ĝ

t , i.e. for all t > T0, St = X1,ĝ
t +X2,ĝ

t . This result along with the fact
that the process {St, t ≥ T0 + 1} is an irreducible positive recurrent Markov
chain will allow us to analyze the cost due to policy ĝ.

Lemma 8 Under policy ĝ,

P
((
U1,ĝ
t , U2,ĝ

t

)
= (0, 0) i.o.

)
= 1. (80)
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�

Proof See Appendix D

Lemma 8 means that the event { there exists t0 < ∞ such that at least one
of the queue lengths is above the threshold defined by (30) for all t > t0 }
can not happen. The idea of Lemma 8 is the following. If one of the queues,
say Q1, has length above the threshold, hence above the lower bound LBĝ

t ,
then, the length of Q2 does not decrease, because under policy ĝ Q2 receives
one customer from Q1 and has at most one departure at this time. Therefore,
both queue lengths at the next time are bounded below by the current lower
bound LBĝ

t . When at least one of the queue lengths is above the threshold for

all t > t0, the queue lengths are bounded below by LBĝ
t0 for all t > t0. This

kind of lower bound can not exist if the total arrival rate 2λ to the system is
less than the total departure rate 2µ from the system.

Lemma 8 and Corollary 1 in Section 4 can be used to establish that under
policy ĝ the queues are eventually balanced. This is shown in the corollary
below.

Corollary 4 Let

T0 := inf{t : UBĝ
t − LB

ĝ
t ≤ 1}. (81)

Then

P(T0 <∞) = 1 (82)

and (
UBĝ

t − LB
ĝ
t

)
≤ 1 for all t ≥ T0. (83)

�

Step 3

We compare the finite horizon cost J ĝ
T (0, 0) (respectively, the infinite horizon

cost J ĝ(0, 0)) due to policy ĝ under initial PMFs (0, 0) to the minimum finite
horizon cost infg∈Gd J

g
T (π1

0 , π
2
0) (respectively, the minimum infinite horizon cost

infg∈Gd J
g(π1

0 , π
2
0)) under arbitrary initial PMFs (π1

0 , π
2
0).

Lemma 9 For any finite time T and any initial PMFs π1
0 , π

2
0.

J ĝ
T (0, 0) = inf

g∈Gc
Jg
T (0, 0) ≤ inf

g∈Gc
Jg
T (π1

0 , π
2
0) ≤ inf

g∈Gd
Jg
T (π1

0 , π
2
0), (84)

and

J ĝ(0, 0) = inf
g∈Gc

Jg(0, 0) ≤ inf
g∈Gc

Jg(π1
0 , π

2
0) ≤ inf

g∈Gd
Jg(π1

0 , π
2
0). (85)

�
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Proof See Appendix E.

Lemma 9 states that the minimum cost achieved when the queues are
initially empty is smaller than the minimum cost obtained when the system’s
initial condition is given by arbitrary PMFs on the lengths of queues Q1 and
Q2. This result is established through the use of the corresponding centralized
information system that is discussed in Section 5.2.

Step 4

Based on the results of Steps 1, 2 and 3 we now establish the optimality of
policy ĝ for the infinite horizon average cost per unit time problem formulated
in Section 2.2. First, we outline the key ideas in the proof of Theorem 2, then
we present its proof. Step 2 ensures that policy ĝ eventually (in finite time)
balances the queues. Step 1 ensures that the cost J ĝ(π1

0 , π
2
0) is finite. These

two results together imply that the cost due to policy ĝ is the same as the cost
incurred after the queues are balanced. Furthermore, we show that the cost
of policy ĝ is independent of the initial PMFs on the queue lengths. Then,
the result of Step 3 together with the results on the finite horizon problem
establish the optimality of policy ĝ.

Proof (Proof of Theorem 2) Define T0 to be the first time when the length of

the joint support of PMFs Π1,ĝ
t , Π2,ĝ

t is no more than 1. That is

T0 = inf{t : UBĝ
t − LB

ĝ
t ≤ 1}. (86)

The random variable T0 is a stopping time with respect to the process {X1,ĝ
t , X2,ĝ

t , t ∈
Z+}. From Corollary 4 we have

P(T0 <∞) = 1, (87)

UBĝ
t − LB

ĝ
t ≤ 1 for all t ≥ T0. (88)

Furthermore, for all t ≥ T0∣∣∣X1,ĝ
t −X2,ĝ

t

∣∣∣ ≤ UBĝ
t − LB

ĝ
t ≤ 1. (89)

Consider the process {St, t ≥ T0 + 1} defined by (78) and (79) (in Lemma 7).
We claim that for all t ≥ T0 + 1

X1,ĝ
t +X2,ĝ

t = St. (90)

We prove the claim in Appendix F. Suppose the claim is true. Since
∣∣∣X1,ĝ

t −X2,ĝ
t

∣∣∣ ≤
1 for all t ≥ T0 + 1, the instantaneous cost at time t ≥ T0 + 1 is equal to

c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

)
=c

(⌊
1

2
(X1,ĝ

t +X2,ĝ
t )

⌋)
+ c

(⌈
1

2
(X1,ĝ

t +X2,ĝ
t )

⌉)
=c

(⌊
1

2
Sĝ
t

⌋)
+ c

(⌈
1

2
Sĝ
t

⌉)
. (91)
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Then, the average cost per unit time due to policy ĝ is given by

1

T

T−1∑
t=0

(
c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

))
=

1

T

T0∑
t=0

(
c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

))
+

1

T

T−1∑
t=T0+1

(
c

(⌊
1

2
Sĝ
t

⌋)
+ c

(⌈
1

2
Sĝ
t

⌉))
. (92)

Since T0 <∞ a.s., we obtain

lim
T→∞

1

T

T−1∑
t=0

(
c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

))
= lim

T→∞

1

T

T0∑
t=0

(
c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

))
+ lim

T→∞

1

T

T−1∑
t=T0(+1

(
c

(⌊
1

2
Sĝ
t

⌋)
+ c

(⌈
1

2
Sĝ
t

⌉))

= lim
t→∞

1

T

T−1∑
t=T0+1

(
c

(⌊
1

2
Sĝ
t

⌋)
+ c

(⌈
1

2
Sĝ
t

⌉))

=

∞∑
s=0

πĝ(s)

(
c

(⌊
1

2
s

⌋)
+ c

(⌈
1

2
s

⌉))
a.s. (93)

where πĝ(s) is the stationary distribution of {St = Sĝ
t , t ≥ T0 + 1}. The

second equality in (93) holds because T0 < ∞ a.s.; the last equality in (93)
follows by the Ergodic theorem for irreducible positive recurrent Markov chains
(Bremaud, 1999, chap. 3).

Since the sum 1
T

∑T−1
t=0

(
c
(
X1,ĝ

t

)
+ c

(
X2,ĝ

t

))
converges a.s., from Corollary

3 we have

J ĝ(π1
0 , π

2
0) = lim

T→∞

1

T

T−1∑
t=0

(
c
(
X1,ĝ

)
+ c

(
X2,ĝ

))
=

∞∑
s=0

πĝ(s)

(
c

(⌊
1

2
s

⌋)
+ c

(⌈
1

2
s

⌉))
. (94)

Since the right hand side of equation (94) does not depend on the initial PMFs
π1
0 , π

2
0 , we obtain

J ĝ(π1
0 , π

2
0) = J ĝ(0, 0). (95)
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Combining (95) and Lemma 9 we get

J ĝ(π1
0 , π

2
0) = J ĝ(0, 0) ≤ inf

g∈Gd
Jg(π1

0 , π
2
0). (96)

Thus, ĝ is an optimal routing policy for the infinite horizon problem.

7 Discussion and Conclusion

Based on the results established in Sections 3-6, we now discuss and answer
the questions posed in Section 1.

Controllers C1 and C2 communicate with one another through their control
actions; thus, each controller’s information depends on the decision rule/routing
policy of the other controller. Therefore, the queueing system considered in this
paper has non-classical information structure Witsenhausen (1971). A key fea-
ture of the system’s information structure is that at each time instant each
controller’s information consists of one component that is common knowledge
between C1 and C2 and another component that is its own private information.
The presence of common information allows us to use the common informa-
tion approach, developed in Nayyar et al (2013), along with specific features
of our model to identify an information state/sufficient statistic for the finite
and infinite horizon optimization problem. The identification/discovery of an
appropriate information state proceeds in two steps: In the first step we use
the common information approach (in particular Mahajan (2013)) to identify

the general form of an information state (namely
(
X

i

t, Π
1

t , Π
2

t

)
) for controller

Ci, i = 1, 2. (and the corresponding structure of an optimal policy, Proper-
ties 3). In the second step we take advantage of the features of our system to
further refine/simplify the information state; we discover a simpler form of in-

formation state, namely,

(
X

i

t,
{
UB

j

t , LB
j

t

}
j=1,2

)
for controller Ci, i = 1, 2.

The component
{
UB

j

t , LB
j

t

}
j=1,2

of the above information state describes the

common information between controllers C1 and C2 at time t, t = 1, 2, . . . .
Using this common information we established an optimal signaling strat-

egy that is described by the threshold policy ĝ specified in Section 4.

The update of
{
UB

j

t , LB
j

t

}
j=1,2

is described by (32)-(35) and explicitly

depends on the signaling policy ĝ. Specifically, if a customer is sent from Qi

to Qj (i 6= j) at time t the lower bound on the queue length of Qi increases
because both controllers know that the length of Qi is above the threshold THt

at the time of routing; if no customer is sent from Qi to Qj at time t, the upper
bound on the length of Qi decreases because both controllers know that the
length of Qi is below the threshold THt at the time of routing. The update of
common information incorporates the information about a controller’s private
information transmitted to the other controller through signaling.

The signaling policy ĝ communicates information in such a way that even-
tually the difference between the upper bound and the lower bound on the
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queue lengths is no more than one. Thus, signaling through ĝ results in a
balanced queueing system.

A Proofs of the Results in Section 4

Proof (Proof of Lemma 1) Since there is one possible arrival to any queue and one possible
departure from any queue at each time instant, (31) holds.

When (U1,ĝ
t , U2,ĝ

t ) = (0, 0), both X
1,ĝ
t and X

2,ĝ
t are below the threshold and no cus-

tomers are routed form any queue. Therefore, the upper bound of the queue lengths at t+ 1
is

UBĝt+1 = dTHte − 1. (97)

Moreover, the lower bound of the queue lengths at t+ 1 is the same as the lower bound of

X
1,ĝ
t , X

2,ĝ
t . That is,

LBĝt+1 =LB
ĝ
t . (98)

When (U1,ĝ
t , U2,ĝ

t ) = (1, 1), both X
1,ĝ
t and X

2,ĝ
t are greater than or equal to the threshold.

Since the routing only exchanges two customers between the two queues, the queue lengths
remain the same as the queue lengths before routing. As a result, the upper bound and
lower bound of the queue lengths at t+ 1 are given by

UBĝt+1 =UB
ĝ
t . (99)

LBĝt+1 = dTHte . (100)

When (U i,ĝt , Uj,ĝt ) = (1, 0), i 6= j, X
i,ĝ
t is greater than or equal to the threshold; X

j,ĝ
t is

below the threshold. Since one customer is routed from Qi to Qj ,

Xi,ĝ
t+1 = X

i,ĝ
t − 1, (101)

Xj,ĝ
t+1 = X

j,ĝ
t + 1. (102)

Therefore, the upper bound of the queue lengths at t+ 1 becomes

UBĝt+1 = max
{
UB

i,ĝ
t − 1, dTHte − 1 + 1

}
= max

{
UB

i,ĝ
t − 1, dTHte

}
, (103)

and lower bound of the queue lengths at t+ 1 is given by

LBĝt+1 = min
{
dTHte − 1, LB

j,ĝ
t + 1

}
. (104)

B Proofs of the Results in Section 5

Proof (Proof of Lemma 2) The proof is done by induction.

At time t = 0, X1,ĝ
0 +X2,ĝ

0 = X1,g
0 +X2,g

0 = x0.
Suppose the lemma is true at time t.
At time t+ 1, from the system dynamics (1)-(3) we get, for any g,

X1,g
t+1 +X2,g

t+1

=
(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
+A1

t +A2
t . (105)
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Therefore, it suffices to show that

(
X1,ĝ
t −D1

t

)+
+
(
X2,ĝ
t −D2

t

)+
≤st

(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
. (106)

Consider any realization (X1,g
t , X2,g

t ) = (x1, x2).

If x1, x2 > 0, then
⌊
1
2

(x1 + x2)
⌋
,
⌈
1
2

(x1 + x2)
⌉
> 0. Therefore,

(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
=x1 + x2 −D1

t −D2
t

=

(⌊
1

2
(x1 + x2)

⌋
−D1

t

)+

+

(⌈
1

2
(x1 + x2)

⌉
−D2

t

)+

. (107)

If xi = 0 and xj ≥ 2 (i 6= j), then
⌊
1
2

(x1 + x2)
⌋
> 0 and

⌈
1
2

(x1 + x2)
⌉
> 0. Therefore,

(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
=xj −Djt
≥x1 + x2 −D1

t −D2
t

=

(⌊
1

2
(x1 + x2)

⌋
−D1

t

)+

+

(⌈
1

2
(x1 + x2)

⌉
−D2

t

)+

. (108)

If xi = 0 and xj = 1 (i 6= j), then
⌊
1
2

(x1 + x2)
⌋

= 0 and
⌈
1
2

(x1 + x2)
⌉

= 1. Therefore,

(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
=1−Djt
≥st1−D2

t

=

(⌊
1

2
(x1 + x2)

⌋
−D1

t

)+

+

(⌈
1

2
(x1 + x2)

⌉
−D2

t

)+

, (109)

If x1, x2 = 0, then
⌊
1
2

(x1 + x2)
⌋
,
⌈
1
2

(x1 + x2)
⌉

= 0. Therefore,

(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
=0

=

(⌊
1

2
(x1 + x2)

⌋
−D1

t

)+

+

(⌈
1

2
(x1 + x2)

⌉
−D2

t

)+

. (110)

As a result of (107)-(110), we obtain

(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
≥st

(⌊
1

2
(X1,g

t +X2,g
t )

⌋
−D1

t

)+

+

(⌈
1

2
(X1,g

t +X2,g
t )

⌉
−D2

t

)+

. (111)
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Then, from (111), the induction hypothesis and Corollary 2 we obtain(
X1,g
t −D1

t

)+
+
(
X2,g
t −D2

t

)+
≥st

(⌊
1

2
(X1,g

t +X2,g
t )

⌋
−D1

t

)+

+

(⌈
1

2
(X1,g

t +X2,g
t )

⌉
−D2

t

)+

≥st
(⌊

1

2
(X1,ĝ

t +X2,ĝ
t )

⌋
−D1

t

)+

+

(⌈
1

2
(X1,ĝ

t +X2,ĝ
t )

⌉
−D2

t

)+

=
(

min(X1,ĝ
t , X2,ĝ

t )−D1
t

)+
+
(

max(X1,ĝ
t , X2,ĝ

t )−D2
t

)+
≥st

(
X1,ĝ
t −D1

t

)+
+
(
X2,ĝ
t −D2

t

)+
. (112)

The first and second stochastic inequalities in (112) follow from (111) and the induction
hypothesis, respectively. The equality in (112) follows from Corollary 2. The last stochastic

inequality in (112) is true because D1
t , D

2
t are i.i.d. and independent of X1,ĝ

t , X2,ĝ
t .

Thus, inequality (106) is true, and the proof of the lemma is complete.

C Proofs of the Results Associated with Step 1 of the Proof of
Theorem 2

Proof (Proof of Lemma 4) The proof is done by induction. At t = 0, (67), (68) and (69)

hold if we let Y i0 = Xi,g0
0 for i = 1, 2.

Assume the assertion of this lemma is true at time t; we want to show that the assertion is
also true at time t+ 1.
For that matter we claim the following.
Claim 1

X1,ĝ
t+1 +X2,ĝ

t+1 = X
1,ĝ
t +X

2,ĝ
t a.s., (113)

max
i

(
Xi,ĝ
t+1

)
≤ max

i

(
X
i,ĝ
t

)
a.s. (114)

Claim 2
There exists Y it+1, i = 1, 2 such that

P
(
Y it+1 = yt+1|Y i0:t = y0:t

)
=P

(
Xi,g0
t+1 = yt+1|Xi,g0

0:t = y0:t
)

for all y0:t, (115)

X
1,ĝ
t +X

2,ĝ
t ≤Y 1

t+1 + Y 2
t+1 a.s., (116)

max
i

(
X
i,ĝ
t

)
≤max

i

(
Y it+1

)
a.s. (117)

We assume the above claims to be true and prove them after the completion of the proof of
the induction step.
For all y0:t+1, from (115) and the induction hypothesis for (67) we get for i = 1, 2

P
(
Y i0:t+1 = y0:t+1

)
=P

(
Y it+1 = yt+1|Y i0:t = y0:t

)
P
(
Y it = yt, . . . , Y

i
0 = y0

)
=P

(
Xi,g0
t+1 = yt+1|Xi,g0

0:t = y0:t
)
P
(
Xi,g0

0:t = y0:t
)

=P
(
Xi,g0

0:t+1 = y0:t+1

)
. (118)

From (113) and (116) we obtain

X1,ĝ
t+1 +X2,ĝ

t+1 =X
1,ĝ
t +X

2,ĝ
t

≤Y 1
t+1 + Y 2

t+1 a.s. (119)
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Furthermore, combination of (114) and (117) gives

max
i

(
Xi,ĝ
t+1

)
≤ max

i

(
X
i,ĝ
t

)
= max

i

(
Y it+1

)
a.s. (120)

Therefore, the assertions (67), (68) and (69) of the lemma are true at t+ 1 by (118), (119)
and (120), respectively.
We now prove claims 1 and 2.
Proof of Claim 1
From the system dynamics (1)-(2)

X1,ĝ
t+1 = X

i,ĝ
t − U

i,ĝ
t + Uj,ĝt , (121)

X2,ĝ
t+1 = X

i,ĝ
t − U

i,ĝ
t + Uj,ĝt . (122)

Therefore, (113) follows by summing (121) and (122).

For (114), consider X1,ĝ
t+1 ( the case of X2,ĝ

t+1 follows from similar arguments).

When U2,ĝ
t = 0,

X1,ĝ
t+1 = X

1,ĝ
t − U1,ĝ

t ≤ max
i

(
X
i,ĝ
t

)
. (123)

When U1,ĝ
t = U2,ĝ

t = 1,

X1,ĝ
t+1 = X

1,ĝ
t ≤ max

i

(
X
i,ĝ
t

)
. (124)

When U1,ĝ
t = 0, U2,ĝ

t = 1, X
1,ĝ
t is less than the threshold and X

2,ĝ
t is greater than or equal

to the threshold. Therefore, by (121),

X1,ĝ
t+1 = X

1,ĝ
t + 1 ≤dTHte

≤X2,ĝ
t ≤ max

i

(
X
i,ĝ
t

)
. (125)

Therefore, (114) follows from (123)-(125).
Proof of Claim 2
We set

Y it+1 :=
(
Y it − D̃it

)+
+ Ãit (126)

where Y it satisfy the induction hypothesis, and Ãit, D̃
i
t, i = 1, 2 are specified as follows. Let

Mx =argmaxi{X
i,ĝ
t }, mx = argmini{X

i,ĝ
t } (127)

My =argmaxi{Y it }, my = argmini{Y it }, (128)

where Mx = 1,mx = 2 (resp. My = 1,my = 2) when {X1,ĝ
t = X2,ĝ

t } (resp. {Y 1
t = Y 2

t });
define

(
Ã
My
t , D̃

My
t , Ã

my
t , D̃

my
t

)
:=


(
AMxt , Dmxt , Amxt , DMxt

)
in case 1,(

AMxt , DMxt , Amxt , Dmxt

)
in case 2,

(129)

where the two cases are :
Case 1: {YMyt −1 = XMx,ĝ

t = Xmx,ĝ
t and

(
AMxt , DMxt , Amxt , Dmxt

)
= (0, 1, 1, 0) or (0, 0, 1, 1)}.

Case 2: All other instances.

Assertion: The random variables Y 1
t+1, Y

2
t+1, defined by (126)-(129) satisfy (115)-(117).

As the proof of this assertion is long, we first provide a sketch of its proof and then we
provide a full proof.
Sketch of the proof of the assertion
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– Equation (129) implies the following: In case 2 we associate the arrival to and the
departure from the longer queue Mx to those of the longer queue My , i.e. we set

Ã
My
t = AMxt , D̃

My
t = DMxt . We do the same for the shorter queue mx,my , i.e.

Ã
my
t = Amxt , D̃

my
t = Dmxt .

In case 1, we have the same association for the arrivals as in case 2, that is Ã
My
t =

AMxt , Ã
my
t = Amxt , but we reverse the association of the departures, that is D̃

My
t =

Dmxt , D̃
my
t = DMxt . Therefore the arrivals Ãit, and departures D̃it, have the same dis-

tribution as the original Ait, D
i
t, respectively, i = 1, 2. Then (115) follows from (126).

– To establish (116), we note that, because of (129), the sum of arrivals to (respectively,
departures from) queues My and my equals to the sum of arrivals to (respectively,
departures from) queues Mx and mx.

WhenXi,ĝ
t , Y it 6= 0, i = 1, 2, the function (x−d)++a is linear x, as (x−d)++a = x−d+a.

Then from (126), (129) and the induction hypothesis we obtain

Y 1
t+1 + Y 2

t+1 −X
1,ĝ
t −X2,ĝ

t

=Y 1
t + Y 2

t −X
1,ĝ
t −X2,ĝ

t ≥ 0 (130)

and this establish (116) when Xi,ĝ
t , Y it 6= 0, i = 1, 2. In the full proof of the assertion,

we show that show that (116) is also true when Xi,ĝ
t , Y it are not all non-zero.

– To establish (117) we consider the maximum of the queue lengths. In case 2, we show
that (126)-(129) ensure that

Y
My
t+1 ≥ X

Mx,ĝ
t , (131)

max
(
Y
My
t+1 , Y

my
t+1

)
≥ Xmx,ĝ

t ; (132)

then (117) follows from (131)-(132).
In case 1 (117) is verified by direct computation in the full proof.

Proof of the assertion
For all y0:t, we denote by Ey0:t the event {Y i0:t = y0:t}.
Let Z̃t =

(
Ã
My
t , D̃

My
t , Ã

my
t , D̃

my
t

)
, then for any realization zt ∈ {0, 1}4 of Z̃t we have

P
(
Z̃t = zt|Ey0:t

)
=P

(
Z̃t = zt, case 1|Ey0:t

)
+ P

(
Z̃t = zt, case 2|Ey0:t

)
. (133)

When zt 6= (0, 1, 1, 0) or (0, 0, 1, 1), we get

P
(
Z̃t = zt, case 1|Ey0:t

)
= 0, (134)

and

P
(
Z̃t = zt, case 2|Ey0:t

)
=P

((
AMxt , DMxt , Amxt , Dmxt

)
= zt|Ey0:t

)
=P

((
A1
t , D

1
t , A

2
t , D

2
t

)
= zt

)
, (135)

where the last equality in (135) holds because the random variables AMxt , DMxt , Amxt , Dmxt
are independent of Y0, Y1, . . . , Yt and have the same distribution as A1

t , D
1
t , A

2
t , D

2
t .

Therefore, combining (134) and (135) we obtain for zt 6= (0, 1, 1, 0) or (0, 0, 1, 1)

P
(
Z̃t = zt|Ey0:t

)
= P

((
A1
t , D

1
t , A

2
t , D

2
t

)
= zt

)
(136)
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When zt = (0, 1, 1, 0) or (0, 0, 1, 1), let E denote the event {YMyt − 1 = XMx,ĝ
t = Xmx,ĝ

t };
then we obtain

P
(
Z̃t = zt, case 1|Ey0:t

)
=P

((
AMxt , Dmxt , Amxt , DMxt

)
= zt, E|Ey0:t

)
=P

((
A1
t , D

2
t , A

2
t , D

1
t

)
= zt

)
P (E|Ey0:t ) , (137)

and

P
(
Z̃t = zt, case 2|Ey0:t

)
=P

((
AMxt , DMxt , Amxt , Dmxt

)
= zt, E

c|Ey0:t
)

=P
((
A1
t , D

1
t , A

2
t , D

2
t

)
= zt

)
P (Ec|Ey0:t ) , (138)

where the last equality in (137) and (138) follow by the fact that the random variables

AMxt , DMxt , Amxt , Dmxt are independent of Y0, Y1, . . . , Yt (hence, the event E which is gen-
erated by Y0, Y1, . . . , Yt) and have the same distribution as A1

t , D
1
t , A

2
t , D

2
t .

Therefore, combining (137) and (138) we obtain for zt = (0, 1, 1, 0) or (0, 0, 1, 1)

P
(
Z̃t = zt|Ey0:t

)
=P

((
A1
t , D

2
t , A

2
t , D

1
t

)
= zt

)
P (E|Ey0:t )

+ P
((
A1
t , D

1
t , A

2
t , D

2
t

)
= zt

)
P (Ec|Ey0:t )

=P
((
A1
t , D

1
t , A

2
t , D

2
t

)
= zt

)
, (139)

where the last equality in (139) is true because A1
t , D

1
t , A

2
t , D

2
t are independent and D1

t has
the same distribution as D2

t .
As a result of (136) and (139), for any zt ∈ {0, 1}4 we have

P
(
Z̃t = zt|Ey0:t

)
= P

((
A1
t , D

1
t , A

2
t , D

2
t

)
= zt

)
. (140)

Now consider any y0:t+1. By (140) we have for i = My or my

P
(
Y it+1 = yt+1|Ey0:t

)
=P

((
yit − D̃it

)+
+ Ãit = yt+1|Ey0:t

)
=P

((
yit −Dit

)+
+Ait = yt+1

)
=P

(
Xi,g0
t+1 = yt+1|Xi,g0

0:t = y0:t
)
. (141)

which is (115).
Now consider the sum Y 1

t+1 + Y 2
t+1.

From (129), we know that

Ã
My
t + Ã

my
t = AMxt +Amxt a.s., (142)

D̃
My
t + D̃

my
t = DMxt +Dmxt a.s. (143)

Therefore, (142) implies

Y 1
t+1 + Y 2

t+1 −X
1,ĝ
t+1 −X

1,ĝ
t+1

=
(
Y
My
t − D̃Myt

)+
+
(
Y
my
t − D̃myt

)+
−
(
XMx,ĝ
t −DMxt

)+
−
(
Xmx,ĝ
t −Dmxt

)+
. (144)
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We proceed to show that the right hand side of (144) is positive. From the induction hy-
pothesis for (69)-(68) we have

Y
my
t + Y

My
t ≥ Xmx,ĝ

t +XMx,ĝ
t a.s., (145)

Y
My
t ≥ XMx,ĝ

t a.s. (146)

There are three possibilities: {YMyt = XMx,ĝ
t }, {YMyt > XMx,ĝ

t , Xmx,ĝ
t = 0} and {YMyt >

XMx,ĝ
t , Xmx

t > 0}.
First consider {YMyt = XMx,ĝ

t }. By (145) we have

Y
my
t ≥ Xmx,ĝ

t a.s. (147)

Note that {YMyt = XMx,ĝ
t } belongs to case 2 in (129). From case 2 of (129) we also know

that

DMxt = D̃
My
t , Dmxt = D̃

my
t . (148)

Then, because of (146)-(148) we get(
XMx,ĝ
t −DMxt

)+
+
(
Xmx,ĝ
t −Dmxt

)+
≤
(
Y
My
t −DMxt

)+
+
(
Y
my
t −Dmxt

)+
=
(
Y
My
t − D̃Myt

)+
+
(
Y
my
t − D̃myt

)+
a.s. (149)

If Y
My
t > XMx,ĝ

t and Xmx,ĝ
t = 0(

XMx,ĝ
t −DMxt

)+
+
(
Xmx,ĝ
t −Dmxt

)+
=
(
XMx,ĝ
t −DMxt

)+
≤XMx,ĝ

t ≤ YMyt − 1

≤
(
Y
My
t − D̃Myt

)+
+
(
Y
my
t − D̃myt

)+
(150)

If Y
My
t > XMx,ĝ

t and Xmx
t > 0, then(

XMx,ĝ
t −DMxt

)+
+
(
Xmx,ĝ
t −Dmxt

)+
=XMx,ĝ

t −DMxt +Xmx,ĝ
t −Dmxt

=XMx,ĝ
t +Xmx,ĝ

t − D̃Myt − D̃myt
≤YMyt + Y

my
t − D̃Myt − D̃myt

≤
(
Y
My
t − D̃Myt

)+
+
(
Y
my
t − D̃myt

)+
(151)

where the second equality in (151) follows from (143) and the first inequality in (151) follows
from the induction hypothesis for (68).
The above results, namely (149)-(151), show that the right hand side of (144) is positive,
and the proof for (116) is complete.
It remains to show that (117) is true.
We first consider case 2.
In case 2, we know from (129) that(

Ã
My
t , D̃

My
t , Ã

my
t , D̃

my
t

)
=
(
AMxt , DMxt , Amxt , Dmxt

)
. (152)
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Then,

X
Mx,ĝ
t =

(
XMx,ĝ
t −DMxt

)+
+AMxt

=
(
XMx,ĝ
t − D̃Myt

)+
+ Ã

My
t

≤
(
Y
My
t − D̃Myt

)+
+ Ã

My
t

=Y
My
t+1 , (153)

where the second equality is a consequence of (152) and the inequality follows from the
induction hypothesis for (69).

To proceed further we note that in case 2 there are three possibilities: {YMyt = XMx,ĝ
t },

{YMyt − 2 ≥ Xmx,ĝ
t } and {YMyt > XMx,ĝ

t , Y
My
t − 2 < Xmx,ĝ

t }
If Y

My
t = XMx,ĝ

t , (147) is also true. Following similar arguments as in (153) we obtain

X
mx,ĝ
t ≤ Ymyt+1 . (154)

If Y
My
t − 2 ≥ Xmx,ĝ

t

X
mx,ĝ
t ≤ Xmx,ĝ

t + 1 ≤ YMyt − 1 ≤ YMyt+1 . (155)

If Y
My
t > XMx,ĝ

t and Y
My
t − 2 < Xmx,ĝ

t it can only be Y
My
t − 1 = XMx,ĝ

t = Xmx,ĝ
t . Since

we are in case 2,
(
AMxt , DMxt , Amxt , Dmxt

)
6= (0, 1, 1, 0). Therefore,

Amxt −Dmxt ≤ AMxt −DMxt + 1. (156)

Then we get

X
mx,ĝ
t =

(
Y
My
t − 1−Dmxt

)+
+Amxt

= max
(
Amxt , Y

My
t − 1−Dmxt +Amxt

)
≤max

(
Amxt , Y

My
t −DMxt +AMxt

)
≤max

(
Amxt , Y

My
t+1

)
≤max

(
Y
my
t+1 , Y

My
t+1

)
. (157)

Combining (153), (154), (155) and (157) we get (117) when case 2 is true.

Now consider case 1. We have Y
My
t − 1 = XMx,ĝ

t = Xmx,ĝ
t .

When
(
AMxt , DMxt , Amxt , Dmxt

)
= (0, 1, 1, 0), then

X
Mx,ĝ
t =

(
XMx,ĝ
t − 1

)+
≤Xmx

t

=Xmx
t + 1

=
(
Y
My
t −Dmxt

)+
+AMxt

=Y
My
t+1 (158)
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When
(
AMxt , DMxt , Amxt , Dmxt

)
= (0, 0, 1, 1) we get

X
Mx,ĝ
t =XMx,ĝ

t

≤Xmx,ĝ
t

= max
(
Xmx,ĝ
t , 1

)
= max

((
Y
My
t −Dmxt

)+
+AMxt , Amxt

)
= max

(
Y
My
t+1 , A

mx
t

)
≤max

(
Y
My
t+1 , Y

my
t+1

)
. (159)

Combining (158) and (159) we obtain (117) for case 1.
As a result, (117) holds for both cases 1 and 2.
Remark:

We note that we need the two cases described in (129) for the following reasons. If we

eliminate case 1 and always associate
(
Ã
My
t , D̃

My
t , Ã

my
t , D̃

my
t

)
with

(
AMxt , DMxt , Amxt , Dmxt

)
as in case 2, then when {YMyt − 1 = Xmx,ĝ

t and
(
AMxt , DMxt , Amxt , Dmxt

)
= (0, 1, 1, 0)},

the shorter queue mx increases by one customer, and the longer queue My decreases by one

customer; therefore X
mx,ĝ
t = Y

My
t+1 + 1 and (117) is not satisfied.

Proof (Proof of Lemma 5) From Lemma 4, at any time t there exists Y it such that such
that (67)-(69) hold.
Adopting the notations Mx,mx and My ,my in the proof of Lemma 4, we have at every
time t

Xmx,ĝ
t ≤ XMX ,ĝ

t a.s., (160)

Y
my
t ≤ YMyt a.s. (161)

Furthermore, from (69) we have

XMx,ĝ
t ≤ YMyt a.s. (162)

If Xmx,ĝ
t ≤ Ymyt , (162) and the fact that c(·) is increasing give

c
(
X
MX ,ĝ
t

)
+ c

(
X
mX ,ĝ
t

)
≤ c

(
Y
My
t

)
+ c

(
Y
my
t

)
. (163)

If Xmx,ĝ
t > Y

my
t , then

Y
my
t < Xmx,ĝ

t ≤ XMx,ĝ
t ≤ YMyt . (164)

Since c(·) is convex, it follows from (164) that

c
(
Y
My
t

)
− c

(
XMx,ĝ
t

)
Y
My
t −XMx,ĝ

t

≥
c
(
Xmx,ĝ
t

)
− c

(
Y
my
t

)
Xmx,ĝ
t − Ymyt

. (165)

From (68) in Lemma 4 we know that

Y
My
t −XMx,ĝ

t ≥ Xmx,ĝ
t − Ymyt . (166)

Combining (165) and (166) we get

c
(
Y
My
t

)
+ c

(
Y
my
t

)
≥ c

(
XMx,ĝ
t

)
+ c

(
Xmx,ĝ
t

)
. (167)
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Proof (Proof of Lemma 6) Let {Y 1
t , t ∈ Z+} and {Y 2

t , t ∈ Z+} be the processes defined in

Lemma 4. Then {Y it , t ∈ Z+} has the same distribution as {Xi,g0
t , t ∈ Z+} for i = 1, 2.

Since µ > λ, the processes {Y it , t ∈ Z+}, i = 1, 2 are irreducible positive recurrent Markov
chains. Moreover, the two processes {Y 1

t , t ∈ Z+} and {Y 2
t , t ∈ Z+} have the same stationary

distribution, denoted by πg0 . Under Assumption 2, by Ergodic theorem of Markov chains
(see (Bremaud, 1999, chap. 3)) we get

lim
T→∞

1

T

T−1∑
t=0

c(Y 1
t ) = lim

T→∞

1

T

T−1∑
t=0

c(Y 2
t )

=

∞∑
x=0

πg0 (x)c(x) a.s. (168)

Let W i
T (Y0:T−1) := 1

T

∑T−1
t=0 c(Y it ), i = 1, 2.

We show that {W i
T (Y0:T−1), T = 1, 2, . . . } is uniformly integrable for i = 1, 2. That is,

sup
T

E
[
W i
T (Y0:T−1)1{W i

T
(Y0:T−1)>N}

]
→ 0 (169)

as N →∞.
Let pg0 (x, y), x, y ∈ Z+ be the transition probabilities of the Markov chain. Note that the
initial PMF of the process {Y it , t ∈ Z+}, i = 1, 2 is πi0. From Assumption 2 we know that
πi0(x) = 0, i = 1, 2 for all x > M .

Letting R := maxx≤M
πi0(x)

πg0 (x)
<∞, we obtain for i = 1, 2

E
[
W i
T (Y0:T−1)1{W i

T
(Y0:T−1)>N}

]
=

∑
y0:T−1

W i
T (y0:T−1)1{W i

T
(y0:T−1)>N}P(Y0:T−1 = y0:T−1)

=
∑

y0:T−1

W i
T (y0:T−1)1{W i

T
(y0:T−1)>N}π

i
0(y0)ΠT−1

t=1 p
g0 (yt−1, yt)

≤R
∑

y0:T−1

W i
T (y0:T−1)1{W i

T
(y0:T−1)>N}π

g0 (y0)ΠT−1
t=1 p

g0 (yt−1, yt)

=RE

[
Wπg0
T 1{Wπg0

T
>N}

]
, (170)

where Wπg0
T = 1

T

∑T−1
t=0 c(Y π

g0
t ) and {Y πg0t , t ∈ Z+} is the chain with transition probabil-

ities pg0 (x, y) and initial PMF πg0 .
Note that {Y πg0t , t ∈ Z+} is stationary because the initial PMF is the stationary distribution

πg0 . From Birkhoff’s Ergodic theorem we know that {Wπg0
T , T = 1, 2, . . . } converges a.s. and

in expectation (see (Petersen and Petersen, 1989, chap. 2)). Therefore, {Wπg0
T , T = 1, 2, . . . }

is uniformly integrable, and the right hand side of (170) goes to zeros uniformly as N →∞.
Consequently, {W i

T (Y0:T−1), T = 1, 2, . . . } is also uniformly integrable for i = 1, 2.
Since WT = W 1

T (Y0:T−1)+W 2
T (Y0:T−1) for all T = 1, 2, . . . , {WT , T = 1, 2, . . . } is uniformly

integrable.

Proof (Proof of Corollary 3) From Lemma 5, there exists {Y 1
t , Y

2
t , t ∈ Z+} such that (67)

holds and

c
(
X1,ĝ
t

)
+ c

(
X2,ĝ
t

)
≤ c

(
Y 1
t

)
+ c

(
Y 2
t

)
a.s. (171)
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Let

WT :=
1

T

T−1∑
t=0

(
c
(
Y 1
t

)
+ c

(
Y 2
t

))
, (172)

VT :=
1

T

T−1∑
t=0

(
c
(
X1,ĝ
t

)
+ c

(
X2,ĝ
t

))
. (173)

From (171) it follows that

VT ≤WT , T = 1, 2, . . . (174)

From Lemmas 6, {WT , T = 1, 2, . . . } is uniformly integrable, therefore {VT , T = 1, 2, . . . },
which is bounded above by {WT , T = 1, 2, . . . } is also uniformly integrable.
From the property of uniformly integrability, if {VT , T = 1, 2, . . . } converges a.s., we know
that {VT , T = 1, 2, . . . } also converges in expectation. Furthermore,

J ĝ
(
π1
0 , π

2
0

)
= lim sup

T→∞

1

T
E

[
T−1∑
t=0

(
c
(
Y 1
t

)
+ c

(
Y 2
t

))]
= lim sup

T→∞
E [VT ]

≤ lim sup
T→∞

E [WT ] = Jg0 . (175)

D Proofs of the Results Associated with Step 2 of the Proof of
Theorem 2

Proof (Proof of Lemma 7) First we show that {St, t ≥ T0 + 1} is a Markov chain.
For st ≥ 2,

P
(
St+1 = st+1|ST0+1:t = sT0+1:t

)
=P

((
st −D1

t −D2
t +A1

t +A2
t

)
= st+1

|ST0+1:t = sT0+1:t

)
=P

((
st −D1

t −D2
t +A1

t +A2
t

)
= st+1|St = st

)
=P (St+1 = st+1|St = st) . (176)

The first and last equalities in (176) follow from the construction of the process {St, t ≥
T0 + 1}. The second equality in (176) is true because T0 is a stopping time with respect to

{X1,ĝ
t , X2,ĝ

t , t ∈ Z+}, and Ait, D
i
t, i = 1, 2 are independent of all random variables before t.

Similarly, for st = 0 we have, by arguments similar to the above,

P
(
St+1 = st+1|ST0+1:t = sT0+1:t

)
=P

(
A1
t +A2

t = st+1|ST0+1:t−1 = sT0+1:t−1, St = 0
)

=P
(
A1
t +A2

t = st+1|St = 0
)

=P (St+1 = st+1|St = 0) . (177)

The first and last equality in (177) follow from the construction of the process {St, t ≥
T0 + 1}. The second equality in (177) is true because Ait, D

i
t, i = 1, 2 are independent of all
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variables before t. For st = 1,

P
(
St+1 = st+1|ST0+1:t = sT0+1:t

)
=P

(
st + 1{

X
1,ĝ
t =0

}(D1
t −D2

t )−D1
t +A1

t +A2
t = st+1|ST0+1:t = sT0+1:t

)
=P

(
1−D2

t +A1
t +A2

t = st+1, X
1,ĝ
t = 0|ST0+1:t−1 = sT0+1:t−1, St = 1

)
+ P

(
1−D1

t +A1
t +A2

t = st+1, X
1,ĝ
t = 1|ST0+1:t−1 = sT0+1:t−1, St = 1

)
=P

(
1−D1

t +A1
t +A2

t = st+1, X
1,ĝ
t = 0|ST0+1:t−1 = sT0+1:t−1, St = 1

)
+ P

(
1−D1

t +A1
t +A2

t = st+1, X
1,ĝ
t = 1|ST0+1:t−1 = sT0+1:t−1, St = 1

)
=P

(
1−D1

t +A1
t +A2

t = st+1|ST0+1:t−1 = sT0+1:t−1, St = 1
)

=P
(
1−D1

t +A1
t +A2

t = st+1|St = 1
)

=P (St+1 = st+1|St = st) . (178)

The first equality in (178) follows from the construction of the process {St, t ≥ T0 + 1}.
The second and forth equalities follow from the fact that X1,ĝ

t can be either 0 or 1. In
the third equality, D2

t is replaced by D1
t in the first term; this is true because D1

t and

D2
t are identically distributed and independent of X1,ĝ

t and all past random variables. The

fifth equality holds because T0 is a stopping time with respect to {X1,ĝ
t , X2,ĝ

t , t ∈ Z+} and
Ait, D

i
t, i = 1, 2 are independent of all past random variables. The last equality follows from

the same arguments that lead to the first through the fifth equalities.

Therefore, the process {St, t ≥ T0 + 1} is a Markov chain.
Since λ, µ > 0, the Markov chain is irreducible.
We prove that the process {St, t ≥ T0 + 1} is positive recurrent. Note that, for all s =
0, 1, 2, . . . , because of the construction of {St, t ≥ T0 + 1}

E [St+1|St = s]

≤E
[
St +A1

t +A2
t |St = s

]
=s+ 2λ <∞. (179)

Moreover, for all s ≥ 2,

E [St+1|St = s]

=E
[
s−D1

t −D2
t +A1

t +A2
t |St = s

]
=s− 2µ+ 2λ < s. (180)

Using Foster’s theorem (see (Bremaud, 1999, chap. 5)), we conclude that the Markov chain
{St, t ≥ T0 + 1} is positive recurrent.

Proof (Proof of Lemma 8) Let (Ω,F ,P) denote the basic probability space for our problem.
Define events Et ∈ F , t = 0, 1, . . . to be

Et ={ω ∈ Ω :
(
U1,ĝ
t′ (ω), U2,ĝ

t′ (ω)
)
6= (0, 0) ∀t′ ≥ t} (181)

If the claim of this lemma is not true, we get

P

( ∞⋃
t=0

Et

)
= 1−P

((
U1,ĝ
t , U2,ĝ

t

)
= (0, 0) i.o.

)
> 0. (182)

Therefore, there exist some t0 such that P(Et0 ) > 0. Since t0 is a constant, it is a stopping

time with respect to {X1,ĝ
t , X2,ĝ

t , t ∈ Z+}.
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Consider the process {St, t = t0 + 1, t0 + 2, ...} defined in Lemma 7 with the stopping time
t0. From Lemma 7 we know that {St, t ≥ t0 + 1} is an irreducible positive recurrent Markov
chain. Furthermore, along the sample path induced by any ω ∈ Et0 , we claim that for all
t ≥ t0 + 1

St(ω) =X1,ĝ
t (ω) +X2,ĝ

t (ω)

=X
1,ĝ
t−1(ω) +X

2,ĝ
t−1(ω). (183)

The claim is shown by induction below.
By the definition of {St, t ≥ t0 + 1} in Lemma 7, we have at time t0 + 1 for any ω ∈ Et0

St0+1(ω) =X1,ĝ
t0+1(ω) +X2,ĝ

t0+1(ω)

=X
1,ĝ
t0

(ω) +X
2,ĝ
t0

(ω), (184)

where the last inequality in (184) follows from the system dynamics (1)-(3).
Assume equation (183) is true at time t (t ≥ t0 + 1). At time t+ 1 we have, by (1)-(3),

X1,ĝ
t+1 +X2,ĝ

t+1

=(X1,ĝ
t −D1

t )+ + (X2,ĝ
t −D2

t )+ +A1
t +A2

t

=X1,ĝ
t +X2,ĝ

t −D1
t −D2

t +A1
t +A2

t

+D1
t 1{

X
1,ĝ
t =0

} +D2
t 1{

X
2,ĝ
t =0

}. (185)

Since along the sample path induced by ω ∈ Et0 ,
(
U1,ĝ
t−1(ω), U2,ĝ

t−1(ω)
)
6= (0, 0) and Xi,ĝ

t =

X
i,ĝ
t−1−U

i,ĝ
t−1+Uj,ĝt−1, the event {Xi,ĝ

t = 0}
⋂
Et0 (i = 1 or 2) implies that X

i,ĝ
t−1 = 1, U i,ĝt−1 =

1 and Uj,ĝt−1 = 0. For this case, X
i,ĝ
t−1 = 1 and U i,ĝt−1 = 1 further imply that the threshold is

smaller than one. Then, the only possibility for Uj,ĝt−1 = 0 is X
j,ĝ
t−1 = 0. Therefore,

{
Xi,ĝ
t = 0

}⋂
Et0

⊆
{
X
i,ĝ
t−1 = 1, U i,ĝt−1 = 1, X

j,ĝ
t−1 = 0 and Uj,ĝt−1 = 0

}
⊆{St = 1}. (186)

Consequently, from (186), for any ω ∈ Et0

D1
t (ω)1{

X
1,ĝ
t (ω)=0

} +D2
t (ω)1{

X
2,ĝ
t (ω)=0

}
=1{St(ω)=1}

(
D1
t (ω)1{

X
1,ĝ
t (ω)=0

} +D2
t (ω)1{

X
2,ĝ
t (ω)=0

}) .
=1{St(ω)=1}

(
1{
X

1,ĝ
t (ω)=0

}(D1
t (ω)−D2

t (ω)) +D2
t (ω)

)
. (187)

Moreover,
(
U1,ĝ
t−1(ω), U2,ĝ

t−1(ω)
)
6= (0, 0) implies that

(
X

1,ĝ
t−1(ω), X

2,ĝ
t−1(ω)

)
6= (0, 0). Hence,

St(ω) = X
1,ĝ
t−1(ω) +X

2,ĝ
t−1(ω) 6= 0, (188)
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and

X1,ĝ
t+1(ω) +X2,ĝ

t+1(ω)

=X1,ĝ
t (ω) +X2,ĝ

t (ω)−D1
t (ω)−D2

t (ω) +A1
t (ω) +A2

t (ω)

+ 1{St(ω)=1}

(
1{
X

1,ĝ
t (ω)=0

}(D1
t (ω)−D2

t (ω)) +D2
t (ω)

)
=X1,ĝ

t (ω) +X2,ĝ
t (ω)−D1

t (ω)−D2
t (ω) +A1

t (ω) +A2
t (ω)

+ 1{St(ω)=1}

(
1{
X

1,ĝ
t (ω)=0

}(D1
t (ω)−D2

t (ω)) +D2
t (ω)

)
+ 1{St(ω)=0}

(
D1
t (ω) +D2

t (ω)
)

=St+1(ω), (189)

where the first and second equalities in (189) follow from (187) and (188), respectively. The
last equality in (189) follows from the construction of {St, t ≥ t0 + 1}.
Furthermore, by the system dynamics (1)-(3) we have

X
1,ĝ
t (ω) +X

2,ĝ
t (ω) =X1,ĝ

t+1(ω) +X2,ĝ
t+1(ω)

=St+1(ω). (190)

Thus, equation (183) is true for any ω ∈ Et0 for all t ≥ t0 + 1.
Then, for any ω ∈ Et0

St(ω) = X
1,ĝ
t−1(ω) +X

2,ĝ
t−1(ω) 6= 0 for all t ≥ t0 + 1 (191)

because
(
U1,ĝ
t−1(ω), U2,ĝ

t−1(ω)
)
6= (0, 0) for all t ≥ t0 + 1. Since P(Et0 ) > 0, (191) contradicts

the fact that {St, t ≥ t0 + 1} is recurrent.
Therefore, no such event Et0 ∈ F with positive probability exists, and the proof of this
lemma is complete.

E Proofs of the Results Associated with Step 3 of the Proof of
Theorem 2

Proof (Proof of Lemma 9) For any fixed centralized policy g ∈ Gc, the information I1t , I
2
t

available to the centralized controller includes all primitive random variablesXi
0, A

i
0:t, D

i
0:t, i =

1, 2 up to time t. Since all other random variables are functions of these primitive random
variables and g, we have

U i,gt =git(I
1
t , I

2
t )

=git(X
1
0 , X

2
0 , A

1
0:t, A

2
0:t, D

1
0:t, D

2
0:t), (192)

for i = 1, 2. For any initial queue lengths x10, x
2
0, we now define a policy g̃ from g for the

case when both queues are initially empty. Let g̃ be the policy such that for i = 1, 2

U i,g̃t =g̃it(I
1
t , I

2
t )

:=

{
git(x

1
0, x

2
0, A

1
0:t, A

2
0:t, D

i
0:t, D

2
0:t) if X

i,g̃
t > 0

0 if X
i,g̃
t = 0

= min
(
U i,gt , X

i,g̃
t

)
≤ U i,gt , (193)

where X1,g̃
t and X2,g̃

t denote the queue lengths at time t due to policy g̃ with initial queue

lengths X1,g̃
0 = X2,g̃

0 = 0.
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At time 0 we have Xi,g
0 = xi0 ≥ 0 = Xi,g̃

0 for i = 1, 2. We now prove by induction that for
all time t

Xi,g
t ≥ Xi,g̃

t , i = 1, 2. (194)

Suppose the claim is true at time t. Then, from the system dynamics (1)-(2) and (194) we
obtain, for i = 1, 2,

X
i,g
t =

(
Xi,g
t −D

i
t

)+
+Ait

≥
(
Xi,g̃
t −D

i
t

)+
+Ait = X

i,g̃
t . (195)

Furthermore from (1)-(2) and (193)

Xi,g
t+1 =X

i,g
t − U

i,g
t + Uj,gt

≥Xi,g
t − U

i,g
t + Uj,g̃t (196)

If X
i,g̃
t > 0, then, because of (193) and (195)

X
i,g
t − U

i,g
t =X

i,g
t −min

(
U i,gt , X

i,g̃
t

)
=X

i,g
t − U

i,g̃
t ≥ Xi,g̃

t − U
i,g̃
t . (197)

If X
i,g̃
t = 0, since X

i,g
t − U

i,g
t ≥ 0, (193) implies

X
i,g
t − U

i,g
t ≥ 0 = X

i,g̃
t − U

i,g̃
t . (198)

Combining (196)-(198) and (1)-(2) we get

Xi,g
t+1 ≥X

i,g
t − U

i,g
t + Uj,g̃t

≥Xi,g̃
t − U

i,g̃
t + Uj,g̃t = Xi,g̃

t+1. (199)

Therefore, we complete the proof of the claim (194).
Since the cost function is increasing, (194) implies that for all g ∈ Gc and any initial condition
X1

0 = x10, X
2
0 = x20,

inf
g∈Gc

JgT (0, 0) ≤ J g̃T (0, 0) ≤ JgT (x10, x
2
0). (200)

Consequently, for any PMFs π1
0 , π

2
0

inf
g∈Gc

JgT (0, 0) ≤ inf
g∈Gc

JgT (π1
0 , π

2
0). (201)

Moreover, the result of Lemma 3 ensures that ĝ gives the smallest expected cost among
policies in Gc for any finite horizon when X1

0 = X2
0 = 0. It follows that, for any finite T ,

J ĝT (0, 0) = inf
g∈Gc

JgT (0, 0) ≤ J g̃T (0, 0) ≤ JgT (x10, x
2
0). (202)

For infinite horizon cost, we divide each term in (202) by T and let T to infinity, and we
obtain, for any π1

0 , π
2
0 ,

J ĝ(0, 0) = inf
g∈Gc

Jg(0, 0) ≤ J g̃(0, 0) ≤ Jg(x10, x
2
0). (203)
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F Proofs of the Results Associated with Step 4 of the Proof of
Theorem 2

Proof (Proof of the claim in the proof of Theorem 2)
We prove here our claim expressed by equation (90) to complete the proof of Theorem

2. By (78),

ST0+1 = X1,ĝ
T0+1 +X2,ĝ

T0+1. (204)

We prove by induction that X1,ĝ
t +X2,ĝ

t = St for all t ≥ T0 + 1.

Assume that X1,ĝ
t + X2,ĝ

t = St at time t, t ≥ T0 + 1. Then for time t + 1, because of the
systems dynamics (1)-(3),

X1,ĝ
t+1 +X2,ĝ

t+1

=(X1,ĝ
t −D1

t )+ + (X2,ĝ
t −D2

t )+ +A1
t +A2

t

=X1,ĝ
t +X2,ĝ

t −D1
t −D2

t +A1
t +A2

t

+D1
t 1{

X
1,ĝ
t =0

} +D2
t 1{

X
2,ĝ
t =0

}. (205)

When Xi,ĝ
t = 0 (i = 1 or 2), Uj,ĝt−1 should be 0 because

0 = Xi,ĝ
t = X

i,ĝ
t−1 − U

i,ĝ
t−1 + Uj,ĝt−1 (206)

and X
i,ĝ
t−1 − U

i,ĝ
t−1 ≥ 0.

We consider the following two cases separately:

Case 1 U i,ĝt−1 = 0.

Case 2 U i,ĝt−1 = 1.

Case 1 When U i,ĝt−1 = 0, we must have X
i,ĝ
t−1 = 0 by (206). Then X

j,ĝ
t−1 ∈ {0, 1} for the

following reason. When U i,ĝt−1 = Uj,ĝt−1 = 0, the sizes of both queues are between the
lower bound and the threshold. That is

LB
ĝ
t−1 ≤X

i,ĝ
t−1 ≤ dTHte − 1, (207)

LB
ĝ
t−1 ≤X

j,ĝ
t−1 ≤ dTHte − 1. (208)

Combining (207), (208) with X
i,ĝ
t−1 = 0 we obtain

X
j,ĝ
t−1 =

∣∣∣Xj,ĝ
t−1 −X

i,ĝ
t−1

∣∣∣
≤dTHte − 1− LBĝt−1

≤
1

2

(
UB

ĝ
t−1 − LB

ĝ
t−1

)
≤ 1.5, (209)

where the last inequality in (209) is true because of (31) in Lemma 1, (89), and

UB
ĝ
t−1 − LB

ĝ
t−1 ≤UB

ĝ
t + 1− LBĝt + 1 ≤ 3.

Therefore, X
j,ĝ
t−1 ≤ 1 because X

j,ĝ
t−1 takes integer values.

Case 2 When U i,ĝt−1 = 1, we must have X
i,ĝ
t−1 = 1 by (206). This implies that the threshold

is not more than 1, and the only possible value of X
j,ĝ
t−1 less than the threshold is 0.
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As a consequence of the above analysis for the cases 1 and 2, {Xi,ĝ
t = 0} implies

St = X
i,ĝ
t−1 +X

j,ĝ
t−1 ≤ 1. (210)

Thus, for i = 1, 2, {
Xi,ĝ
t = 0

}
=
{
Xi,ĝ
t = 0, St ≤ 1

}
. (211)

Then,

D1
t 1{

X
1,ĝ
t =0

} +D2
t 1{

X
2,ĝ
t =0

}
=D1

t 1{
X

1,ĝ
t =0,St≤1

} +D2
t+11{

X
2,ĝ
t =0,St≤1

}
=D1

t 1{
X

1,ĝ
t =0,St=1

} +D2
t 1{

X
1,ĝ
t 6=0,St=1

}
+D1

t 1{St=0} +D2
t 1{St=0}. (212)

Combining (205) and (212) we obtain

X1,ĝ
t+1 +X2,ĝ

t+1

=X1,ĝ
t +X2,ĝ

t −D1
t −D2

t +A1
t +A2

t

+D1
t 1{X1

t=0,St=1} +D2
t 1{X1

t 6=0,St=1}
+D1

t 1{St=0} +D2
t 1{St=0}

=St+1, (213)

where the last equality follows by the definition of St+1.
Therefore, at any time t ≥ T0 + 1 we have

X1,ĝ
t +X2,ĝ

t = St. (214)

The proof of claim (90), and consequently, the proof of Theorem 2 is complete.
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