Dali: A Periodically Persistent Hash Map

Faisal Nawab*!, Joseph Izraelevitz*?, Terence Kelly*3,
Charles B. Morrey III*4, Dhruva R. Chakrabarti*®, and
Michael L. Scott®

1 University of California, Santa Barbara, CA, USA
nawab@cs.ucsb.edu

2 University of Rochester, NY, USA
jhil@cs.rochester.edu

3 Palo Alto, CA, USA

4 Woodside, CA, USA

5 Palo Alto, CA, USA
dhruvac@gmail.com

6 University of Rochester, NY, USA
scott@cs.rochester.edu

—— Abstract

Technology trends suggest that byte-addressable nonvolatile memory (NVM) will supplant many
uses of DRAM over the coming decade, raising the prospect of inexpensive recovery from power
failures and similar faults. Ensuring the consistency of persistent state remains nontrivial, how-
ever, in the presence of volatile caches; cached values can “leak” back to persistent memory in
arbitrary order. To ensure consistency, existing persistent memory algorithms use expensive, ex-
plicit write-back instructions to force each value back to memory before performing a dependent
write, thereby incurring significant run-time overhead.

To reduce this overhead, we present a new design paradigm that we call periodic persistence.
In a periodically persistent data structure, updates are made “in place,” but can safely leak back
to memory in any order, because only those updates that are known to be valid will be heeded
during recovery. To guarantee forward progress, we periodically force a write-back of all dirty
data in the cache, ensuring that all “sufficiently old” updates have indeed become persistent, at
which point they become semantically visible to the recovery process.

As an example of periodic persistence, we present a transactional hash map, Dali, together
with an informal proof of safety (buffered durable linearizability). Experiments with a prototype
implementation suggest that periodic persistence can offer substantially better performance than
either file-based or incrementally persistent (per-access write-back) alternatives.

1998 ACM Subject Classification D.3.3 Concurrent Programming Structures
Keywords and phrases data structure, nonvolatile memory, durable linearizability

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.37

1 Introduction

For decades, programmers have been accustomed to partitioning program state into memory,
which is transient — used during a single program run — and storage, which is persistent —

This work was supported in part by the US Department of Energy under Cooperative Agreement
no. DE-SC0012199 while the indicated authors were members of Hewlett Packard Labs. At the
University of Rochester, the work was supported in part by NSF grants CNS-1319417, CCF-1337224,
and CCF-1422649, and by a Google Faculty Research award.

© Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R. Chakrabarti,
37 and Michael L. Scott;
licensed under Creative Commons License CC-BY
31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 37; pp.37:1-37:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2

Dali: A Periodically Persistent Hash Map

intended for use across program runs and even system crashes. The design of data structures
is rooted in the use of memory; data in storage is typically relegated to a file or database.

Since the 1970s, memory has been virtually synonymous with DRAM, accessed (since the
1980s) through a rich hierarchy of caches. Storage has been the province of magnetic disks or,
more recently, flash drives. Several new memory technologies, however, promise to provide
byte-addressable nonvolatile memory (NVM) with access latencies and costs comparable to
those of DRAM. These technologies provide the opportunity to re-think the memory-storage
divide, and to entertain the possibility of maintaining traditional in-memory data structures
across program runs and crashes.

We are particularly interested in crashes, as they present unique consistency challenges.
For simplicity, and in keeping with the real-world common case, we assume a “whole system
crash” failure model (caused, for example, by power failure or an OS kernel panic). We wish
to ensure, in the wake of a crash, that data in memory are consistent. At first blush, it is
tempting to model this goal as a conventional concurrency problem: “normal” execution
entails one or more threads performing atomic updates to the data; a recovery procedure
runs in the wake of a crash and (since the crash can occur at any time) functions as if it
were merely an additional concurrent thread (with the possible simplifying assumption that
it runs in isolation).

The problem with this model is that the recovery procedure does not have access to the
view of memory shared by threads during normal execution. Caches are likely to remain
volatile, at least for the foreseeable future, so what the recovery procedure sees is whatever
has been written back to nonvolatile memory prior to the crash. Unfortunately, hardware
capacity and associativity constraints require that caches be permitted to perform their
writes-back in essentially arbitrary order. When this order differs from the happens-before
order of the running program, the values that happen to have “leaked back” to memory at
any particular time may be mutually inconsistent. If, for example, a program creates an
object and then aims a pointer at it, it is possible for the pointer to reach memory before
the object to which it points. Persistent data structures must be carefully designed to avoid
this sort of problem.

In current real-world processors, instructions to control the ordering, timing, and gran-
ularity of writes-back from caches to memory are rather limited. On Intel processors, for
example, the CLFLUSH instruction [16] takes an address as argument, and blocks until the
cache line containing the address has been both evicted from the cache and written back to
the memory controller. When combined with an MFENCE instruction to prevent compiler
and processor instruction reordering, CLFLUSH allows the programmer to force a write-back
that is guaranteed to persist (reach nonvolatile memory) before any subsequent store. The
overhead is substantial, however — on the order of hundreds of cycles. Future processors may
provide less expensive persistence instructions, such as the pwb, pfence, and psync assumed
in our earlier work [17], or the ofence and dfence of Nalli et al. [21]. Even in the best of
circumstances, however, “persisting” an individual store (and ordering it relative to other
stores) is likely to take time comparable to a memory consistency fence on current processors
— i.e., tens of cycles. Due to power constraints [8], we expect that writes and flushes into
NVM will be guaranteed to be failure-atomic only at increments of eight bytes — not across a
full 64-byte cache line.

We use the term incremental persistence to refer to the strategy of persisting store ws
before performing store wo whenever w; occurs before wy in the happens-before order of the
program during normal execution (i.e., when w; <pp we). Given the expected latency of

F. Nawab et al.

even an optimized persist, this strategy seems doomed to impose significant overhead on the
operations (method calls) of any data structure intended to survive program crashes.

As an alternative, we introduce a strategy we refer to as periodic persistence. The key
to this strategy is to design a data structure in such a way that modifications can safely
leak into persistence in any order, removing the need to persist locations incrementally
and explicitly as an operation progresses. To ensure that an operation’s stores eventually
become persistent, we periodically execute a global fence that forces all cached data to be
written back to memory. The interval between global fences bounds the amount of work
that can ever be lost in a crash (though some work may be lost). To avoid depending on
the fine-grain ordering of writes-back, we arrange for “leaked” lines to be ignored by any
recovery procedure that executes before a subsequent global fence. After the fence, however,
a known set of cache lines will have been written back, making their contents safe to read.
Like naive uninstrumented code, periodic persistence allows stores to persist out of order.
It guarantees, however, that the recovery procedure will never use a value v from memory
unless it can be sure that all values on which v depends have also safely persisted.

In contrast to checkpointing, which creates a consistent copy of data in nonvolatile
memory, periodic persistence maintains a single instance of the data for both the running
program and the recovery procedure. This single instance is designed in such a way that
recent updates are nondestructive, and the recovery procedure knows which parts of the data
structure it can safely use.

In some sense, periodically persistent structures can be seen as an adaptation of traditional
persistent data structures [12] (in a different sense of the word “persistent”) or of multiversion
transactional memory systems [3], both of which maintain a history of data structure changes
over time. In our case, we can safely discard old versions that predate the most recent global
fence, so the overall impact on memory footprint is minimal. At the same time, we must
ensure not only that the recovery procedure ignores the most recent updates but also that it
is never confused by their potential structural inconsistencies.

As an example of periodic persistence, we introduce Dali,! a transactional hash map
for nonvolatile memory. Dali demonstrates the feasibility of using periodic persistence
in a nontrivial way. Experience with a prototype implementation confirms that Dali can
significantly outperform alternatives based on either incremental or traditional file-system-
based persistence. Our prototype implements the global fence by flushing (writing back and
invalidating) all on-chip caches. Performance results would presumably be even better with
hardware support for whole-cache write-back without invalidation.

The remainder of this paper is organized as follows: Section 2 elaborates on the motivation
for our work in the context of persistent hash maps. We describe Dali’s design in Section 3
and prove its correctness in Section 4. Section 5 then presents experimental results. Section 6
reviews related work. Section 7 summarizes our conclusions.

2 Motivation

As a motivating example, consider the construction of a persistent hash map, beginning with
the nonblocking structure of Schwalb et al. [24]. To facilitate transactional update of entries
in multiple buckets, we switch to a blocking design with a lock in each bucket, enabling the
use of two-phase locking (and, for atomicity in the face of crashes, undo logging).

! The name is inspired by Dali’s painting The Persistence of Memory.

37:3

DISC 2017

37:4

Dali: A Periodically Persistent Hash Map

A write operation followed
by a persistence operation

bucket
(B)

(a) A bucket containing three records. (b) An example of the write-ordering overhead
entailed in updating a data object.

Figure 1 A hash map data structure that demonstrates the overhead of write ordering.

This hash map, which is incrementally persistent, consists of an array of buckets, each
of which points to a singly-linked list of records. Fach record is a key-value pair. Figure la
shows a bucket with three records. For the sake of simplicity, each list is prepend-only:
records closer to the head are more recent. It is possible that multiple records exist for
the same key — the figure shows two records for the key z, for instance, but only the most
recent record is used. Deletions are handled by inserting a “not present” record. Garbage
collection / compaction can be handled separately; we omit the description here.

Figure 1b shows an update to change the value of y to 4. The update comprises several
steps: (la) A record, 7,e, with the new key-value pair is written. The record points to
the current head of the list. (1b) A persist of r,., serves to push its value from cache to
NVM. (2a) The bucket list head pointer, B, is overwritten to point to rpey,. (2b) A second
persist pushes B to NVM. The first persist must complete before the store to B: it prevents
the incorrect recovery state in which 7., is not in NVM and B is a dangling pointer. The
second persist must complete before the operation that updates y returns to the application
program: it prevents misordering with respect to subsequent operations.

On current hardware, a persist operation waits hundreds of cycles for a full round trip
to memory. On future machines, hardware support for ordered (queued) writes-back might
reduce this to tens of cycles. Even so, incremental persistence can be expected to increase
the latency of simple operations several-fold. The key insight in Dali is that when enabled
by careful data structure design, periodic persistence can eliminate fine-grain ordering
requirements, replacing a very large number of single-location fences with a much smaller
number of global fences, for a large net win in performance, at the expense of possible
lost work. In practice, we would expect the frequency of global fences to reflect a trade-off
between overhead and the amount of work that may be lost on a crash. Fencing once every
few milliseconds strikes us as a good initial choice.

3 Dali

Dali is our prepend-only transactional hash map designed using periodic persistence. It
can be seen as the periodic persistence equivalent of the incrementally persistent hash map
of Section 2 and Figure 1. As a transactional hash map, Dali supports the normal get, set,
delete, and replace methods. It also supports ACID transactions comprising any number
of the above methods.

Dali updates or inserts by prepending a record to the appropriate bucket; the most recent
record for a key is the one closest to the head of the list (duplicates may exist, but only
the most recent record matters). Records in a bucket are from time to time consolidated to
remove obsolete versions. Dali employs per-bucket locks (mutexes) for isolation. A variant of
strong strict two-phase locking (SS2PL) is used to implement transactions.

F. Nawab et al.

status indicator
class node:
[0 1| 2 |Snapshot (ss) = SJ

key k; val v
node* next -
class bucket: r Committed pointer (c)
mutex lock In-flight pointer (f)
int stat<a, f, c, ss> // 2/2/2/58 bits Active pointer (a)
node* ptrs[3]

Cl‘:scsk::l;;ckets [N_BUCKTS] (Ptr' 0] {Ptr' 1] ptr. 2]

int list flist /
int epoch @ b >(a

Figure 2 Dali globals and data types. Figure 3 The structure of a bucket.

3.1 Data Structure Overview

As mentioned above, Dali uses a periodic global fence to guarantee that changes to the data
structure have become persistent. The fence is invoked by a special worker thread in parallel
with normal operation by application threads. We say that the initiation points of the global
fences divide time into epochs, which are numbered monotonically from the beginning of
time (the numbers do not reset after a crash). Each update (or transactional set of updates)
is logically confined to a single epoch, and the fence whose initiation terminates epoch E
serves to persist all updates that executed in E. The execution of the fence, however, may
overlap the execution of updates in epoch E+1. The worker thread does not initiate a global
fence until the previous fence has completed. As a result, in the absence of crashes, we are
guaranteed during epoch E+1 that any update executed in epoch E—1 has persisted. If a
crash occurs in epoch F', however, updates from epochs F' and F'—1 cannot be guaranteed to
be persistent, and should therefore be ignored. We refer to epochs F' and F—1 as failed epochs,
and revise our invariant in the presence of crashes to say that during a given epoch FE, all
updates performed in a non-failed epoch prior to FZ — 1 have persisted. Failed epoch numbers
are maintained in a persistent failure list that is updated during the recovery procedure.
In Dali, hash map records are classified according to their persistence status. Assume
that we are in epoch E. Committed records are ones that were written in a non-failed epoch
at or before epoch F—2. In-flight records are ones that were written in epoch E—1 if it is

not a failed epoch. Active records are ones that were written during the current epoch F.

Records that were written in a failed epoch are called failed records. By steering application
threads around failed records, Dali ensures consistency in the wake of a crash.

Dali’s hash map buckets are similar in layout to those of the incrementally persistent
hash map presented in Figure 1. Dali adds metadata to each bucket, however, to track the
persistence status of the bucket’s records. The metadata in turn allows us to avoid persisting
records incrementally. Specifically, a Dali bucket contains not only a singly-linked list of
records, but also a 64-bit status indicator and, in lieu of a head pointer for the list of records,
a set of three list pointers (see pseudocode in Figure 2 and illustration in Figure 3). The
status indicator comprises a snapshot (SS) field, denoting the epoch in which the most recent
record was prepended to the bucket, and three 2-bit role IDs, which indicate the roles of
the three list pointers. A single STORE suffices to atomically update the status indicator on
today’s 64-bit machines.?

2 With 6 bits devoted to role IDs, 58 bits remain for the epoch number. If we start a new epoch every
millisecond, roll-over will not happen for 9 million years.

37:5

DISC 2017

37:6

Dali: A Periodically Persistent Hash Map

Each of the three list pointers identifies a record in the bucket’s list (or NULL). The
pointers assume three roles, which are identified by storing the pointer number (0, 1, or 2) in
one the three role ID fields of the status indicator. Roles are fixed for the duration of an
epoch but can change in future epochs. The roles are:

Active pointer (a): provided that epoch SS has not failed, identifies the most recently added
record (which must necessarily have been added in SS). Each record points to the record
that was added before it. Thus, the active pointer provides access to the entire list of
records in the bucket.

In-flight pointer (f): provided that epochs SS and SS—1 have not failed, identifies the most
recent record, if any, added in epoch SS—1. If no such record exists, the in-flight role ID
is set to invalid (L).

Committed pointer (c): identifies the most recent record added in a non-failed epoch equal
to or earlier than S5 —2.

To establish these invariants at start-up, we initialize the global epoch counter to 2 and, in

every bucket, set S5 to 0, all pointers to NULL, the in-flight role ID to L, and the active

and committed IDs to arbitrary values.

Figure 3 shows an example bucket. In the figure SS is equal to 5, which means that the
most recent record was prepended during epoch 5. The active pointer is Pointer 0. It points
to record e, which means that e was added in epoch 5, even if we are reading the status
indicator during a later epoch. Pointer 1 is the in-flight pointer, which makes d the most
recently added record in epoch 4. Because a record points only to records that were added
before it, by transitivity, records a, b, and the prior a were added before or during epoch 4.
Finally, Pointer 2 is the committed pointer. This makes record b the most recently added
record before or during epoch 3. By transitivity, the earlier record a was also added before
or during epoch 3. Both record b and the earlier record a are therefore guaranteed persistent
(shown in green) as of the most recent update (the time at which e was added), while the
remainder of the records may not be persistent (shown in red).

It is important to note that the status indicator reflects the bucket’s state at SS (the
epoch of the most recent update to the bucket) even if a thread inspects the bucket during a
later epoch. For example, suppose that a thread in epoch 10 reads the bucket state shown in
Figure 3. Given the status indicator, the thread will conclude that all records were written
during or before epoch 5 and thus are all committed and persistent (assuming that epochs 4
and 5 are not in the failure list). If one or both epochs are on the failure list, the thread can
navigate around their records using the in-flight or committed pointers.

3.2 Reads

The task of the read method is to return the value, if any, associated with a given key. A
reader begins by using a hash function to identify the appropriate bucket for its key, and
locks the bucket. It then consults the bucket’s epoch number (SS5) and the global failed epoch
list to identify the most recent, yet valid, of the three potential pointers into the bucket’s
linked list (Figure 4). Call this pointer the valid head. If SS is not a failed epoch, the valid
head will be the active pointer, which will identify the most recently added record (which
may or may not yet be persistent). If SS is a failed epoch but SS—1 is not, the valid head
will be the in-flight pointer. If SS and SS—1 are both failed epochs, the valid head will be
the committed pointer.

Starting from the valid head, a reader searches records in order looking for a matching
key. Because updates to the hash map are prepends, the most recent matching record will

F. Nawab et al.

// Bucket is assumed locked via SS2PL
val bucket::read(key k):
nodex valid_head =
if ss ¢ flist then ptrslal
elsif ss-1 ¢ flist && f # _L then ptrs[f]
else ptrsl[c]
return search(k, valid_head)

Figure 4 Dali read method.

// Bucket is assumed locked wvia SS2PL

void bucket::update(key k, val v): s9 SS—1¢€
bool curr_fail = ss € flist SS € | figt or || M€V | W | new
bool prev_fail = flist f= | a f C
ss-1 € flist || £ ==
node* valid_head = 1| FE N/A | N/A a f c
if !curr_fail then ptrs[al _
elsif !prev_fail then ptrs[f] 2| E-1 X X ¢ a f
else ptrslc] 3| E-1 X v f a c
node*x n = new node(k, v, valid_head) 41 E—1 v/ N/A a 1 c
// Get new pointer roles from table 5| <E-1]X N/A c 1 a
int new_stat = lookup(epoch, 6| <E-1|v X a 1 f
curr_fail, pre_v_fall, stat) T <E_1|v v a 0 c
ptrs[new_stat.a] = n

stat = new_stat

Figure 6 Lookup table for pointer
Figure 5 Dali update method. role assignments. Current epoch is F.

be found first. If the key has been removed, the matching value may be NULL. If the key is
not found in the list, the value returned from the read will also be NULL.

3.3 Updates

Updates in Dali prepend a new version of a record, as in the incrementally persistent hash
map of Section 2. Deletions / overwrites of existing keys and inserts of new keys are processed
identically by a unified update method. Like the read method, update locks the bucket. An
update to a Dali bucket comprises several steps:

Determine the most recent, valid pointer (as in the read method).

Create a new record with the key and its new value (or NULL if a remove).

Determine the new pointer roles (if the new and old epochs are different).

Retarget the new active pointer to the new record node.

LAl ol ol A

. Update SS and the role IDs by overwriting the status indicator.
Pseudocode appears in Figure 5.

Step 3 is the most important part of the update algorithm, as it is the part that allows the
update’s component writes to be reordered. The problem to be addressed is the possibility
that writes from neighboring epochs might be written back and become mixed in the persistent
state. We might, for example, mix the snapshot indicator from the later epoch with the
pointer values from the earlier epoch. Given any combination of update writes from bordering
epochs, and an indication of epoch success or failure, the read procedure must find a correct
and valid head, and the list beyond that head must be persistent.

The details of step 3 appear in Figure 6. They are based on the following three rules.

First, the new committed pointer was last written at least two epochs prior, guaranteeing

37:7

DISC 2017

37:8

Dali: A Periodically Persistent Hash Map

status indicator

status indicator status indicator
[o| 1 | 2 |Snapshot (ss) = 5] [2 | 0 | 1 |Snapshot (ss) = 6] [2 | J-| 1 |5”a'°5h°t (ss) = 7]
a f ¢ a f ¢ af c

Fo) (D) (e2)
Fo-dertie

(a) Initial state in epoch 5. (b) Adding record g in epoch 6. (c) Adding record h in epoch T7;
epochs 5 and 6 have failed.

Figure 7 A sequence of Dali updates.

that its value and target have become persistent (and would survive a crash in the current
epoch). Second, the new active pointer was either previously invalid or pointed to an earlier
record than the new committed pointer. In other words, according to both the old and new
status indicators, the new active pointer will never be a valid head, so it is safe to reassign.
Third, the new in-flight pointer is the most recent valid record set in the previous epoch, or
L if no such record exists. These rules are sufficient to enumerate all entries in the table.

Because each bucket is locked throughout the update method, there is no concern about
simultaneous access by other active threads. We assume that each of the two key writes in
an update — to a pointer and to the status indicator — is atomic with respect to crashes, but
the order in which these two writes persist is immaterial: neither will be inspected in the
wake of a crash unless the global epoch counter has advanced by 2.

Figure 7 displays two example updates. In Figure 7a, an update to the bucket has
occurred in epoch 5. In Figure 7b, record ¢ is added to the bucket in epoch 6. First, we
initialize the new record to point to the most recent valid record, f. Then, we change
the status indicator to update pointer roles and the epoch number. As we are in epoch 6,
the most recent committed record was added in epoch 4 (the previous in-flight pointer).
Therefore, pointer 1 is now the committed pointer. The new in-flight pointer is the one
pointing to the most recent record added in the previous epoch (pointer 0). The remaining
pointer, pointer 2, whose target is older than the new committed pointer, is then assigned
the active role and is retargeted to point to the newly prepended record, g.

In Figure 7c, an additional record, h, is added to the bucket after a crash has occurred in
epoch 6 (after the update of Figure 7b). Because of the crash, epochs 5 and 6 are on the
failure list. Records e, f, and g are thus failed records, because they were added during these
epochs and cannot be relied upon to have persisted. The new record, h, refers to the valid
head d instead. Then, the status indicator is updated. The snapshot number SS becomes 7.
The committed pointer is the one pointing to the most recent persistent record, d. Pointer 1,
which points to d, is assigned the committed role. One currently invalid pointer (pointer 2)
will point to the newly added record, h. Since the previous epoch is a failed one, there are
no in-flight records, so we set the in-flight role as invalid. The net effect is to transform the
state of the bucket in such a way that the failed records, e, f, and g, become unreachable.

3.4 Further Details

Global Routines. As noted in Section 3.1, our global fences are executed periodically by
a special worker thread (or by a repurposed application thread that has just completed
an operation). The worker first increments and persists the global epoch counter under
protection of a sequence lock [19]. It then waits for all threads to exit any transaction in the
previous epoch, thereby ensuring that every update occurs entirely within a single epoch.
(The wait employs a global array, indexed by thread ID, that indicates the epoch of the

F. Nawab et al.

thread’s current transaction, or 0 if it is not in a transaction.) Finally, the worker initiates
the actual whole-cache write-back. In our prototype implementation, this is achieved with a
custom system call that executes the Intel WBINVD instruction. This instruction has the side
effect of invalidating all cache content. We hypothesize that future machines with persistent
memory will provide an alternative instruction that avoids the invalidation.

Following a crash, a recovery procedure is invoked. This routine reads the value, F', of the
global epoch counter and adds both F and F—1 to the failed epoch list (and persists these
additions). The crashed epoch, F, is added because the fence that would have forced its
writes-back did not start; the previous epoch, F'—1, is added because the fence that would
have forced its writes-back may not have finished. Significantly, the recovery procedure does
not delete or modify failed records in the hash chains: as illustrated in Figure 7c, recovery is
performed incrementally by application threads as they access data.

Transactions. Transactions are easily added on top of the basic Dali design. Our prototype
employs strong strict two-phase locking (SS2PL): to perform a transaction that includes
multiple hash map operations, a thread acquires locks as it progresses, using timeout to
detect (conservatively) deadlock with other threads. To preserve the ability to abort (when
deadlock is suspected), it buffers its updates in transient state. When it has completed
its code, including successful acquisition of all locks, it performs the buffered updates, as
described in Section 3.3, and releases all its locks.

In-place Updates. A reader executing in epoch F is interested only in the most recent
update of a given key k in E. If there are multiple records for k in E, only the most recent
will be used. As a means of reducing memory churn, we modify our update routine to look for
a previous entry for k in the current epoch, and to overwrite its associated value, atomically
and in place, if it is found.

Multiversioning. Because historical versions are maintained, we can execute read-only
operations efficiently, without the need for locking, by pretending that readers execute two
epochs in the past, seeing the values that would persist after a crash. This optimization
preserves serializability but not strict serializability. It improves throughput by preventing
readers from interfering with concurrent update transactions. To ensure consistency, read-
only transactions continue to participate in the global array that stalls updates in a new
epoch until transactions from the previous epoch have completed.

Garbage Collection. Garbage collection recycles obsolete records that are no longer needed
because newer persistent records with the same key exist; it operates at the granularity of a
bucket. At the end of an update operation, before releasing the bucket’s lock, a thread will
occasionally peruse the committed records and identify any for which there exists a more
recent committed record with the same key. Removal from the list entails a single atomic
pointer update, which is safe as the bucket is locked. Once the removal is persistent (two
epochs later), the record can safely be recycled. If memory pressure is detected, we can use
incremental persistence to free the record immediately. Otherwise we keep the record on a
“retired” list and reclaim it in the thread’s first operation two epochs hence.

Because the retired list is transient, we must consider the possibility that records may
be lost on a crash, thereby leaking memory. Similar concerns arise when bypassing failed
records during an update operation, as illustrated in Figure 7b, and when updating the
free list of the memory allocator itself. To address these concerns, we can end the recovery

37:9

DISC 2017

37:10

Dali: A Periodically Persistent Hash Map

procedure with a sweep of the heap that reclaims any node not found on a bucket list [2].
Since the amount of leakage is likely to be small, this need not occur on every crash.

4 Correctness

We here present an informal proof of Dali’s safety. Specifically, we argue that it satisfies buf-
fered durable linearizability [17], an extension of traditional linearizability that accommodates
whole-system crashes. For clarity of exposition (and for lack of space), we consider only read
and update operations, omitting garbage collection, in-place updates, multiversioning, and
transactions. We begin by arguing that a crash-free parallel history of Dali is linearizable.
We then show that the operations preserved at a crash represent a consistent cut of the
history prior to the crash, so that when crashes and lost operations are removed from the
history, what remains is still linearizable.

4.1 Linearizability

The code of Figures 4 and 5 defines a notion of valid_head for a Dali bucket. Let us say
that a bucket is well formed if valid_head points to a finite, acyclic list of nodes. We define
the valid content of a well-formed bucket to comprise the initial occurrences of keys on this
list, together with their associated values.

» Theorem 1. In the absence of crashes, Dali is a linearizable implementation of an unordered
map.

Proof. All Dali operations on the same bucket acquire the bucket’s lock; by excluding one
another in time they trivially appear to take effect atomically at a point between their
invocation and response. While the roles of the various pointers may rotate at epoch
boundaries, inspection of the code in Figure 5 confirms that, in the absence of crashes, each
newly created node in update links to ptrs[al (which is always valid_head), and ptrs[al
is always updated to point to the new node. A trivial induction (starting with initially
empty content) shows that this prepending operation preserves both well formedness and
the desired sequential semantics. >

4.2 Buffered Durable Linearizability

Buffered durable linearizability [17] extends linearizability to accommodate histories with
“full-system” crashes. Such crashes are said to divide a history into eras, with no thread
executing in more than one era.? Information is allowed to be lost in a crash, but only in a
consistent way. Specifically, if event e; happens before event es (e1 <pp €2 — €.g., €1 is a
store and es is a load that sees its value), then e; cannot be lost unless es is also.

Informally, a history is buffered durably linearizable (BDL) if execution in every era
can be explained in terms of information preserved from the consistent cut of the previous
era. More precisely, history H is BDL if, for every era ending in a crash, there exists a
happens-before consistent cut of the events in that era such that for every prefix P of H,
the history P’ is linearizable, where P’ is obtained from P by removing all crashes and, in
all eras other than the last, all events that follow the cut. A concurrent object or system is
BDL if all of its realizable histories are.

3 With apologies to geologists, eras here are generally longer than epochs.

F. Nawab et al.

Our BDL proof for Dali begins with the following lemma:

» Lemma 2. An epoch boundary in Dali represents a consistent cut of the happens-before
relation on the hash map.

Proof. Straightforward: The worker thread that increments the epoch number does so under
protection of a sequence lock, and it doesn’t release the lock until (a) no thread is still
working in the previous epoch and (b) the new epoch number has persisted (so no thread
will ever work in the previous epoch again). <

Suppose now that we are given a history H comprising read, update, and epoch boundary
events, where some of the epoch boundaries are also marked as crashes. The two epochs
immediately preceding a crash are said to have failed; the rest are successful. An update

operation is said to be successful if it occurs in a successful epoch and to have failed otherwise.

Let us define the “valid content” of bucket B at a point between events in H to mean “a
singly linked chain of update records reflecting all and only the successful updates to B prior
to this point in H.” The following is then our key lemma:

» Lemma 3. For any realizable history H of a Dali bucket B, and any prefix P of H ending
with a successful update w, ptrsla] will refer to valid content immediately after u.

Proof. By induction on successful updates. We can ignore the reads in H as they do not
change state. As a base case, we adopt the convention that the initial state of B represents
the result of a successful initialization “update.” The lemma is trivially true for the history
prefix consisting of only this single “update,” at the end of which ptrs[a] is NULL.

Suppose now that for some constant k£ and all 0 < i < k, the lemma is true for all prefixes
P; ending with the ith successful update, u;. We want to prove that the lemma is also true for
Py.. First consider the case in which there is no crash between the previous successful update,
ur_1, and ui. By the same reasoning used in the proof of Theorem 1, u; will prepend a new
record onto the chain at ptrs([al, preserving valid content.

If there is at least one crash between uy_; and ug, there must clearly be at least two
failed epochs between them. This means that the valid content as of the end of u_; will
have persisted as of the beginning of u; — its chain will be intact. We wish to show that no
changes to the pointers and status indicator that occur between uy_; and uy — caused by
any number of completed or partial failed updates — can prevent wu from picking up and
augmenting uy_1’s valid content. We do so by reasoning on the transitions enumerated in
Figure 6.

Let Er_; denote the epoch of u;_; and Ej the epoch of uiy. We note that all failed
updates between uyi_1 and uj occur in epochs numbered greater than Ej_;. Further, let v
denote the value of a (0, 1, or 2) immediately after uy_;. Any update that sees the state
generated by ug_1 will use row 2, 3, or 5 of Figure 6, and will choose, as its “new a” a value
other than v. Over the course of subsequent failed updates before uy, ptrs[v]’s role may
transition at most twice, from a to f to c. As a consequence, the code of Figure 5 will never
change the value of ptrs[v] — that pointer will continue to reference wu;_1’s valid content
until the beginning of u.

Reasoning more specifically about the ID roles, a status indicator change persisted by a
failed update that happens in epoch Ej_; + 1 will, by necessity, make ptrs[v] the in-flight
pointer. A subsequent update that sees this change in epoch Ej;_; + 2 or later will by
necessity make ptrs[v] the committed pointer. Alternatively, a failed update in epoch
Ey_1 + 2 or later, without having seen a previous failed update in epoch Ej_1 + 1, will also
make ptrs[v] the committed pointer. A subsequent update that sees this change will leave

37:11

DISC 2017

37:12

Dali: A Periodically Persistent Hash Map

ptrs[v]’s role alone. The net result of all these possibilities is that uj will chose ptrs[v]
as the valid_head regardless of which failed update’s status indicator is read. It will then
copy this value to the next field of its new node and point ptrs[al] at that node, preserving
valid content. <

» Theorem 4. Dali is a buffered durably linearizable implementation of an unordered map.

Proof. Straightforward: Given history H, containing crashes, we choose as our cut in each
era the end of the last successful epoch. In the era that follows a crash, the visible content of
each bucket (the records that will be seen by an initial read or update) will be precisely the
valid content of that bucket. |

5 Experiments

We have implemented a prototype version of Dali in C/C++ with POSIX threads. As
described in Section 3.4, we implemented the global fence by exposing the privileged WBINVD
instruction to user code using a syscall into a custom kernel module. Since non-volatile
memory is not yet widely available, we simulated NVM by memory mapping a tmpfs file
into Dali’s address space. This interface is consistent with industry projections for NVM [25].

As a representative workload for a hash map, we chose the transactional version of the
Yahoo! Cloud Serving Benchmark (YCSB) [9, 11]. Each thread in this benchmark performs
transactions repeatedly, for a given period of time. Keys are 8 bytes in length, and are drawn
randomly from a uniform distribution of 100 million values. Values are 1000 bytes in length.
We initialize the map with all keys in the key range.

The tested version of Dali uses both mentioned optimizations (in-place updates and
multiversioning) and our prototype SS2PL transaction processing system. Garbage collection
is enabled. Epoch duration is a configurable parameter in Dali; our experiments use a
duration of 100 ms. We compared Dali with three alternative maps: Silo [26], FOEDUS [18],
and an incrementally persistent hash map (IP).

Silo [26] is an open source in-memory database for large multi-core machines.* It is a
log-based design that maintains both an in-memory and a disk-resident copy. A decentralized
log, maintained by designated logging threads, is used to commit transactions. We configured
Silo to use NVM for persistent storage — i.e., Silo writes logs to main memory instead of disk.

FOEDUS [18] is an online transaction processing (OLTP) engine, available as open
source.” The engine is explicitly designed for heterogeneous machines with both DRAM and
NVM. Like Silo, FOEDUS is a log-based system with both an transient and persistent copy
of the data. Unlike Silo, FOEDUS adopts a dual paging strategy in which a logical page may
exist in two physical forms: a mutable volatile page in DRAM and an immutable snapshot
page in NVM. FOEDUS commits transactions with the aid of a decentralized logging scheme
similar to Silo. FOEDUS offers both key-ordered and unordered storage, based respectively
on a B-tree variant and a hash map; our experiments use the latter. Like Dali, both Silo and
FOEDUS may lose recent transactions on a crash (their decentralized logs are reaped into
persistence in the background).

We also implemented a data store called IP, an incrementally persistent hash map [24],
as described in Section 2. As in Dali, transactions in IP are implemented using SS2PL. To

4 https://github.com/stephentu/silo
5 https://github.com/HewlettPackard/foedus

https://github.com/stephentu/silo
https://github.com/HewlettPackard/foedus

F. Nawab et al.

40 -

Dali
FOEDUS
35 P
Silo —A&—
30
@
& o Dali P 2z
S 5 FOEDUS mummm Silo ez
= 80
3 2071 @ 70
5 2 60
3 151)
§ = 50
10 g 40
S 30
51 g 20
£ 10t
0 0 ¢
0 10 20 30 40 50 60 0% 25% 50% 75% 100%
Number of threads Percentage of read operations (%)
Figure 8 Scalability (75% reads). Figure 9 Impact of read:write ratio.

ensure correct recovery, per-thread undo logging is employed. In contrast to Dali, Silo, and
FOEDUS, transactions are immediately committed to persistence.

We benchmarked all four systems on a server-class machine with four Intel Xeon E7-
4890 v2 processors, each with 15 cores, running Red Hat Enterprise Linux Server version 7.0.
The machine has 3 TB of DRAM main memory. Each processor has a 37.5 MB shared L3
cache, and per-core private L2 and L1 caches of 256 KB and 32 KB, respectively.

Figure 8 shows the transaction throughput of Dali and the comparison systems while
varying the number of worker threads from 1 to 60; transactions here comprise three reads
and one write. Dali achieves a throughput improvement of 2-3x over Silo and FOEDUS
across the range of threads. The removal of write-ordering overhead in Dali reduces the time
spent blocking per transaction, thereby improving throughput.

Figure 9 shows experiments that vary the read-to-write ratio at 60 threads across
transactions containing four operations. Dali’s performance advantages compared to Silo and
FOEDUS are larger for workloads with more reads due to the multiversioning optimization,
whereas IP’s advantage lies in the reduction in persist instructions at high read percentages.

6 Related Work

Dali builds upon years of research on in-memory and NVM-centric designs, and upon decades
of research on traditional database and multiversioning algorithms. As the promise of NVM
is fast and fine-grained durable storage, tailored NVM systems have focused on specific types
of applications: namely transactional memory and data storage.

Transactional memory systems are a natural fit for NVM, since a common challenge is to
ensure consistent persistent state. The transaction-based NV-Heaps [7] and REWIND [5]
and the lock-based Atlas [4] use undo logs to track writes to persistent state as they occur; on
system crash, changes are rolled back. In contrast, the redo-logging Mnemosyne [27] redirects
writes of persistent state to a thread-private location; on transaction commit, it copies
changes to the shared state. All these systems are fine-grained “incrementally persistent”
designs. A more novel design is Soft WrAP, which uses aliasing to keep both a transient and
a persistent copy of data, thus avoiding inconsistencies caused by leaking cache lines [13].

Other authors have built intricate NVM data structures for data storage and transaction
processing. Several projects use custom NVM-adapted trees that support atomic and durable
updates [5, 6, 23, 28]. Schwalb et al. present a lock-free NVM hash map [24] similar to
the incrementally persistent design of Section 2. These data structures all use incremental
persistence, either within individual updates or in transaction logging.

37:13

DISC 2017

37:14

Dali: A Periodically Persistent Hash Map

Recent research on in-memory databases has also investigated NVM-based durability.
Both DeBrabant et al. [10] and Arulraj et al. [1] explore how traditional database designs
can be adapted for architectures with NVM, while Kimura’s FOEDUS [18] builds a custom
DBMS for NVM from the ground up.

Like Dali, traditional disk-resident databases maintain a single persistent copy of the
data (traditionally on disk, but for Dali in NVM) and must move data into transient storage
(traditionally DRAM, but for Dali CPU caches) in order to modify it. Viewed in this light,
CPU caches in Dalf resemble a database’s STEALING, FORCEABLE buffer cache [15]. The
updating algorithm of the incrementally persistent hash map is similar to traditional shadow
paging [14, 29], but at a finer granularity. To the best of our knowledge, no prior art in this
space has allowed writes to be reordered within an update or transaction, as Dali does.

The prepend-only buckets of Dali resemble several structures designed for RCU [20]. Dalf
also resembles work on persistent data structures, where “persistent” here refers to the data
structure’s ability to preserve its own history [12]. Data structures of this sort are widely
used in functional programming languages, where their ability to share space among multiple
versions provides an efficient alternative to mutating a single version [22]. In the notation of
this field, Dali resembles a partially persistent data structure — one in which earlier versions
can be read but only the most recent state can serve as the basis for new versions [12].

7 Conclusion

We have introduced periodic persistence as an alternative to the incremental persistence
employed by most previous data structures designed for nonvolatile memory. Dali, our
periodically persistent hash map, executes neither explicit writes-back nor persistence fences
within updates; instead, it tracks the recent history of the map and relies on a periodic global
fence to force recent changes into persistence. Experiments with a prototype implementation
suggest that Dali can provide nearly twice the throughput of file-based or incrementally
persistent alternatives. We speculate other data structures could be adapted to periodic
persistence, and that the paradigm might be adaptable to traditional disk based architectures.

Acknowledgments. The authors sincerely thank Hideaki Kimura and Tianzheng Wang for
their helpful suggestions and assistance.

—— References

1 Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. Let’s talk about storage: Recovery
methods for non-volatile memory database systems. In SIGMOD, Melbourne, Australia,
2015.

2 Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu: Fast recoverable
allocation of non-volatile memory. In OOPSLA, Amsterdam, Netherlands, 2016.

3 Jodo Cachopo and Anténio Rito-Silva. Versioned boxes as the basis for memory transactions.
Science of Computer Programming, 63(2):172-185, December 2006.

4 Dhruva Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Leveraging locks for NVM
consistency. In OOPSLA, Portland, OR, USA, 2014. doi:10.1145/2660193.2660224.

5 Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. Recovery write-ahead
system for in-memory non-volatile data-structures. Proc. VLDB Endow., 8(5), January
2015. doi:10.14778/2735479.2735483.

6 Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main memory. Proc. VLDB
Endow., 8(7), 2015.

http://dx.doi.org/10.1145/2660193.2660224
http://dx.doi.org/10.14778/2735479.2735483

F. Nawab et al.

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. Making persistent objects fast and safe with NVM. In ASPLOS,
Newport Beach, CA, USA, 2011. doi:10.1145/1950365.1950380.

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin C.
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent
memory. In SOSP, Big Sky, MT, USA, 2009.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In SOCC;, Indianapolis, IN, USA, 2010.
Justin DeBrabant, Joy Arulraj, Andrew Pavlo, Michael Stonebraker, Stan Zdonik, and
Subramanya R. Dulloor. A prolegomenon on OLTP database systems for non-volatile
memory. Proc. VLDB Endow., 7(14), 2014.

Anamika Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. YCSB+T: Benchmark-
ing web-scale transactional databases. In ICDEW, Chicago, IL, USA, 2014.

James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. In STOC, Berkeley, CA, USA, 1986.

Eric R. Giles, Kshitij Doshi, and Peter Varman. Softwrap: A lightweight framework for
transactional support of storage class memory. In MSST, Santa Clara, CA, USA, 2015.
Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie, Tom Price, Franco
Putzolu, and Irving Traiger. The recovery manager of the System R database manager.
ACM Computing Survey, 13(2):223-242, June 1981.

Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery.
ACM Computing Survey, 15(4):287-317, December 1983.

Intel Corp. Intel architecture instruction set extensions programming reference. Technical
Report 319433-022, Intel Corp., October 2014.

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In DISC; Paris, France, 2016.
Hideaki Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In SIGMOD,
Melbourne, Australia, 2015.

Christoph Lameter. Effective synchronization on Linux/NUMA systems. In Proc. of the
Gelato Federation Meeting, San Jose, CA, USA, 2005.

Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger, and
Rusty Russell. Read copy update. In Ottawa Linuxz Symposium, Ottowa, Canada, 2002.
Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kimberly
Keeton. An analysis of persistent memory use with WHISPER. In ASPLOS, Xi’an, China,
2017.

Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.
Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner.
FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class
Memory. In SIGMOD, San Francisco, CA, USA, 2016.

David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. NVC-Hashmap:
A persistent and concurrent hashmap for non-volatile memories. In IMDM, Kohala Coast,
HI, USA, 2015.

Storage Networking Industry Association (SNIA) Non-Volatile Memory Programming
Model. http://www.snia.org/tech_activities/standards/curr_standards/npm.
Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy
transactions in multicore in-memory databases. In SOSP, Farmington, PA, USA, 2013.
Haris Volos, Andres Jaan Tack, and Michael M. Swift. Lightweight persistent memory. In
ASPLOS, Newport Beach, CA, USA, 2011. doi:10.1145/1950365.1950379.

37:15

DISC 2017

http://dx.doi.org/10.1145/1950365.1950380
http://www.snia.org/tech_activities/standards/curr_standards/npm
http://dx.doi.org/10.1145/1950365.1950379

37:16 Dali: A Periodically Persistent Hash Map

28 Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng
He. NV-Tree: Reducing consistency cost for NVM-based single level systems. In FAST,
Santa Clara, CA, USA, 2015.

29 Tatu Ylonen. Concurrent shadow paging: A new direction for database research. Technical
Report 1992/TKO-B86, Helsinki University of Technology, Helsinki, Finland, 1992.

http://dl.acm.org/citation.cfm?id=2750495

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of DISC 2017
(LIPlcs, volume 91, http://www.dagstuhl.de/dagpub/978-3-95977-053-8, published in
October, 2017), in which a missing funding acknowledgment has been included.

Dagstuhl Publishing — July 19, 2018.

http://www.dagstuhl.de/dagpub/978-3-95977-053-8

	Introduction
	Motivation
	Dalí
	Data Structure Overview
	Reads
	Updates
	Further Details

	Correctness
	Linearizability
	Buffered Durable Linearizability

	Experiments
	Related Work
	Conclusion

