
Deadline Scheduling for Animation Rendering

Eric Anderson, Dirk Beyer, Kamalika Chaudhuri, Terence Kelly, Norman Salazar,
Cipriano Santos, Ram Swaminathan, Robert Tarjan, Janet Wiener, Yunhong Zhou

Hewlett-Packard Laboratories
1501 Page Mill Road

Palo Alto CA 94304
firstname.lastname@hp.com

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Sequencing and Scheduling

General Terms: Algorithms, Performance

Keywords: deadline scheduling, animation rendering

1. INTRODUCTION
We describe a new class of scheduling problem with prece-

dence constraints, the disconnected staged scheduling prob-
lem (dssp). dssp is a nonpreemptive multiprocessor dead-
line scheduling problem; we seek to maximize the aggregate
value of jobs that complete by a specified deadline. It arises
in many commercially-important domains including bioin-
formatics and seismic signal processing.
Our interest in dssp began with the practical problem

of scheduling computer animation rendering jobs. Each job
represents a brief film clip and consists of several stages that
must be processed in order (e.g., physical simulation, model
baking, frame rendering, and clip assembly). Each stage
in turn consists of computational tasks that may be run in
parallel; all tasks in a stage must finish before any task in
the next stage can start. A job completes if and only if all
of its tasks complete. Precedence constraints exist among
tasks within a job, but not among tasks in different jobs.
Jobs run overnight and yield value only if they complete
before the artists who submitted them return the following
morning. Demand frequently exceeds available CPU capac-
ity, making it impossible to complete all submitted jobs by
the deadline. The set of jobs is known in advance but their
computational demands (e.g., the run times of tasks) are
not precisely known.
Existing scheduling practices rely on priority schedulers,

which are not well suited to dssp because ordinal priori-
ties cannot adequately express the value of jobs. Further-
more priority schedulers make job selection decisions as by-
products of task sequencing decisions. Our approach is to
assign to jobs completion rewards whose sums and ratios are
meaningful, and to perform job selection and task sequenc-
ing separately.
We present both theoretical analysis and empirical evalua-

tion of our dssp solution. Our empirical results are based on
an eight-week trace of 2,388 jobs collected in a 1,000-CPU
production system that rendered part of film Shrek 2 in
2004. We show that our two-phase method improves aggre-
gate reward and achieves near-optimal performance under

Copyright is held by the author/owner.
SIGMETRICS’05, June 6–10, 2005, Banff, Alberta, Canada.
ACM 1-59593-022-1/05/0006
$Id: p90-anderson.tex,v 1.8 2005/03/21 02:00:24 kterence Exp $.

some conditions. A prototype of our scheduler is currently
deployed at DreamWorks, one of Hollywood’s top three ani-
mation studios. A full version of this paper will be available
as an HP Labs technical report.

2. PROBLEM STATEMENT
Formally, dssp consists of J jobs, indexed j ∈ 1 . . . J .

Job j contains Gj stages, indexed g ∈ 1 . . . Gj . The set
of tasks in stage g of job j is denoted Sgj . Stages encode
precedence constraints within a job: no task in stage g + 1
may begin until all tasks in stage g have completed. No
precedence constraints exist among tasks in different jobs,
i.e., the directed acyclic graph (DAG) of task precedence
constraints is disconnected, with one component per job.
The execution time (or “length�) of task i is denoted Li.

The total processing demand of job j, denoted T1(j), equals
∑Gj
g=1

∑

i∈Sgj Li. The critical path length of a job is denoted

T∞(j) ≡
∑Gj
g=1maxi∈Sgj{Li}. Figure 1 illustrates two jobs.

At most one task may occupy a processor at a time, and
tasks may not be preempted, stopped/re-started, or mi-
grated after they begin. Let Cj denote the completion time
of job j in a schedule. Let Rj denote its completion reward.
Our goal is to sequence tasks onto processors to maximize
aggregate reward RΣ ≡

∑J
j=1 UD(Cj), where UD(Cj) = Rj

if Cj ≤ D and UD(Cj) = 0 otherwise. This objective func-
tion is sometimes called “weighted unit penalty� [1].
The computational complexity of dssp is formidable, even

in a severely restricted special case. General dssp is not
merely NP-hard but also NP-hard to approximate within
any polynomial factor, assuming that P 6= NP. Further-
more, even the special case of dssp with unit rewards and
unit execution times is strongly NP-complete.

Theorem 1. General dssp is NP-hard to approximate
within any polynomial factor.

Theorem 2. Unweighted dssp with unit task execution
time is strongly NP-complete.

3. SOLUTION METHODS
Our approach decomposes dssp into two tractable phases,

an offline job selection phase followed by an online task se-
quencing phase.
The goal of job selection is to choose a subset of jobs with

maximal aggregate completion reward subject to a process-
ing capacity constraint. Binary decision variable xj = 1 if
job j is selected, xj = 0 otherwise. P denotes the number of
processors. Selection solves the following integer program:

Maximize
∑J
j=1 xjRj (1)

subject to
∑J
j=1 xjT1(j) ≤ r · PD (2)

384

j=1, g=1, i=1

j=1, g=1, i=2

j=1, g=1, i=3

j=1, g=2, i=4
j=1, g=3, i=5

j=1, g=3, i=6

j=2, g=1, i=7

j=2, g=1, i=8

j=2, g=2, i=9

j=2, g=2, i=10

j=2, g=2, i=11

critical path length T (1)8

critical path length T (2)8

 0

 25

 50

 75

 100

 0 5 10 15 20 25

Pe
rc

en
t o

f j
ob

s
co

m
pl

et
ed

Completion time (hours)

STCPU

FIRST

PRIORITY
RANDOM

LCPF
CPA
deadline

 0

 20

 40

 60

 80

 100

 11 12 13 14 15

no
rm

al
iz

ed
 a

gg
re

ga
te

 re
w

ar
d

 R
Σ

rD (selector time budget)

reward = T1

LCPF
STCPU

CPA
PRIORITY

deadline

Figure 1: Job (j), task (i), and
stage (g) structure for two jobs.

Figure 2: Distributions of job
completion times.

Figure 3: Selection plus dis-
patching performance.

PD in Equation 2 is the total amount of processor time avail-
able. Parameter r allows us to select a set of jobs whose total
processor demand differs from the total available. Our se-
lection problem is a classic 0-1 knapsack problem, for which
a wide range of solvers exist [2]. We implemented three: the
simple classic greedy heuristic, dynamic programming (DP)
by profits, and a mixed integer programming (MIP) solver
that can handle side constraints not discussed in this paper.
A dispatcher sequences tasks from selected jobs onto pro-

cessors. We employ a non-delay (or “work-conserving�)
dispatcher that places a runnable job onto an idle proces-
sor whenever one of each is available. If there are several
runnable tasks, a dispatcher policy chooses one. We em-
pirically evaluated over two dozen dispatcher policies and
present results for the best performers: random (choose
randomly), first (choose runnable task with highest ID),
priority (choose highest-priority task), stcpu (choose a
task from the job with the lowest total processing demand
T1(j)), and cpa (the critical path algorithm, sometimes called
hlfet [3]). Our new dispatcher policy lcpf exploits the dis-
connected precedence DAG of dssp; it chooses a task from
the job with the longest critical path T∞(j).

4. ANALYSIS
We prove worst-case performance bounds for two-phase

approaches to unweighed dssp (all jobs have unit completion
reward). Our bounds depend on the maximum critical path
length among all jobs, denoted Tmax

∞ .
maxK is an offline algorithm that computes the maximum

value K such that the K jobs with the highest R : T1 ratio
can be completed by the deadline. Given a value K, maxK
simply simulates dispatching all tasks of the selected jobs to
check whether all of them complete by the deadline; linear
or binary search can be used. We now prove that maxK
computes near-optimal schedules for unweighted dssp.

Theorem 3. Algorithm maxK can schedule at least

max
{(

1− Tmax
∞
D

(

1− 1
P

)

)

OPT− 1,OPT− (P − 1)
}

jobs.

maxK requires the execution times of each task, which are
not always available. Our next result shows that two-phase
solutions that do not require task lengths guarantee good
results in the unweighted case if Tmax

∞ /D is small.

Theorem 4. The two-phase solution using a greedy knap-
sack selector with the selection parameter r = 1 − (1 −
1/P)(Tmax

∞ /D) and any non-delay dispatcher completes at

least (1− Tmax
∞
D

(1− 1
P
))OPT− 1 jobs before the deadline.

Theorem 4 implies that any two-phase solution (with a proper
selection parameter r) completes at least half as many jobs

as an optimal algorithm if Tmax
∞ ≤ D/2. As Tmax

∞ /D goes
to 0, its performance approaches optimal.

5. EXPERIMENTAL RESULTS
The bound of Theorem 4 is weak when Tmax

∞ /D is large.
In this section we show experimentally that our two-phase
approach yields good schedules for trace inputs with rela-
tively high Tmax

∞ , and that our method outperforms existing
practices substantially. Our experiments use two parame-
ters from the DreamWorks cluster where our traces were
collected: P = 1, 000 processors and deadline D = 13 hours.
We first compare dispatcher performance alone. Figure 2

shows the distribution of job completion times for six dis-
patcher policies. lcpf and cpa overtake the other policies
shortly after the deadline. However, by reducing selection
parameter r we can shift their curves to the left, i.e., we can
control when lcpf overtakes the other policies. For our ani-
mation workload, r ≈ 0.9 yields good results. lcpf and cpa
perform much better than the others in terms of makespan
(time to finish last job). lcpf is preferable because it com-
pletes far more jobs early in the evening than cpa.
We also evaluated a complete two-phase scheduler (selec-

tor plus dispatcher) in terms of aggregate reward RΣ. These
tests used traces from the ten nights whose submitted jobs
had the greatest total processor demand

∑

T1(j). We used
our MIP to select jobs, varying selection parameter r to see
how under- or over-selection impacts aggregate rewards.
Figure 3 presents results for one set of experiments; others

are described in the full paper. The horizontal axis shows
the time budget r · D used during selection. Our results
show that lcpf outperforms the other policies if r is tuned.
cpa is comparable to lcpf if r is well tuned, but it suffers
far more than lcpf when r is poorly tuned. stcpu and pri-
ority are relatively insensitive to r but yield considerably
lower aggregate reward than well-tuned lcpf. In terms of
aggregate reward, lcpf outperforms priority by 9%–32%
in our experiments.

6. REFERENCES
[1] P. Brucker. Scheduling Algorithms. Springer, 3rd

edition, 2001.

[2] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer, 2004.

[3] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors.
ACM Computing Surveys, 31(4):406–471, Dec. 1999.

385

