Embedded Way Prediction for Last-Level Caches'

Faissal M. Sleiman, Ronald G. Dreslinski, and Thomas F. Wenisch
Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, USA
sleimanf, rdreslin, twenisch@umich.edu

Abstract—This paper investigates Embedded Way Prediction
for large last-level caches (LLCs): an architecture and circuit
design to provide the latency of parallel tag-data access at
substantial energy savings. Existing way prediction approaches
for L1 caches are compromised by the high associativity and
filtered temporal locality of LL.Cs. We demonstrate: (1) the need
for wide partial tag comparison, which we implement with a
dynamic CAM alongside the data sub-array wordline decode, and
(2) the inhibit bit, an architectural innovation to provide accurate
predictions when the partial tag comparison is inconclusive. We
present circuit critical-path and architectural power/performance
studies demonstrating speedups of up to 15.4% (6.6% average)
for scientific and server applications, matching the performance
of parallel tag-data access while reducing energy overhead by
40%.

I. INTRODUCTION

Semiconductor device scaling continues to enable processor
designs with ever-larger caches. As larger working sets are
captured within the chip, the importance of intra-chip access
latency has grown [6]. Server applications are particularly
sensitive to last-level cache (LLC) latency because their multi-
megabyte instruction footprints overwhelm primary instruction
caches, exposing LLC latency on the fetch critical path [7].
While tag and data accesses in large, highly-associative LLCs
are often serialized to save energy [18], parallel tag-data access
(for reads) can reduce overall access latency by 30% albeit at
a 1.47x cost in per-access energy.

To bridge the performance and energy gaps between these
two extremes, we consider way prediction, where only a subset
of data ways are accessed in parallel with the tags. Way
prediction has been studied extensively for L1 caches [4], [9],
[12], [14], [18], [21]. In this context, it has relied primarily
on one of two phenomena: temporal locality (i.e., predict the
most-recently-used way) or instruction-correlated locality (i.e.,
use a PC-indexed prediction table). However, way prediction
is fundamentally harder in LLCs because associativity is
greater, temporal locality is filtered by the L1 caches, accesses
from multiple cores interleave, and instruction addresses are
typically not available.

Alternatively, researchers have advocated partial tag com-
parison to rule out cache ways that surely do not contain
the data [5], [11], [15], [22]. These designs compare a few
low order bits of the incoming tag to those stored in each
way, and abort accesses for any mismatches. The most recent
design [22] targets small (8-32KB), low-associativity (4-way)

TThis work was partially supported by NSF CSR-0815457 and grants
from ARM, Inc.

L1 caches, which allows it to hide a fully-associative 4-bit
partial tag comparison under the data array decoder delay.
This design avoids any impact on the cache access critical
path, while achieving good energy efficiency. The comparison
is implemented with static logic as a content-addressable
memory (CAM)—a design facilitated by the small L1 size.

We follow a similar approach, however our target LLC
context leads us to a different solution. (1) We demonstrate the
need for a wider partial tag comparison of 6-8 bits in order to
achieve highly accurate way prediction (over 90% accuracy)
at the LLC. (2) This wider comparison leads us to implement
the CAM with dynamic logic to minimize latency, and we
assess the impact on access latency by performing a circuit-
level critical path analysis of the CAM versus decoder delays.
(3) Despite a wider partial tag comparison, some accesses still
result in partial tag matches in more than one way, which
makes the way prediction inconclusive. To tightly limit energy
per access, we describe an architectural feature we call the
inhibit bit to predictively activate the most likely way under
such partial tag collisions.

Integrating these components, we propose Embedded Way
Prediction, an architecture and circuit design for effective
way prediction in server-class LLCs. We show that embedded
way prediction achieves the full potential performance im-
provement of parallel lookup, improving scientific and server
application performance by up to 15.4% (6.6% average) at
an energy-per-instruction overhead of 11%, as compared to a
17.5% overhead for conventional parallel lookup (averages are
geometric means).

II. BACKGROUND

Types of cache access. Latency-sensitive L1 caches typ-
ically adopt a parallel access scheme, shown in Figure 1
(left), wherein all ways of both the tag and data array are
read concurrently, thus minimizing latency at the expense of
energy efficiency. Conversely, L2 or LLC designs typically
perform tag accesses first, followed by an access to the
correct data way, as depicted in the sequential access scheme
in Figure 1 (center). Sequential access saves the energy of
accessing irrelevant data ways in larger, higher associativity
caches, at the cost of latency. Way prediction, illustrated in
Figure 1 (right), attempts to offer the best of both, by only
accessing a subset of data ways in parallel with the tags.

We highlight two special cases of way prediction. The first
is way filtering, where the cache access is nominally parallel,
but data ways that are known not to contain the requested

parallel sequential

. . way
. . o prediction
: : prediction storage
* B | B | 7Y
. I I : T (- ——

r i r |
4 4 . v v Y

tag data tag data data

‘ match? ’— -»‘ drive/mux ‘ ‘ match? ’— ‘drivc/mux ‘ ‘ match?)—
I I .

v o v

Fig. 1.

‘ drive/mux ‘
I

v

Cache access schemes.

block are filtered out. Way filtering never incurs a performance
overhead relative to parallel access, but may consume as much
energy if filtering is not successful. The second is single-way
prediction, where at most one data way is activated in parallel
with the tags. We focus on this flavor of way prediction, as it
assures that at most two data ways will be activated per cache
access, bounding LLC access energy. In the common case
that the prediction is correct, single-way prediction offers the
low latency of parallel access at the low energy of sequential
access. On a misprediction, the tag comparison triggers a
second, sequential data access.

Partial tag matching. Although predicting the most-
recently-used (MRU) way at the L1 is known to be 85-95%
accurate [4], we find it is typically only 30-60% accurate at the
LLC and sometimes little better than a random guess for mul-
tithreaded scientific and server workloads (see Section VI-C).
Instead, to quickly and efficiently rule out ways that cannot
contain the requested cache block, we advocate comparing the
low-order bits of each stored tag to the incoming address, an
idea known as partial tag matching. In the context of parallel
caches, partial tag matching can implement way filtering by
inhibiting access to ways that mismatch. Prior designs using
partial tag matching in this manner have targeted L1 caches,
as parallel access is not typically used in LLCs. The key
challenge in such designs is engineering the partial tag match
so that it has minimal impact on the data array critical path
while saving as much energy as possible.

III. RELATED WORK

Our work builds on a long history of literature on way pre-
diction, way filtering, and partial tag comparison; the earliest
work in this area dates back over 20 years [11]. Broadly, our
objective is to revisit these concepts in the context of modern
servers because of their growing sensitivity to LLC access
times. Our design accelerates LLC tile accesses in the common
case of an accurate way prediction.

Way prediction was initially proposed as a performance
enhancement to prearrange multiplexor paths at the output
of cache data arrays to select the MRU way before the
tag comparison is complete [14]. Subsequent work suggested
using sources besides the replacement order, such as register
or instruction addresses, to predict which way to access first
in sequential associative caches (which access cache ways in
consecutive cycles) [4]. Later work focused instead on saving
energy by accessing a single predicted way in parallel caches
[9], [18], predicting wake-up for Drowsy cache cells [12], or
selective sub-array precharging [21]. In all of these designs, a

key constraint is that the prediction must be made before the
cache address is available, a constraint relaxed in LLCs.

Partial tag matching was first suggested by Kessler and co-
authors to reduce the number of tags scanned sequentially
in early set-associative caches, where tag comparators were
expensive [11]. Over the past two decades, partial tag matching
has been suggested in various forms as a means to reduce tag
comparison energy in sequential caches, most recently using a
partial tag bloom filter [17]. Min and co-authors use a partial
tag match to gate sense amplification and bit line muxing [15].
Zhang and co-authors conserve nearly all of the data array
access energy by performing the partial tag match in parallel
with wordline decode, then gating wordline activation [22].
We pursue the same approach. However, whereas their study
targets a small (8KB), low-associativity (4-way) L1, we target
a comparatively massive (2MB) highly-associative (16-way)
LLC tile in a multicore server, leading to a markedly different
solution.

IV. ARCHITECTURAL DESIGN

We propose Embedded Way Prediction in the context of
a server-class chip-multiprocessor with a highly-associative
large tiled last-level cache similar to designs from Tilera [2].
We consider both private and shared cache organizations. Sim-
ilar to [22], we perform partial tag matching by embedding a
CAM alongside the wordline decoders of the data SRAM sub-
arrays. However, we find server workloads require a far wider
partial tag comparison of 6-8 bits (see Section VI-C), which
necessitates a dynamic CAM circuit to avoid timing impact.
Furthermore, we target single-way prediction as opposed to
way-filtering to limit energy per access.

A. Addressing Partial Tag Collisions

Because the partial tags are narrower than full tags, it is
possible for the partial tags to match in several ways. These
partial tag collisions lead to ambiguity as to which one among
the matching ways should be predicted. To avoid the energy
overhead of multiple way accesses (only one of which can be
correct), we instead include an inhibit bit in each CAM entry
that, when set, prevents that entry from reporting a match. We
orchestrate the inhibit bits such that they are set for all but one
colliding partial tag, and also use them to disable matches for
invalidated lines.

A variety of policies might be used to choose which
among a set of colliding tags should remain enabled. In our
design, we use our LRU replacement policy as our guide, and
clear the inhibit bit for the MRU tag within each collision
set. We explore the impact of this scheme on prediction
accuracy in Section VI-C. Inhibit bits could also be used for
more complex schemes (e.g., using information from more
sophisticated replacement policies [10] or confidence counters)
or to provide software control over the use of embedded way
prediction (e.g., to activate it only for blocks allocated by a
particular core/thread). We note that embedded way prediction
has no effect on the cache replacement algorithm or coherence
protocol.

B. Maintaining Inhibit Bits

To ensure that only the MRU block within each collision
set can trigger a parallel lookup, we maintain the following
invariant: each time a cache block within a set is accessed
or newly allocated (when a miss is filled), its inhibit bit is
cleared, while the inhibit bits for any other block matching
the same partial tag are set. Given this, at most two inhibit
bits can change per cache access.

To avoid the need for a read port on the CAMs, the tag array
stores a copy of the inhibit bit for each way (1 bit of overhead
for every 32-bit tag). Rather than calculate and update inhibit
bit state within the embedded way predictors at the data array,
we instead rely on the tag array to maintain their state, sending
updates to the CAMs when needed. We reuse the low order bits
of the tag array’s tag comparator to identify matching partial
tags. With the information stored in the inhibit copies, we can
identify which way was predicted within the data arrays. We
can also identify if the prediction was correct, by checking
it against the full tag comparison. At the tag array we then
set the inhibit bit for all matching partial tags, except that we
clear the inhibit bit for the hit way (if the access was a hit).
The new inhibit bit state is driven to the data arrays along with
the way select signal, and modified inhibit bits are written into
the appropriate CAM entry.

On a misprediction, the (sequential) access to the correct
way within the data arrays must override the partial tag
comparison to ensure the word line is activated. Rather than
add an override input to the CAM/decoder circuits, which
would impact the critical path of one (or both), we solve this
problem architecturally, by driving the partial tag comparison
and inhibit match lines with the (known) content of the CAM.
We make use of the fact that the inhibit bit already takes part
in the CAM comparison: during a way prediction we clear the
comparison lines to inhibit bits so that cleared inhibit bits can
match. Now, during the sequential access, the comparison line
is set for the hit way to force a match, while the rest of the
ways are disabled by setting their inhibit bits to the opposite
of their known values.

Finally we address cache replacements and invalidations
that target the MRU matching partial tag. Depending on the
LRU implementation, these events make identifying the next-
most-recently-used matching partial tag ambiguous (for exam-
ple, an approximate LRU implementation). In these scenarios,
we clear the inhibit bit of an arbitrary other matching partial
tag. We see in Section VI-C that the potential impact of a
wrong choice in this situation is low.

C. LLC Tile Organization

Each LLC tile in our design is 2MB, 16-way set associative,
and divided into 4 independently operating banks. Within
a bank, tag and data pipelines are separately scheduled, to
facilitate coherence traffic that often requires only tags. Each
512KB bank contains 512 sets of 16 ways each with 64B
blocks. Within a bank, the tag and data arrays are further
sub-divided into sub-arrays to optimize the latency-area-power
trade-off. We assume a physical layout like that modeled by

sub-array 0

- - - -
: SRAM row : — CthM | oot.
| SRAM row CAM
| ' '
| |
| |
il SRAM row |
L _ _ ______ |
partial tag

mat enable

index

predecode

Fig. 2. Organization of a single data “mat”.

CACTI [16], where tag and data sub-arrays are grouped into
mats: two-by-two squares of sub-arrays that share a common
predecoder. The mats are interconnected via intra-bank H-
trees, which in turn connect to the bank-level routing. As these
interconnect busses are long and wide, they account for the
majority of cache dynamic power (and, to a lesser degree,
latency) for sequential accesses.

We organize ways across mats such that each 32KB way
occupies two 256x523 bit sub-arrays (512 data + 11 ECC)
from the same mat. Our data arrays rely on ECC rather than bit
interleaving to provide tolerance against soft error. Otherwise,
bit interleaving would complicate partial tag matching because
several data words (with different tags) share a single wordline.
Hence, the way predictor would have to activate the wordline
if any of the corresponding tags matched, requiring an OR
function in addition to several CAM comparisons (one per
interleaved word).

An arriving read that finds the data pipeline unscheduled
forwards its partial tag and set index to all data mats/ways
to initiate a way prediction. This in turn activates the CAMs
and decoders for all data ways, which proceed to read out at
most one uninhibited block with a matching partial tag. In the
meantime, the result from the full tag comparison is used to
confirm the prediction. On a misprediction, the correct data
way is then activated, thus incurring an extra data way access
relative to a sequential cache.

V. CIRCUIT DESIGN

We study the effect of partial tag width on LLC way
prediction accuracy in Section VI-C, and determine the need
for 6-8 bits to achieve an accuracy over 90%. The crucial
question then is to determine whether such a wide partial
tag comparison can be hidden within the wordline decoder
delay and to determine the energy requirements of the CAMs
themeselves. In this section, we perform a critical path analysis
of the partial tag comparison and wordline decoder circuits.
We first describe the physical layout of our LLC bank, and

compare line driver

,,,,,,,,,,,,,,

2-4 decode w/ enable predecode driver

predecode line
phgagaig

Fig. 3.

finally provide energy estimates for parallel, sequential, and
way-predicted cache accesses.

A. Data Mat Organization

Figure 2 shows the internal layout of a single data mat,
including the additions required to support embedded way
prediction. In a conventional sequential access, the tag arrays
indicate which data way to access, and one of the sub-arrays
within a single mat returns the data. The 9 index bits, along
with an enable signal, arrive via the intra-bank H-tree at the
predecoder, which comprises four 2-4 decoders, one of which
is gated by the enable, a NAND combining stage which creates
a one-hot encoding of the combined outputs of a 2-4 decoder
pair, and drivers to transmit the predecoded index to the sub-
arrays. A final NAND stage combines the predecode signals
into wordlines, which are driven across the sub-arrays.

To support embedded way prediction, each data sub-array
within the mat is augmented with a 256-entry CAM. Because a
CAM cell requires two horizontal routing tracks, while modern
SRAM cells have only one, we place two separately-driven
128-entry CAM arrays (top CAM and bottom CAM) side-by-
side, with each CAM row spanning two SRAM rows. Note that
the match line of one CAM must route over the other, requiring
resources on an additional metal layer. When predicting, all 4
CAMs (in each of the 16 ways) operate in parallel with the
mat predecoder and sub-array wordline decoders.

The need for wider comparison forces us to use a dynamic
CAM circuit [13], rather than using the transmission-gate
XOR-NOR comparator proposed in [22]. The 10T CAM
cell performs the (mis)match operation by pulling down a
precharged matchline through an NMOS stack. Indeed, Zhang
et al. considered a dynamic CAM and rejected it because
their static logic design is more energy efficient for small sub-
arrays; we reach the opposite conclusion for LLCs.

B. Critical path analysis

Our objective is to establish the limit on the number of par-
tial tag bits that can be compared within the timing constraint
of the wordline decoder circuit for our chosen configuration.
We optimize the critical paths of the decoder and CAM
circuits using the method of logical effort, and investigate their
timing using Cadence Virtuoso Spectre targeting an industrial
65nm process. For our target technology, the SRAM bit cell
is 1.05um by 0.46pm, and the CAM cell is 1.05um by
0.92um. We stop short of analyzing a complete mat layout,

final decode

-

=X Decoder CAM
280
240 -
200 F
— ' Wordline driver stack mn
160
&
< 120
[
1 8
80 -
40 -
. . , , .
| 0(J 1 2 3 4 5 6 7 8 9 10
PT Bits

Critical path analysis. Left: CAM (top) vs. Decoder (bottom) paths. Right: delay comparison.

as this would need to consider additional factors beyond the
scope of this study, including component-level energy trade-
offs, reliability under process variations, and peripheral logic
unrelated to embedded way prediction.

We begin our analysis with the assumption that the mat in-
put signals arrive simultaneously. From there, the decoder and
CAM circuits follow different critical paths before converging
at the wordline driver stack, as depicted in Figure 3 (left).
Optimizing decoder critical paths is discussed extensively in
[1]. We only note here that the critical path of a decoder is
complicated by the intermediate wire load of the predecode
lines. We simplify the optimization process by following a
heuristic adhered to in CACTI and suggested in [1], namely,
to set the NANDs after the predecode lines to minimum
size, thereby improving the energy-delay characteristic of the
decoder. The resulting critical path of our decoder, illustrated
in Figure 3 (bottom left) yields a decode time of 207ps for
our 65nm process.

On the other hand, our CAM operates by broadcasting each
bit to be compared (along with its inverse) to all rows. Since
the highly regular CAM cells are constrained by stringent
sizing and layout considerations, rearranging logic within the
CAM cell is not possible. At best, the comparison line driver
can be optimized to reduce the delay on the comparison line.
Thus, as we increase the number of partial tag bits in the
CAM, the load on the NMOS stack (which cannot be sized to
compensate) also increases, while each comparison line driver
continues to drive the same load.

Therefore, we see the delay of the CAM circuit degrade
in Figure 3 (right) with increasing number of partial tag bits
(CAMs also include one extra inhibit bit cell). Our results
show that a CAM of width 5 4 1 can be designed within the
timing constraint of the decoder. However, even for slightly
wider CAM widths, which are desirable for the embedded
way prediction architecture, the CAM delay does not exceed
that of the decoder by more than 20ps. For a CAM including
7 partial tag bits, needed for accurate way prediction at the
LLC (Section VI-C), such an overhead is negligible compared
to the overall cache access time (several nanoseconds).

C. Energy per Cache Access

Finally, we estimate the energy per access of sequential,
parallel, and way-predicted (correct and mispredict) accesses,
using estimates obtained from CACTI 6.5 and our characteri-
zation of the embedded CAM circuit using Spectre. We resort

TABLE I
PER-ACCESS DYNAMIC ENERGY IN NJ.

Way-Predict

Sequential Corr. Mispr. Parallel
Routing 0.8594 0.8594 0.8594 0.8594
H-Tree 0.5470 0.5470 0.5470 0.5470
Decoder 0.0003 0.0045 0.0047 0.0045
Subarrays 0.1016 0.1016 0.2033 0.8130
Tags 0.0119 0.0119 0.0119 0.0119
CAM - 0.2051 0.2051 -
Total 1.5203 1.7295 1.8315 2.2359

to CACTI, rather than using the estimates available from an
SRAM compiler, because CACTI provides a detailed energy
breakdown across components of the cache bank, while the
available SRAM compiler provides only a black-box total. We
require the breakdown to accurately assess the overheads of
embedded way prediction.

We configure CACTI 6.5 to target the 65nm ITRS-LOP
process and constrain CACTI’s search to generate a 2MB 4-
bank cache with a physical layout conforming to the orga-
nization described in Section IV-C. We report the resulting
energy breakdowns in Table I. We categorize the various
components into inter-bank Routing, intra-bank H-Tree, data
row Decoders, data Subarrays (precharge, bitlines, sense amps,
and array-internal muxing and output drivers), Tags (all sub-
components), and CAM (all CAMs within a bank). The
sequential access energy breakdown is taken directly from
CACTI; the other estimates are formed by multiplying per-
element energy by the number of elements activated during
the given type of access. Based on CACTI’s access time
estimates, we determine a parallel access latency of 15 cycles
and a sequential access latency of 21 cycles for a 4GHz clock
assumption.

Like many large caches, the energy consumption of our
design is wiring-dominated, except in the case of parallel ac-
cess, where the concurrent accesses to all 16 data ways dwarf
all other components. Overall, the per-access overhead of a
successful way prediction is only 13.8%, and a misprediction
is 20.5%. In contrast, a parallel access incurs 47.1% more
total energy. We use these estimates to construct the full LLC
power and energy estimates in Section VI.

VI. EVALUATION

We first establish the effectiveness of our final, tuned em-
bedded way prediction design with 7 partial tag bits (denoted
7) relative to sequential (S), parallel (P), and per-set MRU-
way-prediction (M) baselines. We then study the sensitivity to
partial tag width, the impact of partial tag collisions, and the
importance of including inhibit bits in the design. Our designs
are denoted by the number of partial tag bits, and an additional
inhibit bit is present in all cases. Finally, we examine energy
and power implications.

A. Methodology

We evaluate the architectural impact of embedded way
prediction on a suite of scientific and server applications
using the Flexus full-system simulator [19]. We configure our

TABLE II
SYSTEM CONFIGURATION & WORKLOADS.
Component Configuration
Cores 16 00O Cores @ 4.0 GHz
8-stage pipeline; 4-wide OoO
96-entry ROB, LSQ
Architecture Ultra Sparc III ISA
L1I Caches 64KB, 2-way, 64B blocks
L1D Caches 64KB, 4-way, 64B blocks, 32 MSHRs
LLC Cache Tiled, 2MB per-core private
LLC Tiles 16-way, 64B blocks
15-cycle parallel, 21-cycle sequential
Interconnect 2-D folded torus, 2-cycle router
1-cycle link latency
Directory MOESI coherence

8K entries per tile (128K total)
16-way, 4-cycle latency

System Memory 3GB, 4KB pages, 150 cycle latency

processor model to approximate the hardware resources of
recent Intel Xeon microarchitectures; details appear in Table II.
We simulate a 16-core tiled chip multiprocessor with 32MB
aggregate on-chip LLC capacity, composed of 16 per-core
2MB tiles with MOESI coherence. To study the generality
of embedded way prediction, we examine two baseline orga-
nizations: 1) a private organization where each core queries
and allocates blocks in its local tile, and 2) a unified shared
organization where the address space is interleaved across
tiles and a block resides in one location in the LLC for all
queries and allocations from all cores. For each workload
we present results for the highest performing baseline and
apply our technique to it. We measure performance using the
SimFlex multiprocessor sampling methodology [19].

In Section V we performed our circuit analysis targeting
an industrial 65nm process (the latest process technology for
which a design kit is available to us), in which a chip of this
size is likely infeasible. However, we pursue these cache sizes
and core microarchitecture to match the scale of our workloads
and model a near-future server-class CMP. We configure our
simulation with the cache latency and energy results derived
in Section V.

We study the TPC-C v3.0 OLTP workload on IBM DB2
v8 ESE and Oracle 10g Enterprise Database Server. We also
evaluate a selection of SPLASH2 [20] and PARSEC 2.1
[3] benchmarks that are sensitive to on-chip access latency.
These are barnes, moldyn and ocean from SPLASH2, and
the canneal benchmark from the PARSEC 2.1. We found that
the two OLTP workloads db2 and oracle, as well as barnes
and moldyn, favor the private organization. On the other hand,
ocean and canneal perform better on the shared baseline. The
rest of this section presents these workloads running under
their respective baselines.

B. Impact of Embedded Way Prediction

As shown in Figure 4, embedded way prediction with 7
partial tag bits (denoted 7) achieves the performance potential
of parallel access (P). The figure shows speedup normalized

to a sequential access baseline. The error bars indicate 95%
confidence intervals obtained by our sampling methodology,
thus the apparent speedup of our design with respect to
parallel access is not statistically significant. Figure 5 shows
a normalized breakdown of cycles-per-instruction spent on
various stall sources for a range of designs. The graph is
normalized to sequential access (S), and includes the same
three designs as Figure 4 (including a breakdown for the
sequential baseline). The time breakdowns are broken into
(from bottom to top) busy time, stalls on store instructions,
stalls on L1D accesses, stalls for L1I misses, stalls on data
accesses to the LLC, stalls on main memory and other stall
sources.

Though prior work [4], [14] has shown that predicting the
MRU way (M) is effective in low-associativity L1 caches,
it underperforms in the highly-associative LLC, achieving an
average 17% of the speedup potential of parallel access.

We find the two database applications are particularly
sensitive to our scheme because it accelerates the many LI1I
misses serviced at the LLC, with up to 15.4% speedup for
db2. The instruction footprints of these two applications (over
2MB [8]) overwhelms the small L1I cache, creating a signif-
icant performance bottleneck. Unlike data stalls, these misses
cannot usually be hidden through out-of-order execution, and
prior work [6] indicates that adding an intermediate cache
level (e.g., a 256KB L2) is not likely to be effective, as
the instruction footprint is so large (over 2MB). Barnes and
moldyn gain only modest benefits from parallel access, as their
runtime is dominated by computation (busy time). Ocean is
more sensitive to LLC time. Interestingly, ocean experiences a
slowdown under MRU way prediction. MRU prediction is little
better than random guessing for ocean (see next sub-section)
and the additional data array bandwidth pressure created
by mispredictions (each misprediction incurs two data array
accesses) leads to significant queueing delays in bandwidth-
intensive execution phases. Although canneal exhibits a large
fraction of LLC stalls, these misses are largely coherence
misses (i.e., accesses to dirty data), which spend their time
traversing the on-chip network rather than in an LLC tile.

C. Sensitivity to Partial Tag Width

In Figure 6, we examine the sensitivity of prediction accu-
racy to the width of the partial tag comparison and explore the
impact of the inhibit bit to reduce partial tag collisions. The
prediction is successful if it activates the correct way during
a cache hit, either because the partial tag match identifies a
unique way (Predicted-Unique), or the inhibit bit correctly
discerns amongst colliding partial tags (Predicted-Collision).
When the cache access will miss, the predictor ideally should
not activate an erroneous way (NoPredict-Miss). On the other
hand, mispredictions occur when collisions obscure which way
to predict during a hit (Mispredict-Collision) or when any way
is predicted during a miss (OverPredict-Miss).

Naturally, as we increase partial tag width from O to 8 bits,
the Predicted-Unique and NoPredict-Miss fractions increase
steadily towards perfect accuracy. The relative size of the

Normalized CPI Speedup (%)

LLC Read Accesses (%)

20
15 - % —————————————————
10 - - - = —
; % 77777777777 W
7M7P M 7 P M 7 P M 7 P M 7 P M 7 P
db2 oracle moldyn barnes canneal ocean
Fig. 4. Percent speedup over sequential access.
HEl Busy [I-Fetch [Memory
@3 Store S LLC I Other
LI
1.2
1.0
0.
0.
0.
0.2
0.0
SM7P SM7P SM7P SM7P SM7P SM7P
db2 oracle moldyn barnes canneal ocean
Fig. 5. Impact on Cycles Per Instruction.

1 NoPredict-Miss
BN OverPredict-Miss

Il Predicted-Unique
[Predicted-Collision
I Mispredict-Collision

100
- .lI"“ 7-|“|

80 II' ‘l
60
40
20
0

M 78 M 78 M 78 M 78 M 78 M 78
db2 oracle moldyn barnes canneal ocean
Fig. 6. Impact of partial tag matching.

I] cakage [Tags [Subarrays
@@ Bank-Routing [Decoders Il CAM
I H-Tree

4.5

LLC Power (nJ/cycle) @ 4GHz

SM7P SM7P SM7P SM7P SM7P SM7P
db2 oracle moldyn barnes canneal ocean
Fig. 7. LLC power.

Predicted-Collision segment indicates the importance of the
inhibit bit. Broadly, the results indicate that inhibit bits are
critical for accurate prediction when the partial tag width is 4
or less, while their impact shrinks for wider partial tags. The
inhibit bit plays no role during misses.

From these results, it is clear that server applications require
6-8 partial tag bits to maximize prediction accuracy, in contrast
to the 3-4 partial tag bits recommended in earlier studies
[15], [5], [22]. We also see that MRU-based prediction (M)—
equivalent to a partial tag width of zero (0)—never achieves
prediction accuracy over 65% and can never inhibit a data
array access during a cache miss.

D. Power and Energy

We turn finally to examine the power and energy impacts
of embedded way prediction. Figure 7 shows absolute LLC
power, while Figure 8 shows normalized LLC energy per
instruction, which is equivalent to an energy-delay product.
Although embedded way prediction increases power by 13%
on average over sequential access, we find that its performance
benefits compensate for its power costs through savings in
leakage energy, resulting in a net EPI increase of 11%.
This energy efficiency improvement arises because the cache
leakage power is amortized over more instructions per unit
time. Comparatively, parallel access incurs an almost doubled
power increase of 23.4%, resulting in an EPI increase of
17.5%. The dynamic power overhead of parallel access is
higher than the other designs, because it activates all 16-ways
each access, whereas our design activates at most two. While a
full-system power analysis is beyond the scope of this paper,
the EPI metric is expected to improve for high performing
designs.

VII. CONCLUSION

Server applications are growing increasingly sensitive to on-
chip cache access latency, as larger capacities allow larger
working sets to be captured on chip. In this paper, we have
revisited way-prediction using partial tag matching as a means
to accelerate accesses in large LLCs without abandoning

H [cakage [Tags [Subarrays
@ Bank-Routing [Decoders H CAM
I H-Tree

Normalized LLC EPI

SM7P SM7P SM7P SM7P SM7P SM7P
db2 oracle moldyn barnes canneal ocean
Fig. 8. Normalized LLC energy per instruction.

the energy efficiency advantages of sequential cache access.
The central challenge of deploying way prediction in highly-
associative LLCs is to enable the wider partial tag comparison
called for in the server context while still overlapping the
partial tag comparison with wordline decode. To this end,
we have proposed embedded way prediction, an architecture
and circuit design that embeds a dynamic CAM circuit within
data sub-array decoders. We demonstrate that embedded way
prediction achieves all the potential performance of parallel
lookup, improving performance by up to 16% (7% on average)
while incurring only a 8.2% average increase in LLC energy
per instruction.

REFERENCES

[1] B. Amrutur and M. Horowitz. Fast low-power decoders for rams. /[EEE
J. Solid State Circuits, 2001.

[2] S. Bell et al. Tile64-processor: A 64-core SoC with mesh interconnect.
In IEEE Intnl. Solid-State Circuits Conf., 2008.

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-

ton University, January 2011.

B. Calder, D. Grunwald, and J. Emer. Predictive sequential associative

cache. In Proc. Intnl. Symp. on High-Performance Computer Architec-

ture, 1996.

[5] J. Chen, R. Peng, and Y. Fu. Low power set-associative cache with
single-cycle partial tag comparison. In 6th Intnl. Conf. on ASIC, 2005.

[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware.
In Proc. 17th Intnl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2012.

[7] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.

Temporal instruction fetch streaming. In Proc. 41st Ann. Intnl. Symp.

on Microarchitecture, 2008.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca:

Near-optimal block placement and replication in distributed caches. In

Proceedings of the 36th annual international symposium on Computer

Architecture, 2009,

K. Inoue, T. Ishihara, and K. Murakami. Way-predicting set-associative

cache for high performance and low energy consumption. In Proc. of

the Intnl. Symp. on Low Power Electronics and Design, 1999.

A. Jaleel, K. B. Theobald, S. C. Steely, Jr, and J. Emer. High

performance cache replacement using re-reference interval prediction.

In Proc. 37th Ann. Intnl. Symp. on Computer Architecture, 2010.

R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensive

implementations of set-associativity. In Proc. 16th Ann. Intnl. Symp.

on Computer Architecture, 1989.

[4

=

[8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy instruction
caches. leakage power reduction using dynamic voltage scaling and
cache sub-bank prediction. In Proc 35th Ann. Intnl. Symp on Microar-
chitecture, 2002.

H. Kodata, J. Miyake, Y. Nishimichi, H. Kudo, and K. Kagawa. An 8kb
content-addressable and reentrant memory. In Intnl. Solid-State Circuits
Conf., 1985.

L. Liu. Cache designs with partial address matching. In Proc. Ann.
Intnl. Symp. on Microarchitecture, 1994.

R. Min, Z. Xu, Y. Hu, and W.-b. Jone. Partial tag comparison: A new
technology for power-efficient set-associative cache designs. In Proc.
17th Intnl. Conf. on VLSI Design, 2004.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0:
A Tool to Model Large Caches. Technical Report HPL-2009-85, HP
Labs, April 2009.

H. Park, S. Yoo, and S. Lee. A novel tag access scheme for low power
12 cache. In Proc. Design, Automation Test in Europe Conf., 2011.

M. Powell, A. Agrawal, T. Vijaykumar, B. Falsafi, and K. Roy. Reducing
set-associative cache energy via way-prediction and selective direct-
mapping. In Proc, 34th Ann. Intnl. Symp. on Microarchitecture, 2001.
T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe. SimFlex: Statistical sampling of computer system
simulation. IEEE Micro, 26:18-31, 2006.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-
2 programs: characterization and methodological considerations. In
Proceedings of the 22nd annual international symposium on Computer
architecture, pages 24-36, 1995.

S--H. Yang and B. Falsafi. Near-optimal precharging in high-
performance nanoscale cmos caches. In Proc. 36th Annual Intnl. Symp.
on Microarchitecture, 2003.

C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting cache for
low-energy high-performance systems. ACM Trans. on Architecture and
Code Optimization, 2(1), 2005.

