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Communicated by Y. C. Ho 

Abstract. We consider a decentralized LQG measurement scheduling 
problem in which every measurement is costly, no communication 
between observers is permitted, and the observers' estimation errors are 
coupled quadratically. This setup, motivated by considerations from 
organization theory, models measurement scheduling problems in which 
cost, bandwidth, or security constraints necessitate that estimates be 
decentralized, although their errors are coupled. We show that, unlike 
the centralized case, in the decentralized case the problem of optimizing 
the time integral of the measurement cost and the quadratic estimation 
error is fundamentally stochastic, and we characterize the E-optimal 
open-loop schedules as chattering solutions of a deterministic Lagrange 
optimal control problem. Using a numerical example, we describe also 
how this deterministic optimal control problem can be solved by non- 
linear programming. 

Key Words. Measurement scheduling, decentralized estimation, team 
theory, chattering controls. 

1. Introduction 

In real-world estimation problems, every measurement  has an intrinsic 
cost. When a variety of  measurements are possible, one would like to sched- 
ule the measurements,  on-line or off-line, to minimize an objective modeling 
the tradeoff  between measurement  error and measurement  cost. It  is well 
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known that open-loop measurement schedules are optimal over the class of 
closed-loop schedules for single-observer centralized problems in which the 
dynamics is linear, the objective is quadratic, and the noise is Gaussian 
(LQG problems) ; see Refs. 1-4. This result is an immediate consequence of 
the fact that, for open-loop schedules, the error covariance of the underlying 
Kalman-Bucy estimator is data independent. It follows that the conditional 
error covariance and measurement cost incurred by any realization of any 
closed-loop measurement schedule is the same as the unconditional error 
covariance and measurement cost incurred by some open-loop schedule. 
Hence, some open-loop schedule must perform at least as well as every 
closed-loop schedule. A similar result holds for multi-observer LQG prob- 
lems in which limited continuous communication between observers and 
an estimate fusion center is permitted [i.e., quasi-decentralized problems 
(Ref. 5)]. 

In this paper, we consider a multi-observer LQG measurement schedul- 
ing problem in which no communication is permitted, but the observers' 
estimation errors are coupled quadratically [a dynamic team decision prob- 
lem (Refs. 6, 7)]. This setup, motivated by considerations from organization 
theory (Ref. 8), models measurement scheduling problems in which cost, 
bandwidth, or security constraints necessitate that estimates be decentral- 
ized, although their errors are coupled. Such coupling arises, for instance, 
in decentralized tracking problems in which the cost and accuracy of local 
estimates must be balanced against the cost of systematic errors, e.g., all 
estimators simultaneously misjudging target position in the same direction. 
We show that, unlike the centralized and quasi-decentralized cases, the 
decentralized scheduling problem is fundamentally stochastic, and we char- 
acterize the e-optimal open-loop schedules as chattering solutions of a deter- 
ministic Lagrange optimal control problem. Using a numerical example, we 
also describe how this deterministic optimal control problem can be solved 
by nonlinear programming. Our results follow from the recursive structure 
of team-optimal estimators (Ref. 9) and two properties of relaxed controllers 
(Ref. 10). The fundamental stochastic nature of the decentralized problem 
is a consequence of the fact that the team-optimal estimation error, although 
Gaussian, is not orthogonal to any of the observers' observations. 

2. Problem Statement 

Consider a linear dynamic system with a n-dimensional state process 
{x,, t>  to } that satisfies 

dxt= Atxt dt + d~t , Xto= Xo. (1) 
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Here, {~t, t>to} is a n-dimensional zero mean Wiener process with 
covariance 

fmin{ t,s} 
E [ ~ , ~ ]  := ~rdr,  (2) 

Xo is a zero mean Gaussian n-vector with covariance Ex0x0 that is uncorrelated 
with {it, t >  to }, and At and Er162 appropriately dimensioned, continu- 
ously differentiable, real-valued, matrix functions. Under these conditions, 
(1) admits a unique, mean-square continuous, Gaussian solution (Ref. 11, 
Theorems 8.1.5, 7.1.2, and 8.2.10). 

Suppose that {xt, t> to} is monitored by N observers and that, for all 
t > to, the kth observer must use one of M ~ distinct, costly, noisy, linear, 
measurement devices, indexed by k Vt, to make its ink-dimensional 
observation, 

dy~=Ctk(v~t )xtdt+dcok(v~t ), t>_to. (3) 

Here, k C, (v t )  models the dynamics of the kth observer's vtkth measurement; 
it is assumed to be a continuously differentiable, real-valued, matrix function 
of  appropriate dimension; {cot k, t >  to } models the mk-dimensional zero 
mean Wiener noise process associated with this measurement. The noises 
are uncorrelated with Xo and have cross covariance 

f min{t's} i j 
E[co~(v~)co~r(v~)] := Eo~'o,J;r(VrV r) dr, (4) 

to 
�9 . . i where go,,o,J.,(v,, v~) is an appropriately dimensioned continuously differen- 

tiable, real-valued, matrix function that is positive definite for all i =j. 
It is assumed that the observers do not share any information, but have 

perfect recall of  all that they have observed. Specifically, the information 
sets of  the kth observer just prior to and just after its measurement at time 
t > to are assumed to be 

A~_ := {dye: se[to, t)}, At ~ := {dye: s~[to, t]}. (5) 

Let F k and ~ denote the sets of  tr(At k_ )-measurable measurement schedules 
7/~ k , "/t ( A t - )  E { 1 . . . .  , M k } and cr(A~)-measurable estimators ~b k, 

k k n ~b, (At )  8 R ,  available to the kth observer at time t > to. The objective is to 
identify collective measurement scheduling and estimation policies, 

7/:= {7/t := ( 7 / ' , . . . ,  7/~): t~[t0, ts]} ~F :=/F~ := I~ F~: t~[t0, tF] t ,  (6) 
l i=1 ) 

. . . . .  qbtN)'tE[to, tf]}E~:=I~t:= ~-I t~:t~[to, tf]l, (7) 
1. ) i=1 
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that minimize the expected value of a cost function that is the sum of a term, 

f t f ~ i i  
Jm(•) :~- qt(vt) dt, (8) 

to i=l 
modeling the observers' collective measurement cost under measurement 
schedule ~,, and a term, 

:-- " d t ,  (9) 

modeling the observers' collective estimation error when the observers' esti- 
^ i _ _  i i mators are x t -  tp,(A,), for i= 1 . . . . .  N. Here, the measurement cost q~(k) 

is a real, nonnegative, continuously differentiable time function for all i=  
1 . . . .  , N and k = 1 . . . . .  M i, and the coupling matrix Q ~ ~vn • N~ is assumed 
to be symmetric and positive definite. 

An e-optimal solution to this partially-nested dynamic team problem 
(Refs. 6, 12) is a pair {7"~F, ~b'eq)} such that, for e>0 ,  

E~"4"[J,,(),')+J~(7", df)]<infEr'~[Jm(y)+Je(),, ~b)]+e. (10) 
F , ~  

We accept e-optimal solutions because, in general, infimal solutions may 
correspond to inadmissible mixtures of pure schedules, i.e., schedules that 
chatter between several measurement configurations arbitrarily fast (Ref. 
10). 

To interpret the coupling introduced by Q, note that, when Q is parti- 
tioned into N 2 submatrices Qu~ R. • (9) can be rewritten as 

f ttf N,N ~,~, ([xt-2~]rQU[xt-2~]) dt. (11) 
o 

Hence the Q;J can be viewed as weighting the relative importance of local 
errors versus system-wide errors. For instance, when the off-diagonal QU 
terms are identity matrices, the error terms are simply dot products, and 
systematic errors (errors in the same half-plane) are discouraged (Ref. 7). 
When the off-diagonal QU terms are zero, the observer's estimates are un- 
coupled, and the problem decomposes into N single-observer problems. 

The motivation for considering such problems comes from organization 
theory (Ref. 8). In many organizations, the compartmentalization of infor- 
mation forbids information sharing; yet, there is need for coordinated deci- 
sion-making. For instance, as noted in the introdution, in decentralized 
tracking problems, it may be important to balance the cost and accuracy of 
local estimates against the cost of all estimators simultaneously misjudging 
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the target position in the same direction. In the present problem, it is the 
quadratic coupling of the observers' estimation errors that models this 
tradeoff. 

3. Team Estimation 

To clarify the issues underlying the determination of optimal decentral- 
ized estimation and measurement scheduling policies, we consider first the 
quadratic team estimation problem that arises when the observers' measure- 
ment scheduling policies are open-loop and fixed. The results obtained are 
essentially those of Barta (Ref. 9). We summarize them here, in our notation, 
because they will be needed later, and because Ref. 9 is unpublished. 

Let | denote the set of open-loop measurement scheduling policies in 
F. For fixed 0 ~| the observers estimation problem is 

in~ fE~176 L J"o Q[ " J 'J x,- 

Because x, is uncontrolled, and because the mean-square continuity of xt 
ensures that the expectation in (12) is finite for all nontrivial ~b, an inter- 
change of inf E ~ and I is justified by the Fubini theorem. Thus, we have 
the following simple result. 

Lemma 3.1, Solving (12) is equivalent to solving 

infE0,r �9 Q , 

�9 ' LLx,- , J L X t - 2 7 J j  

for all t~[to, tf]. (13) 

Because ( x f  . . . . .  x r )  r is a Nn-dimensional functional in the Hilbert 
space ~Nn of Nn-vectors of square-integrable random variables with inner 
product 

(x, y) := E[xrQy] ,  (14) 

solving (13) is in turn equivalent to finding the Hilbert space projection of 
(xrt . . . .  , xrt) r on the subspace qC~n of ~ N ,  containing those vectors whose 
( k - 1 ) n  + 1 to kn elements are measurable functionals of  At k (Ref. 7). The 
Hilbert space projection theorem ensures that this problem admits a unique 
solution, while the problem's partial nestedness and jointly Gaussian obser- 
vations ensure, by the partial nestedness theorem in Ref. 6 and the quadratic 
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team decision theorem in Ref. 7, that this solution is linear in the observers' 
observations. Hence, we have the following result. 

Theorem 3.1. (Ref. 6, Theorem 2). The optimization problem (12) 
admits a unique solution q~* = { ~b*r = (~b, l r  . . . .  , q~,Nr) : t e [to, tf] } in which 
each estimator q~,k is a linear functional of  A k, 

As detailed in Ref. 9, one approach to deriving recursive expressions 
for these linear estimators is to attempt to parallel the innovations derivation 
of the classical Kalman-Bucy filter (Ref. 13). To this end, it is useful to 
note that (13) is a special case of  the more general quadratic team estimation 
problem 

inftr E~ (15) 
"Pt 

where the (Nn 2 x Nn)-dimensional state process {X,, t > to } satisfies 

for 

dXt = d t X t  dt + dEt, X, 0 = Xo, (16) 

Xo := d i ag [x0 , . . . ,  XO]Nn2xNn, (17) 

act := diag[At . . . . .  A,]N,2• N,~, (18) 

Et := diag[ ~t . . . . .  ~t]Nn2• (19) 

and the estimate -~t is determined by a functional Vtt in  Wt, the space of 
linear functionals of  

dYt  = ~t  ( Ot)Xt dt + d ~ t ,  ( 2 0 )  

where 

cg,(0,) := diag[C] (0~) . . . .  , C] (O~) , . . . ,  
n times 

c N ( o  N) . . . . .  cN(oN)In  lY,~=, m'x Nn 2 , ( 2 1 )  

n times 

f~t(0,) := diag[co~ ( 0 ~ ) , . . . ,  ro~ (0~) . . . . .  
n times 

u 
. ,  ~ot (0,)].z,"=,,.'• u.,  (22) 

n times 

for Ot := (01 . . . .  , 0 f ) .  
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To see the relation between (15) and (13), note that solving (15) is 
equivalent to finding the projection of the (Nn2• Nn)-dimensional func- 
tional Xte j/gN,2 • N. on qr • N,, where ~N,~x N, denotes the Hilbert space 
of (Nn z • Nn)-dimensional matrices of square-integrable random variables 
with inner product 

(X, Y) := tr E [ X Q y r ] ,  (23) 

and Yet u'2• denotes the subspace of Jt ~N"2xN" for which columns 
( k -  1)n+ 1 to kn of X are measurable functionals of A~ (Ref. 9). By the 
Hilbert space projection theorem, the infimum in (15) over yC~,2• is 
achieved by the unique .~* e ~/~,2• u, satisfying the orthogonality condition 

( X t - X * ,  Dr) =0, for all D t e ~  "2• (24) 

Because KDteYlt u'2• for any real (NnZx Nn2)-dimensional matrix K, (24) 
implies that 

( X, - X* , KD , ) := tr E~ ~*[ [ X t - X*] Q[ KD , ] r] 

= tr E~ 

=0. (25) 

But by (25) and the Hilbert space projection theorem, if 2(* achieves the 
infimum of (15), then Zt = K r X  * achieves the infimum of 

inf tr E~ Z, ]Q[KrXt -  Z, ] r].  (26) 
Wt 

Setting K= [S rl 0], where 

S :=  [If . . . .  lnl . . . . . .  I/l".... 121, (27) 
I~ . . .  I n r epea ted  N t i r n e s  

a n d / f  denotes the ith row of a n x n identity matrix, we find that problem 
(13) is a special case of problem (26). Thus, we have obtained the following 
result. 

Lemma 3.2. If X* achieves the infimum of (15), 
( )~ t  ~ I T  . . . .  , 2 *Nr) =S)(* achieves the infimum of (12); moreover, 

AI T A1 FFx,_ ,l Fx,_x, ll 

then 

(28) 
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The primary advantage of working in the higher-dimensional space of 
problem (15) is that, in this space, orthogonality implies a simple Wiener- 
Hopf-like condition. Specifically, since (25) holds for all real KE RN,2• N,2, 
the optimal estimate )(* must satisfy 

E ~ [Kr[Xt- X*] QDr~] = 0, (29) 

for all st[to, t] and D,c~/~ "2• or more generally, for any (MxNn)- 
dimensional Ds, such as Ys, for which columns (k - 1)n + 1 to kn are measur- 
able functionals of Aft. But since 

)(t = (~[ Y~: to<S<t], 
where (q is a functional with kernel fg(t, s), (29) implies the following result. 

Lemma 3.3. (Ref. 9, Theorem 5.1). The optimal functional fg* for 
problem (15) must satisfy 

E~ dYr]QYrl=O, forallto<_S<t. (30) 

To derive a recursive expression for .~*, fix 0e|  let 
T YflXoXo := E[XtoQXto] = Q| (31) 

Y.~__.., := E[Et QErt] = Q|162 (32) 

and let 

~:~.,(0,) := E~ 
i 11 I 1 I 1N 1 N 7 Q | ol,t(Ot, Ot ) . . .  Q |162 Ot ) 

= " : J ,  (33) 
1 N 1 ffVNt~ E N ~ tO N oN) 

L ~  | 0,)  ~ ~ ~ ~ .,, , ,  , ,  

where | denotes the Kronecker product, i.e., 

._ [ X I , Y . . . X , . m Y ]  �9 Xm,,Y.J,m 
Xm •174 Yn• "- LXIY . ' " .  mn (34) 

When Y~ is replaced by a Q-orthogonal increments process Vt, i.e., a process 
satisfying 

f 
min{,,~} 

E[VtQV r] = zQFv, r dr, (35) 
" to 
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for some symmetric, positive definite (nZ,-u=l m~xnE~=l m~)-dimensional 
Q Evv, r (Ref. 9), Eq. (30) and the basic properties of stochastic integrals 

(Ref. 11, Theorem 5.5.1) imply that 

In Ref. 9, it is shown by a Gohberg-Krein factorization argument (Ref. 
13) that, for all t>to, the process {Vt, tS[to, t/]}, with dynamics 

dV, = dY, - ~, (Or)X* dr, (37) 

has covariance 
I min{t's} 

E~ = EnQn,, dr. (38) 
- to 

It is also shown that the subspaces generated in af au"2• u" by respectively all 
square-integrable linear functionals of V,, and all square-integrable linear 
functionals of Y, are identical. It follows that we can substitute (37) in (36) 
and parallel the arguments in Ref. 13 to obtain the following theorem. 

Theorem 3.2. (Ref. 9, Theorem 5.5). For fixed 0e| the estimator 
)?* achieving the infimum in (15) satisfies the matrix stochastic differential 
equation 

dX* = ~ t 2 *  dt + Etlo cgt( Ot ) r[E~n,t( Ot ) ] - '  

x [dYt-C#,(O,)X * dt], X, o^*-- O, (39) 

where 

Ztlo := E~'[[X,-.~*]Q[Xt-.~*]rl {0~: se[to, t]}] 

satisfies the matrix Riccati equation 

• o = s~, X,j o + X,a o.~l r, + X ~ , ,  

--X,10~C,(0t)T[XnO.,t(0,)]-I%(0,)X,10, 

(40) 

Etol  0 = ExQ, ox,0. (41) 

Note that the invertibility of ZQnn,, is assured, because Q and 
Y~o,,o,,,t(O~, 0~) are positive definite for all i, and t>  to (Ref. 7, p. 870). 

4. Decentralized Measurement Scheduling 

Because the arguments underlying (12)-(28) hold regardless of whether 
the measurement scheduling policy operates open-loop, the original 
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measurement scheduling problem, 

inf Er'C'[Jm (y) + Je (~:, ~b)], 
F , ~  

can be reformulated as 

(42) 

infE r'e* Jm(y)+ S(Xt--2*,)Q(X,--2*)TSTdt, (43) 
F 

0 

where for fixed reF,  {2,*, te[to, t:]} is generated by the estimator that 
achieves 

inftr  Er'v/[[Xt-st]a[xt--xt]T],  (44) 
�9 F t 

for all te[to, tf]. In view of (43), the results of Section 3 have the following 
significance. Assume hypothetically that, for all te[to, tf], ~:~F, and k=  
1 . . . . .  N, those terms in 

N,N 
S ( X t - f ( * ) Q ( X t - X * )  rSr= X [xt-~*~]rQa[xt -~*:] (45) 

i , j=l  

involving the kth estimator's error [xt-~,k] are independent of the data 
At ~ . Then (i) some open-loop scheduling policy performs at least as well as 
every e-optimal closed-loop policy; thus, (ii) the original measurement 
scheduling problem reduces to a deterministic optimal control problem. 

To see this, observe that, for every e-optimal closed-loop policy y '~F ,  
there exists at least one realization )~t: of At: such that 

N,N _f tf Er'[Jm(y')l)~t:] + ~, Er"O*[[xt-x *ilTaijtxt j ~ t t-~*Jll~i-~t Jl,ot, ~J]dt 
i,j = 1 - to 

N: f t'f <-~Er ' [Jm(~ee ) ]  + E Er"~*[[xt-~*ti]TQiJ[xt-~*tJ]] dt 
i,j= 1 o 

~ to 

- -  F 0 

Because the schedule {v,= Y~(;.t-), te[to, t:]} induced by this realization is 
indistinguishable from that of the open-loop schedule {0t= vt, te[to, t:]}, 
if those terms in (45) involving the kth estimator error [x t -2  *~] are 
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independent of A~, then the following equality holds: 

N,N _f,: 
Er'[Jm(r')lAtzl + y" Er"4'*[[xt-2*qrQ~[x,-2*qlA,[, A,{] at 

i,j = 1 . to 

N,N . f  tf 
=E~ + ~ E~ -2*ilTg'lljrXt J ~ L t - -  2$Jll~l'it Jl t ,  Ut]dt 

i,j = 1 - to 

N,N ~to f =J,,(O) + }2 E~176 tit. 
id= 1 

(47) 

But the substitution of (47) in (46) would then establish the e-optimality of 
the open-loop schedule 0. Hence, for every e-optimal closed-loop policy ~", 
we could find an open-loop policy that would perform at least as well; thus, 
by Lemmas 3.1 and 3.2, and by Theorem 3.2, the original measurement 
scheduling problem could be reduced to the deterministic problem 

[ ] inf Jm(O)+ SE,ioSrdt , (48a) 
0 " to 

" _ _  T Q T Q - 1  
s.t. ZttO--d~t~tlO-~ EtiOd~t + Z E E , t - - Z t I O ~ t ( O t )  [~Ofl, t (Ot ) ]  ~ t ( O t ) E t l o , ( 4 8 b )  

~'dto] 0 = EQtoXto ~ (48c) 

Unfortunately, those terms in (45) involving the kth estimator error 
[xt- 2 *k] need not be orthogonal to, let alone independent of, the observa- 
tions in A~. For instance, consider a two observer, scalar system [i.e., N=  
2, n = 1, and rn i= 1, for i= 1, 2].with open-loop measurement schedule 0. 
Because the optimal estimator X, must satisfy the orthogonality condition 
(29) for K=[(1, 1)rl 0] (Lemma 3.3), the team optimal estimator 
(2 *l , x .2) = (1, 1))(* (Lemma 3.2) satisfies 

E~ .1, x t -2*2)OY r] =0, se[to, t], (49) 

o r  equivalently, 

EO,r [( ( x t  _ 2,t l ) Q 11, + (xt - 2~t 2 ) Q2~ )yk] __ O, s~[to, t], k= 1, 2. 
(50) 

Since ( x , -  2 .1 ), (xt-2t  . 2  ) ,  and yt k are jointly Gaussian, this in turn implies 
that 

( x , - 2  .1 )Qak+ (xt_2,Z)Q2k, (51) 
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and hence the square of (51) times 1/Q ~*, 

X 2 . 1  2 lk 2 kk ' t -2  X 2 .1 X 2 *2 lk 2k k ( _ , ) ( Q  ) / Q  ( , -  , )( , -  , )Q Q /Qk 

+ (x , -  2 *2)2(Q2k)E/Qkk, (52) 

must be independent of At ~. 
Now, suppose that those terms in SEtLo S r involving the kth estimator, 

i.e., 

(x, - 2 *k)zQkk + 2(x , -  2*' )(x t - -  Xt . 2  )Q21 (53) 

are also independent of A k. Then, the difference between (52) and these 
terms, 

( x , -  2 *3-k)z(Q2')2/Qkk, (54) 

as well as the square root of this difference, 

(55) 

must also be independent of A k. It follows that x , - 2  *3-k is orthogonal to 
the observations in A, k, and by (50), A 3-~. Hence, by the Hilbert space 
projection theorem 

2 "  = E~ IA]] = 2*2= E~ a.s. (56) 

But this is impossible, unless A~ = A 2 a.s. Thus by contradiction, we have 
the following lemma. 

Lemma 4.1. For decentralized LQG measurement scheduling prob- 
lems, the terms in 

N,N 
S(Xt-X*)Q(Xt-f(*t)rS r= ~ [xt--2*~]TaU[xt--2*J], (57) 

i,j= 1 

involving the kth estimator error [x , -  2*k], need not be independent of the 
observations in A~. 

Lemma 4.1 suggests that, unlike centralized LQG measurement schedul- 
ing problems, the decentralized problem (43) is fundamentally stochastic. 
Hence, to identify member-by-member optimal solutions (Ref. 7), let alone 
optimal solutions, we must solve N coupled, partially observed, stochastic 
control problems. We could formulate N coupled, dynamic programming 
equations for these problems, but the information states would be infinite 
dimensional. Instead, we restrict attention to open-loop measurement sched- 
ules. This reduces (43) to the deterministic optimal control problem (48), 
or equivalently, to a deterministic optimal control problem in which Ztlo 
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plays the role of the state matrix and 0, := (0~, . . . ,  0~) can be viewed as 
the measurement pattern selected at time t by a 0-1 switching control. 

Formally, we can transform (48) to a Lagrange problem of OPvtimal 
control as follows. Let p denote an arbitrary mapping of the M =  l-'Ii= 1 Mi 
possible measurement patterns onto the integers 1 to M; let 

O(k) := (Ol(k) . . . . .  o~v(k)) ~l-[~=, { 1 , . . . ,  M'} 

denote the kth of these patterns; and define 

1, when p(O,) = O(k), 
u,(k) := (58) 

0, else, 

to be the 0-1 switching control that indicates when the kth pattern is active. 
Then, problem (48) is equivalent to the following Lagrange optimal control 
problem: 

inf qi(O'(j))u,(j) q- S~tluS dt, (59a) 
U L, 1 

0 

s.t. ~,lu=d,Y~,lu+~,l,~CT+Y~e ,' 

-~,l. j~ ~t(O(]))r[Eenn,,(O(J))l-l~,(O(J))u,(]) E,I., (59b) 

-- Q 
Y~,01 u -  ~x,0x, 0 , (59c) 

where U denotes the collection of measurable M-vectors u,:= 
(u, (1) . . . . .  u, (M)) that remain in the control restraint set 

Ut:={(u,(1),..:,ut(M)) �9 ~ ut(j)=l,ut(j)~{O, 1},j= 1, . . . ,M},  (59d) 
j = l  

for all t~[to, if]; i.e., 

U:= {u,~ U, : te[to, if]}. 
Because U, is not convex for any t, problem (59) need not have a 

solution. Instead, schedules achieving the infimum may correspond to a 
mixture of pure schedules, i.e., a schedule that chatters between several 
measurement configurations arbitrarily fast (Ref. 10). To guarantee the exist- 
ence of solutions, we could impose further restrictions on U: a switching 
cost, an upper bound on the number of measurement patterns enabled over 
[to, t/], or a minimum time between switchings, for instance. Instead, we 
relax the restrictions on U in a way that ensures that optimal solutions to 
the corresponding relaxed version of problem (59) always exist, and so that 
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the performance of  these solutions can be approximated arbitrarily closely 
by some u~ U. 

Define the relaxed version of  problem (59) to be 

inf q~(Oi(j))ut(j)+ SEtjuS dt, (60a) 
co U i, 1 

0 

s . t .  ~tlu = d~t~tlu T Q 

-Ytl~ j~__~ ~t(O(j))r[EQnn,t(O(J))]-~t(O(j))ut(j) E,lu, (60b) 

- e (60c) Et01 u - -  ~XtoXto , 

where co U denotes the collection of  measurable M-vectors u , := 
(ut(1) . . . . .  ut(M)) that remain in the convex hull of  the original control 
restraint set Ut, 

coUt:={(ut(1) .... ,ut(M)): ~ ut(j)=l,ut(j)>_O,j=l,...,M}, (606) 
j = l  

for all t~[to, tf]; i.e., 

co U:=  {u,~co U,:te[to, tl] ) . 

The relaxed controls can be viewed as probability vectors in a M -  1 unit 
simplex. Thej th  vertex of  this simplex, enables thej th measurement pattern. 
Controls that are convex combinations of  multiple vertices enable pattern j 
with probability u, ( j ) .  Physically, the combinations correspond to schedules 
that use simultaneously a bit of  many patterns, i.e., schedules that chatter. 

Because (i) Ut is compact and (ii) the state dynamics and objective 
in (60) are linear functions of  u, with coefficients that are continuously 
differentiable in Z, i. and t, the existence of a u* ~co U achieving the infimum 
in (60) follows from the standard existence theorem for relaxed controllers 
(Ref. 10, Theorem 4.5) if (iii) the state trajectories generated by arbitrary 
u~co U are uniformly bounded for all tE [to, tf]. To see that (iii) is satisfied, 
note that, because Xxe0x0 is symmetric and nonnegative definite, the basic 
properties of  the Riccati equation ensure that, independently of  u, 
E[XtQXrt], Ztj,, and E[XtQXrt] -Ell, are symmetric and nonnegative definite. 
Because the principal minors of  symmetric, nonnegative-definite matrices 
are nonnegative, 

(E[XtQXrt ]- Xt[u)ii~__ O, (61) 
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for all ie { 1 . . . .  , Nn2},  hence 

IIZ,lu Ilmax := max I(Ztl~)~l 
/ j  

= max I(Etlu)~ I 
i 

< max I(E[XtaXrt])i~ I 
i 

= max I (a |  l)~,l 
i 

= max [Qii[ max I(E[xtxr,]), ,I .  (62) 
i i 

But since xt is mean-square continuous, (E[xtxT])~ is uniformly bounded 
for all t~[to,  ty]. Thus, we have proved the following result. 

Theorem 4.1. The relaxed version of the open-loop decentralized 
measurement scheduling problem (60) admits an optimal solution u* ~co U. 

In fact, the performance of the optimal relaxed controller u* ~co U can 
be approximated arbitrarily closely by some u~ U. To see this, partition 
[to, ty] into k equal intervals Ittk,.t~,+l~), where i = 0  . . . . .  k - 1  and to = 
tko < tkl <" " " < tkk = tf; partition each of these k intervals into consecutive 

�9 . subintervals Itt~i,t~,+,~)(j),j = 1 . . . . .  M ,  with lengths proportional to utki(J), 
and let 

k - I  

u k := (~lj, �9 �9 �9 6Mj), when t~ U Itt~,.tk(~+~(J), (63) 
i = 0  

where 

~l,n = 1, when l = m, 

c~t,~ = 0, otherwise. 

Then, by construction, the fraction of time that measurement pattern 
(~lj, �9 �9 �9 c~Mj)e Ut is active during the interval Ittk,tk§ ~ is precisely u* ( j ) .  By 
the chattering lemma (Ref. 10, p. 267), under hypotheses (i)-(iii) above, 
ukteUt convergers weakly to u*~co Ut on [to, tf] as k - - . ~ ;  i.e., for every 
bounded measurable test function gt, 

.its ~ts gtugt dt ~ gtut dt ; 
" tO tO 

see Ref. 10. Moreover, the state trajectory gtluk induced by uke  U converges 
uniformly on [to, tf] to the state trajectory Etl~* induced by u* ~co U. Hence, 
we have the following result. 
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Theorem 4.2. For  all E > 0, and for every relaxed open-loop measure- 
ment schedule u*eco U, there exists an open-loop measurement schedule 
us  U such that the cost of schedule u is within e of  that of u*. 

5. Numerical Solutions 

One approach to identifying E-optimal solutions to the relaxed schedul- 
ing problem is to restrict u to the class of piecewise constant functions with 
at most L -  1 arbitrarily spaced discontinuities, i.e., to let 

ut(k):=ui(k), whente[t~, t i+l) , forto<tl<' ' '<tL-l<tL=tf ,  (64) 

for all i = 0 , . . .  , L - l ,  k = l  . . . . .  M, and te[to, tf]. Then, (60) can be 
viewed as a linearly constrained, nonlinear programming problem of the 
form 

min J(u), (65a) 
M 

s.t. ~ ui( j )=l ,  ui(k)>O,i=O . . . . .  L -  1 a n d k = l  . . . . .  M, (65b) 
j = l  

where 

u := (u0(1) . . . . .  uo(n), u, (1) . . . .  , u I (M) . . . . .  uL-2(M),  

UL-l ( 1 ) , . . . ,  UL-l (M)),  (65C) 

J(u) := • q~(O~(k))u,(k) + SY.,luS r dt , (65d) 
i = 1 i j ,  1 

with Ztlo satisfying 

�9 - -  T Q 
~ t l u  - -  d ~  t~ ' t lu  dr" ~ ' t l u d ~  t Jr" ~ ' Z - , t  

--~tlu (O(k))r[E~ta.t(O(k))l-lc~t(O(k))uJ( k Y~,l,, (65e) 
= 

_ o (65f) Y~t01 u - ~',d,0, 

for ali te[tg,  ti+l), i = 0  . . . . .  L -  1. 
Given J(u) and its gradient VuJ(u), local optima for (65) can be com- 

puted using a variety of descent algorithms. The challenge is the computation 
of  Vj(u) .  Because J(u) is parameterized by a matrix differential equation, 
solving for VuJ(u) is equivalent to solving a two-point boundary-value 
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problem involving the Hamiltonian of J(u), 

I-I(E,I., P,I., u) := q~(O{(k))uj(k) +SZtI.S r + t r  [P,~.~,~ul, (66) 
j, 1 

for all te[ti ,  ti+]), i=  1 . . . . .  L -  1. Formally (see Ref. 14), 

VuJ(u) = [0H(E,I., Ptl., u)/(?u] dt, (67) 
o 

or equivalently (differentiating term by term), 

~J(u)/Oui(k) 

i J 

- t r  [PLE,t.cgt(O(k))r[ESta, t(O(k))]-'~g,(O(k))E,t.lJ dt, (68) 

where the state matrix E,i. satisfies 

OH(Etlu, Ptt., u) / O Pttu 

= ~,tlu = Q d~ t~.tl u q- ~tlud~ t "[- EEE,t  

--~"U [~=l c~t(O(k))T[~'~'t(O(k))]-lc~t(O(k))ui(k)l~'t'u' (69) 

for ~t0lu ---- Ex,ox, o, Q and the costate matrix Ptlu satisfies 

~H(ZtI,,, P, lu, u)/~ZtL,, 

= -P,t. = - S r S -  dtP,t. - Ptl udTt 
M 

+ E [~,(o(tc))T[z~..,(o(~))]-~e,(o(k))u,(lc)]Y,~e,~u 
k = l  

+ P,l.Etl.[~g,( O(k) )r[E~a,t ( O(k) )]-lcgt( O(k) )u,(k)], (70) 

for P t d u = O ,  and Et~tu=Em., for all te[t~, tj+l ), i = 0  . . . .  , L -  1. 

Example 5.1. To illustrate the approach, consider, for t~[0, 2] sec, a 
two-observer problem with scalar state and observation dynamics [see (1) 
and (3)], 

dxt=2x, dt+d~t, x0.~ N[0, 40], (71) 

dy~ ~ {2xt dt + dog~ (1), x, dt + dco~ (2) } , (72) 
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dy~E{2x, dt+dco2(1), x, dt+dco2(2)}, (73) 

noise covariance [cf. (2) and (4)] 

F ] coI(1) 
s/o,l(2) / [~s, col(l), col (2), co~(1), co2(2)1 

Lco, (z) d 

o o o 1 f min{t.s} 0 1 0.10 0.25 --0.50 

=~0 0 0.10 2 --0.50 0.25 dr, (74) 
0 0.25 -0.50 1 0.10 

0 -0.50 0.25 0.10 2 

measurement costs [see (8)] 

q~(1) = 3 and q~(2) = 1, i= 1, 2, (75) 

and coupling matrix [see (9)] 

Suppose that the maximum switching frequency fm~x is 200 Hz, and 
suppose that we restrict the set of allowable measurement schedules to the 
class of piecewise constant functions with at most L -  1 = 9 uniformly spaced 
discontinuities, where L is chosen such that the interval (tf-to)/L is large 
enough that relaxed controls can be approximated reasonably by chattering, 
e.g., 

L = [(ty- t0) fm~x]/[10(# of patterns)]. (77) 

Solving this relaxed open-loop measurement scheduling problem (60) is 
equivalent to solving (65) with u constrained to a M1M2L = 40-dimensional 
unit simplex. Given routines for computing J(u) and VuJ(u) at points in 
this simplex, we can use any reliable convergent descent algorithm, such as 
the hybrid reduced-gradient/quasi-Newton algorithm implemented in 
MINOS 5.0 (Ref. 15), to iterate on u. To evaluate J(u) and VuJ(u), we must 
solve Eqs. (68)-(70), a two-point boundary-value problem. One approach 
is to use a differential equation solver, such as the IMSL sixth-order Runge- 
Kutta-Verner routine DVERK (Ref. 16), to integrate (65d) and (65e) for- 
ward in time, to compute J(u) and Et~u, and (68)-(70) backward in time, 
starting from Eft,, to compute V,d(u). 
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When the DVERK error control tolerance and minimum stepsize are 
set to 10  - 9  and 10  - 6  , and the MINOS 5.0 optimality tolerance and function 
precision are set to 10 -6, we find, after computing J(u) and VuJ(u) at 178 
points (38 seconds of Amdahl 5860 CPU time), that relative to a schedule 
in which both observers use observation dynamics 1 over the entire interval, 
the coupled schedule u *c in Table 1 is locally e-optimal. Here, 
u *c(t,,,,+ ,)~.~ j," k) denotes the fraction of time that the locally e-optimal, coupled, 
chattering schedule should simultaneously engage observer l's jth observa- 
tion dynamics and observer 2's kth observation dynamics during the interval 
[ti, ti+l ). 

When we neglect the coupling between the observers errors (i.e., when 
we set the off-diagonal elements of Q to zero), after computing J(u) and 
VuJ(u) at 108 points (23 seconds of Amdahl 5860 CPU time), we find that 
relative to a schedule in which both observers use observation dynamics 1 
over the entire interval, the schedule u *u~ in Table 2 is locally e-optimal. 
Moreover, we find that the coupled cost (the cost for the original Q) increases 
from 17.40 to 19.40. 

Although we cannot prove that the relaxed coupled and uncoupled 
schedules in Tables 1 and 2 are globally e-optimal, the results are not 
counterintuitive. In both cases, over the first interval, the large covariance 
of the initial state relative to the state noise covariance makes it desirable 
to rely on the accurate 1,1 dynamics despite its cost. Over the next eight 
intervals, the observers either chatter (see Theorem 4.2) between the 2,1 and 
1,2 dynamics (cheap/costly and costly/cheap) or between the 1,1 and 2,2 
dynamics (costly/costly and cheap/cheap), depending on whether positively 
correlated errors are penalized. When these errors are penalized, the negative 
correlation between o9~(i) and c0~(j), for i#j, helps to reduce the penalty. 
Over the final interval, the value of accurate, coupled (uncoupled) observa- 
tions diminishes, because no further observations or estimates will be made; 
hence, both schedules make greater use of the least expensive observation 
dynamics 2,2. 

6. Conclusions 

In this paper, we have shown that decentralized LQG measurement 
scheduling problems are fundamentally stochastic, and that the problems' 
e-optimal open-loop schedules are chattering solutions of deterministic 
Lagrange optimal control problems. Subject to the inherent limitations of 
LQG models, these results provide a means for determining numerically the 
e-optimal open-loop measurement schedules for decentralized surveillance 
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or tracking systems when the observers actions are coupled through a com- 
mon quadratic performance measure. The results are of interest, because 
the coupling present in such systems (the undesirability of systematic track- 
ing errors among observers that do not communicate), for example may be 
crucial to the systems' performance. 

This work can be used to identify e-optimal open-loop schedules under 
a variety of interesting conditions, e.g., conditions that preclude instanta- 
neous switching, limit the measurements that can be made concurrently, or 
make measurement availability dependent on past measurement selections. 
In each case, one simply deletes those simplex vertices corresponding to 
inadmissible measurement patterns from the switching control restraint set. 
Discrete-time versions of the results can also be derived. The work is not 
directly applicable to the problem of selecting schedules for systems in which 
the decentralized observers exert control over the system state (a dynamic 
team problem), nor does it provide much insight into the structure of the 
e-optimal closed-loop schedules. 
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