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STOCHASTIC ANALYSIS AND APPLICATIONS, 9 ( 3 ) ,  233-244 (1991) 

SOLVABLE SYSTEMS ARE 
MEASURABLE 

USUALLY 

Mark S. Andersland 
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The University of Iowa 

Iowa City, Iowa 52242-1595 

and 

Demosthenis Teneketzis 

Department of Electrical Engineering and Computer Science 
The University of Michigan 
Ann Arbor, MI 48109-2122 

ABSTRACT 

( R , U )  and (Uk ,Uk) ) ,  k = 1,2 , .  . . , N ,  are measurable spaces and J k ,  k = 
1,2 , .  . . , N ,  are subfields of the product field 13@(@, U i ) .  Consider an N-tuple 
of functions y  := ( y l ,  y2 , .  . . , y N )  for which yk ,  k = 1,2 , .  . . , N ,  is J k / U k -  
measurable. If for each w E 0 there exists a unique u  := ( u l ,  u2 , .  . . , u N )  E 
nLl U i  satisfying the equations u k  = yk(w,  u ) ,  k = 1,2,  . . . , N ,  y  induces a 
unique map C Y  from R to nzl U i .  

Is this map necessarily B/ @El  u'-measurable? A generic non-sequential 
stochastic control problem in which a related question arises is discussed, and 
the conditions on (0, B) and ( U k ,  U k ) ,  k = 1,2 ,  . . . , N ,  for which the original 
question's answer is affirmative are investigated. Specifically, it is shown that C' 
is necessarily B/ @El U"measurab1e when either ( U k , U k ) ,  k = 1,2,  . . . , N ,  are 
discrete, or (0,  13) and (Uk, Uk)) ,  k = 1,2 ,  . . . , N ,  are Souslin. 

Copyright @ 1991 by Marcel Dekker, Inc  
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2 34 ANDERSLAND AND TENEKETZIS 

1. INTRODUCTION 

Let (0,  B )  and ( U k ,  U k ) ,  k = 1 ,2 ,  . . . , N, be measurable spaces and let Jk, 

k = 1 , 2 , .  . . , N,  be subfields of the product field B  @ U  on R  x U ,  where 

U := @El u', and U  := nEl U'. Consider an N-tuple of functions y  := 

( y l ,  y 2 , .  . . , y N ) ,  for which the kth function y k ,  k = 1 , 2 , .  . . , N, is J k / U k -  

measurable, i.e., 

y k :  (52  x U ,  gk )  + ( u k , u k ) ,  fork = 1 ,2  ,..., N . ( 1 )  

If for each w  E R  there exists a unique u  := ( u l ,  u2,. . . , u N )  E U  satisfying the 

system of equations 

y  induces a unique solution map 

C Y : R + U  , (3) 

via its solutions { uY, E U  : uY, = y (w ,  u:) ), i.e., Cr(w)  = u: for all w  E R.  

An N-tuple satisfying (1) is said to possess property S * (solvability*) when it 

induces a unique solution map C Y ,  and property SM * (solvability/measurability*) 

when this induced map is BIU-measurable. In this paper we consider the follow- 

ing question: 

Q: Under what conditions on (52 ,  B) and ( U k , U k ) ,  k = 1 , 2 , .  . . , N, does 

property S* imply property SM*? 

This question is closely related to a question, concerning the existence of ex- 

pected payoffs, that arises when formulating non-causal, non-sequential stochastic 

control problems. Loosely speaking, most stochastic control problems involving 

N conaol actions can be modeled as problems in which: ( Q , B ,  P) is the under- 
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SOLVABLE SYSTEMS ARE USUALLY MEASURABLE 235 

lying probability space, (Uk,uk) is the kth action space, y k  is the kth control 

law, and gk is the information field induced on $2 x U by the kth observation 

function. Within this framework (Witsenhausen's intrinsic model for discrete 

stochastic control [14,16]), y denotes a control policy; 7's possession of property 

S* ensures that, for every random input, y induces a unique N-tuple of control 

actions; and y's possession of property SM* ensures that the expected payoff of 

these control actions can be defined. 

In [I] it was shown that all causal policies (those whose control actions can 

be ordered, for each w,  such that each control action only depends on w and the 

control actions that precede it), and in particular, all sequential policies (those 

causal policies whose control actions can be ordered a priori) possess property 

SM*. Consequently, all causal problems (those in which all admissible policies 

are causal), and in particular, all sequentialproblems (those in which all admissible 

policies are sequential and share the same sequential order1) are well-posed in the 

sense that an expected payoff can be defined for every admissible policy. 

Our investigation of question Q is motivated by a desire to formulate (ab- 

stractly) non-sequential stochastic control problems in which policies that occa- 

sionally deadlock (non-causal policies) are admissible by necessity-i.e., prob- 

lems in which it is impossible, or too costly, to ensure that all admissible poli- 

cies are deadlock-free. Such problems can arise, for instance, when scheduling 

transactions in distributed data bases [6 ] ,  and when routing, resequencing and 

acknowledging packets in computer and communication networks [12]. In both 

cases the detection and restarting (by roll-back or retransmission, for instance) of 

deadlocked processes (transactions or transmissions) is often preferable to the per- 

formance degradation and increased complexity that may result when all policies 

in the admissible set are constrained to be deadlock-free. 
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236 ANDERSLAND AND TENEKETZIS 

In Section 2 we introduce Witsenhausen's intrinsic model and briefly elabo- 

'rate on the relationship between question Q and non-sequential stochastic control. 

In Section 3 we answer question Q. Specifically, we show that, for all practical 

purposes, property S* implies property SM*. In the process we also confirm Wit- 

senhausen's conjecture ([14], $8) that, "in most special cases of interest,"property 

S (which holds when all N-tuples satisfying (1) possess property S*) impliesprop- 

erry SM (which holds when all N-tuples satisfying (1) possess property SM*). 

Section 4 contains our conclusion. 

2. NON-SEQUENTIALITY AND QUESTION Q 

Question Q is motivated by an existence question peculiar to non-sequential 

stochastic control. Since the "conventional" discrete time, finite horizon models 

of stochastic control theory presuppose a fixed ordering of a system's control 

actions, to describe this existence question it is necessary to introduce a more 

general modeling framework. This framework, Witsenhausen's intrinsic model 

for discrete stochastic control [14,16], has three components. 

1. An informationstructure 1 := { ( R , t ? ) , ( U k , U k ) , J k  : 1 5 k 5 I} 

specifies the system's admissible controls and distinguishable events. 

(a) N E JN denotes the number of control actions to be taken. 

(b) ( R ,  23) denotes the measurable space from which a random input w is 

drawn. 

(c) ( u k , U k . )  denotes the measurable space from which uk ,  the kth control 

action, is selected. It is assumed that the cardinality of uk is greater 

than one, and that U k  contains the singletons of U k .  .e product space 

containing the N-tuple of control actions, u  := (ul ,  u Z ,  . . . , u N ) ,  is 

denoted by ( U , U )  := ( lTKlUi,  @ z l U i ) .  
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SOLVABLE SYSTEMS ARE USUALLY MEASURABLE 237 

(d) 3" denotes the information subfield of the product u-field B @ U 

characterizing the maximal information that can be used to select the 

kth control action. 

2. A design constraint set rc constrains the set of admissible N-tuples of 

control laws, y := (yl ,  y2, . . . called designs, to a non-empty subset 

of r := nfJ=, Pi, where r k ,  k = 1 , 2 , .  . . , N, denotes the set of all Jk/Uk- 

measurable functions. 

3. A probability measure P on ( a ,  8 )  determines the statistics of the system's 

random input w. 

With respect to the conventional models, this representation entails no loss 

of generality. A system's random inputs-its initial state, state and observa- 

tion noises, and so o n - c a n  always be viewed as a single random input w E 0. 

Moreover, for all k, the system's kth control law-normally assumed to be a mea- 

surable function of its B/U-measurable kth observation-can always be viewed as 

a 3"-measurable function of the intrinsic variables w and u, where 3" c B @ U 

denotes the information field induced on the space of intrinsic variables by the 

kth observation. 

The advantage of this intrinsic representation, as opposed to that of the con- 

ventional models, is that it permits interdependence among a problem's control 

actions (e.g., given a fixed y, u j  may depend on uk  for some w, and vice versa 

for other w). Consequently, it is possible to model non-sequential problem* 

problems in which a causal ordering for the control actions can not be determined 

a priori because: 1) it varies from design to design, 2) it may be w-dependent 

under some designs, and 3) impossible under others (i.e., a deadlock occurs [I]). 

Game theorists ([ll], Fig. 1) and computer scientists [7] have long been aware 
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238 ANDERSLAND AND TENEKETZIS 

that such non-sequential problems exist. More recently, important non-sequential 

problems have been identified in distributed data and communication networks 

(for specific examples, see [3,6,12]). Although several control theoretic models 

for such problems have been proposed (see, for instance, [2,10,13,16]) only in 

Witsenhausen's framework is the modeling of uncertainty and information com- 

patible with that of the usual state-observation models of control theory. 

Within this compatible framework one can pose the following generic stochas- 

tic control problem. 

P: Given an information structure 2, a design constraint set rc, a probability 

measure P, and a real, upper bounded, U/U-measurable payoff function V ,  

Identify a design y in rc that achieves 

sup E,[V(w, uY)] exactly, or within 6 > 0. 
Ta-c 

Is this generic problem well-defined? It is this question that gives rise to ques- 

tion Q. Since the problem may be non-sequential there are two issues: "mathemat- 

ical well-posedness" (Does every design y E rc possess an expected payoff?) and 

"real-world causality" (Is every design y E PC deadlock-free?). To ensure well- 

posedness, it suffices to require that each y E rc possess property SM*. Then, for 

each y E rc, V ( . ,  CY(.)) is B-measurable, and consequently, Ew[V(w, CT(w))] 

exists. To ensure causality, it suffices to require that for each y E rc, and for all 

w E 0, there exist an ordering of y's N control laws, say yS1("), ya2("), . . . , yS~("), 
such that each control action only depends on w and the control actions that pre- 

cede it. Then for each y E rc and all w E 0, y is deadlock-free in the sense that, 

given w ,  us'(") can be determined; given w and us'("), uS2(") can be determined; 

given w ,  uS1(") and u'~(~), uS3(") can be determined; and so on [I]. 
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SOLVABLE SYSTEMS ARE USUALLY MEASURABLE 239 

Clearly, question Q concerns the generic problem's well-posedness. Any 

conditions on (0, B)  and ( U k ,  U k ) ,  k = 1,2,  . . . , N, sufficient to ensure that 

property S* implies property SM*, are equally sufficient to ensure that the generic 

problem is well-posed when all y E rc possess property S*. Well-posedness, 

however, is also ensured by causality (because all deadlock-free designs possess 

property SM*-[I], Thm. 4.3); consequently, with respect to the generic problem, 

question Q's answers are only interesting when at least one of the designs in rc 
is not deadlock-free. 

In practice, this is not an unreasonable assumption. To reduce a system's 

complexity, and or improve its aggregate performance, it may be desirable to 

enlarge rc to include designs that occasionally deadlock. Indeed, in highly dis- 

tributed data bases 161, and in computer and communication networks [12], it 

appears difficult to achieve any level of concurrency without permitting occa- 

sional deadlocks. Our answers to question Q, as described ili Section 3, provide 

conditions on ( R ,  13) and ( u k , U k ) ,  k = 1 , 2 , .  . . , N, sufficient to ensure that such 

non-causal, non-sequential stochastic control problems are well-posed when all 

designs y E rc possess property S*. 

3. PROPERTY S* USUALLY IMPLIES PROPERTY SM* 

In this section it is shown that property S* usually implies property SM*. 

Henceforth, a measurable space (X, X) will be termed discrete (cf. [4], Ex. 2.8) 

when X is countable and X contains the singletons of X. A measurable space will 

be termed Souslin ([8], Def. II1.16b) when it is u-isomorphic2 to a measurable 

space ( Y ,  B(Y)) ,3  where Y is a Souslin metrizable space.4 

Theorem: Property S* implies property SM* when either of the following con- 

ditions are satisfied: 
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2 40 ANDERSLAND AND TENEKETZIS 

(i) (Uk,Uk),  k = 1,2,. . . , N, are discrete measurable spaces. 

(ii) ( 0 ,  B) and (Uk,Uk),  k = 1 , 2 , .  . . , N, are Souslin measurable spaces. 

Proof: Fix y E I?. By assumption (property S*), y induces a unique mapping 

Cr  : C2 + U. Let xn denote the canonical projection of R x U onto R (i.e., 

xn(w, u) = W) and let 

Gy := { (w, u) : C7(w) = u } (4) 

denote the graph of Cr. Since 

[C~] -* (A)  = T ~ ( ( R  x A) n G?) ( 5 )  

for all A c U ,  to prove that CY is B/U-measurable (property SM*) it suffices 

to show that r;n((R x A) n Gr), the projection on $2 of the resmction of GY to 

C2 x A, is B-measurable for all A E U. 

To this end, the following lemma is helpful. 

Lemma 1: Assuming that property S* holds, when (U,U) is discrete, GY is 

B @ U-measurable. 

Proof: Fix y E r, let xu  denote the canonical projection of fl x U onto U (i.e., 

nu(w, u)  = u), and note that by property S* 

By definition, xu  is BQDUIU-measurable. Likewise, y q s  zk/Uk-measurable for 

dl k = 1,2,. . . , N; accordingly, y := (y', y2,. . . , y N )  is B 8 U/U-measurable 

(since J k  c B QDU for all k). The result follows from Theorem 1.12 of 181 which 

says that { x E X : f (x) = g(x) } is X-measurable when: (X, X )  and (Y, y )  are 

measurable spaces, (Y, Y) is discrete, and f and g are X/Y-measurable functions 

(cf. [9], Prop. 1.3A.4, and Thm. 1.3B.5). 
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SOLVABLE SYSTEMS ARE USUALLY MEASURABLE 241 

Proof of (i): Fix y E r. Since (Uk, Uk) is discrete for all k = 1,2,  . . . , N ,  

for all k ,  Uk is countable and Uk contains the singletons of uk. Since N is 

finite, U = I IEIUi  is also countable, and U = IIEl U' contains the singletons 

of U. It follows that U is generated by the singletons of U, a countable set (i.e., 

U = u ( { u )  :G' is B @ U-measurable. Since all sections of measurable sets are 

measurable ([4], Thm. 18. I), 

is 8-measurable for all u E U. But the singletons of U generate U; accordingly 

is B-measurable for all A E U. This proves (i). w 

The proof of (ii) requires the following lemma. 

Lemma 2: If ( X k ,  x k ) ,  k = 1 ,2 , .  . . , M, are Souslin measurable spaces, then 

( l IEIXi ,  Xi) is a Souslin measurable space. 

Proof: By definition, every Souslin measurable (SM) space (xk, x k )  is a-isomor- 

phic to a measurable space (Yk, B(Yk)), where Yk is a Souslin meaizable (Sm) 

space; consequently, ( l l ~ , ~ "  @El  X" is a-isomorphic to ( I IE ly i ,  @ E l  B(Y')). 

The result follows since @El B(Yi) = B(IIE,l") ([8], Prop. 1.6.4 and Thm. 

In.: .2(1)), and IIE1Yi is an Sm space ( [ 5 ] ,  Prop. IX.6.7), when y k ,  k = 1,2,  . . . , 
M, are Sm spaces. w 

Proof of (ii): Fix y E F. By Lemma 2, (U,U) is a Souslin measurable (SM) 

space; accordingly, (U,U) is a-isomorphic to a Souslin mea-izable (Sm) space. 

Since the topology of every Sm space has a countable base ([5], Prop. IX.6.4), 

and since every singleton of a metrizable space is closed ( [5] ,  Props. IX.4.2, and 

I.8.4), by a-isomorphism the a-field U must be countably generated and must 
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2 42 ANDERSLAND AND TENEKETZIS 

contain its singletons; hence, (U,U) is discrete. It follows, from Lemma 1, that 

GY is, once again, B @ U-measurable. 

By Lemma 2, ( 0  x U, B @I U) is also a SM space; consequently, every set 

in B @ U, including G7, is a Souslin set ([8], Def. III.l6c, Thm. 111.8, and Thm. 

III.19(2)), and (GY, (B @ U) n GY)5 is a SM space. Since the restriction of the 

canonical projection rQ to G7, rn Ia7, is an injective (23 @U)  n G7/D-measurable 

mapping, the result follows from the Souslin-Lusin Theorem ([8], III.21a) which 

says that an injective X/y-measurable mapping f : X -t Y is a u-isomorphism 

of (X, X) onto (f (X), y n f (X))  when (X, X) and (Y, y )  are SM spaces. That 

is, by the Souslin-Lusin Theorem [~~l~-,]-' is a B/(B @ U) nGY-measurable 

function; consequently, 

is B-measurable for all A E U.6 This proves (ii). rn 

Corollary: Property S implies property SM (see $1) when either of the following 

conditions are satisfied: 

(i) (Uk, Uk), k = 1,2, . . . , N, are discrete measurable spaces. 

(ii) ( 0 ,  B) and (Uk, Uk), k = 1,2,  . . . , N, are Souslin measurable spaces. 

4. CONCLUSION 

Motivated by a question concerning the well-posedness of a class of non- 

causal, non-sequential stochastic control problems, the conditions under which 
b 

the solvability of a &sign (property S*) implies the measurability of its in- 

duced solution map (property SM*) e v e  been investigated. Specifically, it has 

been shown that property S* implies property SM* when the measurable spaces 
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SOLVABLE SYSTEMS ARE USUALLY MEASURABLE 243 

( U k , U k ) ) ,  k = 1 , 2 , .  . . , N, are discrete, and when the measurable spaces (R,  13) 

and ( U k , U k ) ,  k = 1 , 2 , .  . . , N ,  are Souslin. Since most measurable spaces are 

Souslin--e.g., countable spaces; spaces of the form ( A ,  B ( A ) )  where A an an- 

alytic subset of Rn; standard Borel spaces; and Blackwell spaces in which all 

singletons are measurablesolvable systems 9xe usually measurable. 
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FOOTNOTES 

* This definition ([I], 54.4) is a refinement of that in [15]. 

Two measurable spaces are said to be a-isomorphic when there exists a bijec- 
tion between them that is measurable and has a measurable inverse. 

B(Y)  denotes the Borel o-field of the topological space Y. 

A metrizable space Y, is Souslin ([5], Chap. IX, Def. 2-see also [8], Thm. 
AIII.78 and Def. IIL16a) when there exists a continuous mapping from a 
complete separable metric space (a Polish space) onto Y .  

( B  @ U )  n Gr := { A  f~ Gr : A E B @ U )  denotes the trace of B  @ U on Gr. 

The same result can be proved under slightly weaker conditions (i.e., when 
(a, B) is a semi-cornpact measurable space) using Theorem 11.4.1 of [9]. 
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