
In Proceedings of the 32nd Annual International Symposium on Computer Architecture, June 2005

Temporal Streaming of Shared Memory

Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim,
Anastassia Ailamaki and Babak Falsafi

Computer Architecture Laboratory (CALCM)
Carnegie Mellon University

http://www.ece.cmu.edu/~puma2

Abstract
Coherent read misses in shared-memory multiprocessors

account for a substantial fraction of execution time in many
important scientific and commercial workloads. We propose
Temporal Streaming, to eliminate coherent read misses by
streaming data to a processor in advance of the corresponding
memory accesses. Temporal streaming dynamically identifies
address sequences to be streamed by exploiting two common
phenomena in shared-memory access patterns: (1) temporal
address correlation—groups of shared addresses tend to be
accessed together and in the same order, and (2) temporal stream
locality—recently-accessed address streams are likely to recur.

We present a practical design for temporal streaming. We
evaluate our design using a combination of trace-driven and
cycle-accurate full-system simulation of a cache-coherent
distributed shared-memory system. We show that temporal
streaming can eliminate 98% of coherent read misses in scientific
applications, and between 43% and 60% in database and web
server workloads. Our design yields speedups of 1.07 to 3.29 in
scientific applications, and 1.06 to 1.21 in commercial workloads.

1. Introduction
Technological advancements in semiconductor fabrication

along with microarchitectural and circuit innovation have led to
phenomenal increases in processor speed over the past decades.
During the same period, memory (and interconnect) speed has not
kept pace with the rapid acceleration of processors, resulting in an
ever-growing processor/memory performance gap. This gap is
exacerbated in scalable shared-memory multiprocessors, where a
cache-coherent access often requires traversing multiple cache
hierarchies and incurs several network round-trip delays.

There are a myriad of proposals for reducing or hiding the
coherence miss latency. Techniques to relax memory order [1,10]
have been shown to hide virtually all of the coherent write miss
latency. In contrast, prior proposals to mitigate the impact of
coherent read misses have fallen short of effectively hiding the
read miss latency. Techniques targeting coherence optimization
(e.g., [13,15,18,19,21,22,29]) can only hide part of the read
latency.

Prefetching [26] or forwarding [17] techniques seek to hide the
entire cache (read) miss latency. These techniques have been
shown to be effective for workloads with regular (e.g., strided)
memory access patterns. Unfortunately, memory access patterns in

many important commercial [3] and scientific [23] workloads are
often highly irregular and not amenable to simple predictive and
prefetching schemes. As such, coherent read misses remain a key
performance-limiting bottleneck in these workloads [2,23].

Recent research [3] advocates fetching data in the form of
streams—i.e., sequences of cache blocks that occur together—
rather than individual blocks. Streaming not only enables accurate
data fetching through correlating a recurring sequence of
addresses, but also significantly enhances fetch lookahead
commensurately to the sequence length. These results indicate that
streaming can hide the read miss latency even in workloads with
long chains of dependent cache misses (e.g., online transaction
processing, OLTP). Unfortunately, the prior proposal [3] for
generalized streaming requires a sophisticated hierarchical
compression algorithm to analyze whole program memory address
traces, which may only be practical when run offline and is
prohibitively complex to implement in hardware.

In this paper, we propose Temporal Streaming, a technique to
hide coherent read miss latency in shared-memory multiproces-
sors. Temporal streaming is based on the observation that recent
sequences of shared data accesses often recur in the same precise
order. Temporal streaming uses the miss history from recent
sharers to extract temporal streams and move data to a subsequent
sharer in advance of data requests, at a transfer rate that matches
the consumption rate. Unlike prior proposals for streaming [3] that
require persistent stream behavior throughout program execution
to enable offline analysis, temporal streaming can exploit streams
with temporal (but not necessarily persistent) behavior by identi-
fying streams on the fly directly in hardware.

Through a combination of memory trace analysis and cycle-
accurate full-system simulation [12] of a cache-coherent distrib-
uted shared-memory system (DSM) running scientific, OLTP
(TPC-C on DB2 and Oracle) and web server (SPECweb on
Apache and Zeus) workloads, we contribute the following.

• Temporal address correlation & stream locality: We inves-
tigate the inherent properties of our workload suite, and show
that (1) shared addresses are accessed in repetitive sequences,
and (2) recently followed sequences are likely to recur system-
wide. More than 93% of coherent read misses in scientific
applications and 40% to 65% in commercial workloads follow
precisely a recent sequence.

• Temporal streaming engine: We propose a design for tempo-
ral streaming with practical hardware mechanisms to record
and follow streams. Our design yields speedups of 1.07 to

2

3.29 in scientific applications, 1.11 to 1.21 in online transac-
tion processing workloads, and 1.06 in web server work-
loads.

The rest of this paper is organized as follows. We introduce
temporal streaming in Section 2, and show how to exploit it to
hide coherent read latency. Section 3 presents the Temporal
Streaming Engine, our hardware realization of temporal stream-
ing. We describe our evaluation methodology in Section 4, and
quantitatively evaluate the temporal streaming phenomena and
our hardware design in Section 5. We present related work in
Section 6 and conclude in Section 7.

2. Temporal Streaming
In this paper, we propose Temporal Streaming, a technique to

identify and communicate streams of shared data dynamically in
DSM multiprocessors. The objective of temporal streaming is to
hide communication latency by streaming data to consuming
nodes in advance of processor requests for the data. Unlike
conventional DSM systems, where shared data are communi-
cated throughout the system individually, temporal streaming
exploits the correlation between recurring access sequences to
communicate data in streams. While temporal streaming applies
to generalized address streams, in this paper we focus on coher-
ent read misses because they present a performance-limiting
bottleneck in many workloads and their detrimental effect is
aggravated as cache sizes increase [2].

Temporal streaming exploits two properties common in
shared memory access patterns: (1) temporal address correla-
tion, where groups of shared addresses tend to be accessed
together and in the same order, and (2) temporal stream locality,
where recently-accessed address streams are likely to recur. In
this paper, we use the term temporal correlation to encompass
both properties.

Temporal address correlation arises primarily from shared
data access patterns. When data structures are stable (although
their contents may be changing), access patterns repeat, and
coherence miss sequences exhibit temporal address correlation.
Thus, temporal address correlation can be found in accesses to
generalized data structures such as linked-data structures (e.g.,
lists and trees) and arrays. In contrast, spatial or stride locality,
commonly exploited by conventional prefetching techniques,
rely on a data structures’ layout in memory which is only charac-
teristic of array-based data structures.

Temporal stream locality arises because recently accessed
data structures are likely to be accessed again; therefore address
sequences that were recently followed are likely to recur. In
applications with migratory sharing patterns—most commercial
and some scientific applications—this type of locality occurs
system-wide as the migratory data are accessed in the same way
by all nodes.

Figure 1 illustrates an example of temporal streaming in a
DSM. Node i incurs coherent read misses and records the
sequence of misses {A,B,C,D,E}, which we refer to as its coher-
ence miss order. We define a stream1 to be a sub-sequence of
addresses in a node’s order. Node j later misses on address B, and
requests the data from the directory node. The directory node
responds to this request through the baseline coherence mecha-

nism, and additionally requests a stream (following B) from the
most recent consumer, Node i. We call the initial miss address, B,
a stream head. Node i looks up address B in its order and
assumes that requests to the subsequent addresses {C,D,E} are
likely to follow. Thus, it forwards the stream {C,D,E} to Node j.
Upon receipt of the stream, Node j retrieves the data for each
block. Subsequent accesses to these addresses hit locally and
avoid long-latency coherence misses.

Temporal streaming requires three capabilities: (1) recording
the order of a node’s coherent read misses, (2) locating a stream
in a node’s order and (3) streaming data to the requesting proces-
sor at a rate that matches its consumption rate.

3. The Temporal Streaming Engine
We propose the Temporal Streaming Engine (TSE), a hard-

ware realization of temporal streaming, to stream cache blocks to
consuming nodes in advance of processor requests. TSE exploits
temporal correlation in coherent read misses to reduce or elimi-
nate processor stalls that result from long-latency coherent reads.

 Figure 2 shows a diagram of a DSM node enhanced with
TSE. The components marked with a grayscale gradient are
added or modified by TSE to furnish the baseline node with the
three capabilities required for temporal streaming.

To record a node’s order, each node stores the sequence of
coherent read miss addresses in a circular buffer, called the
coherence miss order buffer (CMOB). Because the order may
grow too large to reside on chip, the CMOB is placed in main
memory. To locate streams in a node’s order, TSE maintains a
CMOB pointer corresponding to the most recent miss for each
cache block in the block’s directory entry. The stream engine
fetches and manages both stream addresses and data. The
streamed value buffer (SVB) is a small fully-associative buffer
that stores streamed cache blocks. On an L1 cache miss, the SVB
is examined in parallel with the L2 cache to locate data.

The following subsections present the TSE components in
detail. In Section 3.1, we present the process for recording the
orders. Section 3.2 describes the process of looking up and

1. Throughout this paper, we use “stream” as a noun to refer to a
sequence of addresses, and “stream” as a verb to refer to moving a
sequence of either addresses or data.

Node j

Find B

Directory NodeNode i

Miss B

Hit C
Hit D

Req B

Stream { , }C D,E

Miss A
Miss B
Miss C
Miss D

Locate B

Miss E

Fetch C,D,E
D
E

O
rd

er

Retrieve
stream

FIGURE 1: Temporal streaming.

3

forwarding streams upon a coherent read miss. Finally, we detail
the operation of the stream engine in Section 3.3.

3.1 Recording the Order
To record the coherent read miss order, each node continu-

ously appends the miss addresses, in program order, in its
CMOB. Useful streamed blocks (i.e., resulting in accesses that
hit in the SVB) are also recorded in the CMOB, as they replace
coherent read misses that would have occurred without TSE.
Much like prior proposals for recording on-chip generated meta-
data in memory (e.g., [9]), TSE packetizes the miss addresses in
the form of cache blocks and ships them off chip to the CMOB.
In Section 5.4, we present results indicating that because the
CMOB entries are small relative to cache block sizes and
CMOBs only record coherent read misses, this approach has a
negligible impact on traffic through a node.

As misses are recorded, the recording node sends the corre-
sponding CMOB pointer to the directory node for the block. The
CMOB pointers stored in the directory allow TSE to find the
correct CMOB locations efficiently given a stream head. While
basic temporal streaming requires that only one CMOB pointer is
recorded for each block, the TSE may choose to record pointers
from the CMOBs of a few recent consumer nodes to enhance
streaming accuracy (see Section 3.3).

Figure 3 illustrates the recording process. (1) The processor at
the recording node issues an off-chip read for address X. (2)
When the read request arrives at the protocol controller on the
directory node, the directory identifies the miss as a coherent
read miss. The directory node annotates the fill reply to indicate
that the miss is a coherent read miss. (3) When the load instruc-
tion that incurred the coherence miss retires, the recording node
appends the miss address to its CMOB. TSE appends addresses
only upon retirement to ensure that the CMOB is properly
ordered and does not contain addresses for wrong-path specula-
tive reads. (4) Finally, the recording node informs the directory
of the CMOB location of the newly appended address. This
pointer update requires a separate message (as opposed to piggy-
backing on the original read request) because the recording node

does not know if or where each address will be appended until
the load instruction retires.

The required CMOB capacity depends on the size of the
application’s active shared data working set, and may be quite
large. Therefore, we place the CMOB in a private region of main
memory which also allows us to tailor its capacity to fit an appli-
cation’s requirements. TSE can tolerate the resulting high access
latency to CMOB in memory because write accesses (to append
the packetized blocks of addresses to the order) occur in the
background and are off the processor’s critical path and read
accesses (to locate or follow streams) are either amortized (on the
initial miss) or overlapped through streaming lookahead. We
report CMOB capacity requirements for our application suite in
Section 5.4.

3.2 Finding and Forwarding Streams
TSE uses the information in each node’s CMOB to identify

candidate addresses for streaming. When a node incurs a coher-
ent read miss, TSE locates one or more streams on CMOBs
across the system, and forwards them to the stream engine at the
requesting node.

Figure 4 illustrates the procedure to find and forward a
stream. (1) A load to address X causes Node i to request the
corresponding cache block from the directory node. (2) When the
read request message arrives, the directory node detects that the
miss is a coherent read miss, and retrieves the CMOB pointer for
X from the directory. The CMOB pointer identifies that Node j
recently appended X to its CMOB, and where on the CMOB X
was appended. The directory node sends a stream request,
including the corresponding CMOB pointer, to the streaming
Node j indicated by the directory. (3) The protocol controller at
Node j reads a stream of subsequent addresses from its CMOB
starting at the entry following X (the contents of cache block X
have already been sent to Node i by the baseline coherence
mechanism), and forwards this stream to Node i. (4) When
Node i receives the stream, the addresses are delivered to the
stream engine.

There are several advantages to sending streams of addresses
across nodes, rather than streaming data blocks directly. First,
TSE does not require race-prone modifications to the baseline

FIGURE 2: The TSE hardware.
Interconnect

Directory

SVB

L2

Stream
Engine

Protocol
Controller

L1

 Memory

DSM node
with TSE

CMOB

Recording Node Directory Node

Load miss X Read X

Detect miss
is coherence

X

Coherence Fill X

Append
to CMOB

X

CMOB ptr update Update CMOB
pointer in
directory

1

2

3

4

FIGURE 3: Recording the order.

4

cache coherence protocol. Second, streams of addresses do not
incur any coherence overhead, whereas erroneously-streamed
data blocks incur additional invalidation messages. Finally,
sending streams of addresses allows the stream engine to identify
temporal streams (i.e., consisting of temporally-correlated
addresses) which are likely to result in hits.

The directory management mechanisms in DSM offer a
natural solution for CMOB pointer storage and lookup. By
extending each directory entry with one or more CMOB pointers,
TSE enables random-access lookups within a CMOB; each
CMOB pointer in the directory includes a node ID and an offset
within the CMOB where the address is located, with the storage
overhead of (number of CMOB pointers) × (log2(nodes) +
log2(CMOB size)) bits. As such, CMOBs can be relatively large
structures (e.g., millions of entries) residing in main memory. In
contrast, prior proposals for prefetching based on recording
address sequences in uniprocessors (e.g., [25]) resort to complex
on-chip address hashing schemes and limited address history
buffers.

3.3 The Stream Engine
The stream engine manages and follows the streams that

arrive in response to coherent read misses. The stream engine
plays a role similar to stream buffers in prior proposals (e.g.,
[28]). Unlike these proposals, however, TSE’s stream engine
locates, compares and follows more than one stream (i.e., from
multiple recent consumers of the same addresses) for a given
stream head simultaneously. Comparing multiple streams helps
significantly to enhance streaming accuracy.

Figure 5 (left) depicts the anatomy of the stream engine. The
stream engine contains groups of FIFO queues that store streams
(with a common stream head), and comparators for checking if
FIFO heads within a group match. We call each group of FIFOs a
stream queue. Each stream queue also tracks the CMOB pointers
for the streams it stores to facilitate requesting additional
addresses when following a stream.

The stream engine continuously compares the FIFO heads in
each group. In the common case, the FIFO heads will match,
indicating high temporal correlation (i.e., the stream is likely to
recur), in which case the stream engine proceeds to retrieve
blocks. Upon retrieving the blocks, the corresponding address

entries in the FIFO queues are removed. When the FIFO heads
disagree, indicating low temporal correlation, the stream engine
stalls further data requests to avoid wasting bandwidth. However,
the engine continues to monitor all off-chip memory requests to
check for matches against the stalled FIFO heads. Upon a match,
the processor is likely repeating the miss sequence recorded in
the matching FIFO. Therefore, the stream engine discards the
contents of all other (disagreeing) FIFOs and resumes fetching
data using only the selected stream. We have investigated
complex schemes that examine more than just the FIFO heads,
but found they provide no advantage.

When a stream queue is half empty, the stream engine
requests additional addresses from the source CMOB. The ability
to follow long streams by periodically requesting additional
addresses distinguishes TSE from prefetching approaches that
only retrieve a constant number of blocks in response to a miss
[25]. Without this ability, the system will incur one miss for each
group of fetched blocks, even if the entire miss sequence exhibits
temporal address correlation.

Figure 5 (right) depicts the anatomy of the SVB, a small
fully-associative buffer for storing streamed data. Each SVB
entry includes a valid bit, address, data, and the identity of the
queue from which it was streamed. When a processor access hits
in the SVB, the entry is moved to the L1 data cache, and the
stream engine is notified to retrieve a subsequent cache block
from the corresponding stream queue. The SVB entries contain
only clean data, and are invalidated upon a write to the corre-
sponding block by any (including the local) processor. SVB
entries are replaced using an LRU policy.

The SVB serves a number of purposes. First, it serves as
custom storage for stream data to avoid direct storage in, and
inadvertent pollution of, the cache hierarchy when the addresses
are not temporally correlated. Second, it allows for direct book-
keeping and management of streamed data and obviates the need
for modifications to the baseline cache hierarchy. Finally, it
serves as a window to mitigate small (e.g., a few cache blocks)
deviations in the sequence of stream accesses (e.g., due to control
flow irregularities in programs) by the processor. By presenting
multiple blocks simultaneously from a stream in a fully-associa-
tive buffer, SVB allows the processor to skip or request cache
blocks slightly out of stream order.

The SVB size dictates the maximum allowable stream looka-
head—i.e., a constant number of blocks outstanding in the
SVB—for each active stream. Ideally, the stream engine retrieves
blocks such that they arrive immediately in advance of consump-
tion by the processor. Therefore, effective streaming requires that

1

Node i

Read
Stream
from CMOB

 Miss X

Directory Node Node j

Address Stream

Detect coh.
miss, read
CMOB pointer

2

3

Insert in
stream
queue

4

FIGURE 4: Locating and forwarding address streams.

addrv

Stream Engine

... ...

data Q id

Streamed Value Buffer

addr data Q idv

addr data Q idv

Stream queue

=
XYZ.

XYZ.

=
ABC.

ABC.

...

FIGURE 5: Stream engine and streamed value buffer.

5

the SVB holds enough blocks (i.e., allows for enough lookahead)
to satisfy a burst of coherent read requests by the processor while
subsequent blocks are being retrieved. We explore the issues
involved in choosing the lookahead throughout Section 5. We
show that in practice a small (e.g., tens of entries) SVB allows
for enough lookahead to achieve near-optimal coverage while
enabling quick lookup.

4. Methodology
We quantify temporal address correlation and stream locality,

and evaluate our proposed hardware design across a range of
scientific and commercial applications. We collect our results
using a combination of trace-driven and cycle-accurate full-
system simulation of a distributed shared-memory multiproces-
sor using SIMFLEX [12]. SIMFLEX is a simulation framework
that uses modular component-based design and rigorous statisti-
cal sampling to enable the development of complex models and
ensure representative measurement results with fast simulation
turnaround. SIMFLEX builds on Virtutech Simics [20], a full
system simulator that allows functional emulation of unmodified
commercial applications and operating systems. SIMFLEX
furnishes Simics with cycle-accurate models of an out-of-order
processor core, cache hierarchy, microcoded coherence protocol
engine, multi-banked distributed memory, and 2D torus intercon-
nect. We implement a low-occupancy directory-based NACK-
free cache-coherence protocol.

We simulate a 16-processor distributed shared-memory
system with 3 GB of memory running Solaris 8. We implement
an aggressive version of the total store order memory consistency
model [1]. We perform speculative load and store prefetching as
described by Gharachorloo et al. [8], and speculatively relax
memory ordering constraints at memory barrier and atomic read-
modify-write memory operations [10]. We list other relevant
parameters of our system model in Table 1.

Table 2 describes the applications and parameters we use in
this study. We target our study at commercial workloads, but
include a representative group of scientific applications for
comparison. We choose scientific applications which are (1) scal-

able to large data sets, and (2) maintain a high sensitivity to
memory system performance when scaled. We include em3d [6],
an electromagnetic force simulation, moldyn [23], a molecular
dynamics simulation and ocean [30] current simulation.

We evaluate two database management systems, IBM DB2
v7.2 EEE, and Oracle 10g Enterprise Database Server, running
the TPC-C v3.0 online transaction processing workload.1 We use
an optimized TPC-C toolkit provided by IBM for DB2. For
Oracle, we developed and optimized our own toolkit. We tuned
the number of client processes and other database parameters in
our detailed timing model and chose the client and database
configuration that maximized baseline system performance for
each database management system. Client processes are config-
ured with no think time, and database data and log files are
striped across multiple disks to eliminate I/O bottlenecks.

We evaluate the performance of WWW servers running the
SPECweb99 benchmark on Apache HTTP Server v2.0 and Zeus
Web Server v4.3. We simulate an 8-processor client system that
sustains 16,000 simultaneous web connections to our 16-proces-
sor server via a simulated ethernet network. We run the client
processors at a fixed IPC of 8.0 with a 4 GHz clock and provide
sufficient bandwidth on the ethernet link to ensure that neither
client performance nor available network bandwidth limit server
performance. We collect memory traces and performance results
on the server system only.

Our trace-based analyses use memory access traces collected
from SIMFLEX with in-order execution, no memory system
stalls, and a fixed IPC of 1.0. We analyze traces of at least ten
iterations for scientific applications. We warm commercial appli-
cations for at least 5,000 transactions (or completed web
requests) prior to starting traces, and then trace at least 500 trans-
actions. We use the first iteration of each scientific and the first
100 million instructions (per processor) of each commercial
application to warm trace-based simulations prior to measure-
ment.

Our timing results for the scientific applications are derived
from measurements of a single iteration started with warmed
cache, branch predictor, and CMOB state. We use iteration
runtime as our measure of performance.

Table 1. DSM system parameters.

Processing Nodes UltraSPARC III ISA
4 GHz 8-stage pipeline; out-of-order execution
8-wide dispatch / retirement
256-entry ROB, LSQ and store buffer

L1 Caches Split I/D, 64KB 2-way, 2-cycle load-to-use
4 ports, 32 MSHRs

L2 Cache Unified, 8MB 8-way, 25-cycle hit latency
1 port, 32 MSHRs

Main Memory 60 ns access latency
64 banks per node
64-byte coherence unit

Protocol Controller 1 GHz microcoded controller
64 transaction contexts

Interconnect 4x4 2D torus
25 ns latency per hop
128 GB/s peak bisection bandwidth

1. “Solaris”, “TPC”, “Oracle”, “Zeus”, “DB2” and other trademarks
are the property of their respective owners. None of the results pre-
sented in this paper should be construed to indicate the absolute or
relative performance of any of the commercial systems used.

Table 2. Applications and parameters.

Scientific Applications

em3d 400K nodes, degree 2, span 5, 15% remote

moldyn 19652 molecules, boxsize 17, 2.56M max interactions

ocean 514x514 grid, 9600s relaxations, 20K res., err. tol. 1e-07

Commercial Applications

Apache 16K connections, fastCGI, worker threading model

DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Zeus 16K connections, fastCGI

6

For the commercial applications, we use a systematic
sampling approach developed in accordance with SMARTS [31].
SMARTS is a rigorous statistical sampling methodology, which
prescribes a procedure for determining sample sizes, warm-up,
and measurement periods based on an analysis of the variance of
target metrics (e.g., IPC), to obtain the best statistical confidence
in results with minimal simulation. We collect approximately 100
brief measurements of 400,000 cycles each. We launch measure-
ments from checkpoints with warmed caches, branch predictors,
and CMOBs, then run for 200,000 cycles to warm queue and
interconnect state prior to collecting statistics.

We use the aggregate number of user instructions committed
per cycle (i.e., user IPC summed over the 16 processors) as our
performance metric. We exclude system commits from this
metric because we cannot distinguish system commits that repre-
sent forward progress from those that do not (e.g., the idle loop).
We have independently corroborated Hankins et al.’s [11] results
that the number of user instructions per transaction in the TPC-C
workload remains constant over a wide range of database config-
urations (whereas system commits per transaction do not). Thus,
aggregate user IPC is proportional to database throughput.

5. Results
In this section, we investigate the opportunity for temporal

streaming and the effectiveness of the Temporal Streaming
Engine. Throughout our results, we report the effectiveness of
TSE at eliminating consumptions, which we define as read
requests that incur a coherence miss but are not a spin on a
contended lock or barrier variable. We exclude coherent read
misses that occur during spins because there is no performance
advantage to predicting or streaming them.

5.1 Opportunity to Exploit Temporal Correlation
Temporal streaming relies on temporal address correlation

and temporal stream locality to build and locate repetitive
streams. We begin our evaluation by quantifying the fraction of
consumptions that exhibit these phenomena.

When a stream of consumptions starting with address X
precisely matches the sequence of consumptions at the most
recent occurrence of X, there is perfect temporal address correla-
tion and stream locality. In practice, because the stream looka-
head keeps the streaming engine several blocks ahead of the
processor’s requests, TSE can also exploit imperfect correlation,
where there is a small reordering of addresses between the
current stream and the preceding order.

In this section, we investigate the fraction of consumptions
that occur in temporally-correlated streams as a function of the
degree of reordering between the processor’s consumption order
and that of the most recent sharer. We express reordering in terms
of temporal correlation distance, which we define as the distance
along the most recent sharer’s order between consecutive proces-
sor consumptions. For example, if an order is {A,B,C,D} and a
node has incurred miss C, then a subsequent miss to D yields a
temporal correlation distance of +1 (i.e., perfect correlation),
whereas a miss to A would correspond to a distance of -2.

Figure 6 shows the fraction of consumptions that exhibit
temporal correlation, for temporal correlation distances (which

corresponds roughly to stream lookahead) of up to ±16. All
scientific applications in our suite exhibit near-perfect correla-
tion, as they repeat the same data access pattern across all itera-
tions. The commercial applications access data structures that
change over time. Nevertheless, more than 40% of all consump-
tions in commercial applications are perfectly correlated, indicat-
ing that a significant portion of data structures and access
patterns remain stable. Allowing for reordering of up to eight
blocks increases the fraction to 49%–63% of consumptions.
These results indicate that temporal streaming has the potential to
eliminate nearly all coherent read misses in scientific applica-
tions, and almost half in commercial workloads.

5.2 Streaming Accuracy
Whereas accurate streaming improves performance by elimi-

nating consumptions, inaccurate streaming may degrade perfor-
mance, as a large proportion of erroneously streamed blocks can
saturate available memory or interconnect bandwidth. TSE
enhances stream accuracy by comparing several recent streams
with the same stream head. When the streams match, TSE
streams the corresponding blocks, whereas when they diverge,
TSE conservatively awaits an additional consumption to select
among the stream alternatives.

Figure 7 demonstrates the effectiveness of this approach for a
stream lookahead of eight cache blocks and no TSE hardware
restrictions (unlimited SVB storage, unlimited number of stream
queues, near-infinite CMOB capacity). Coverage is the fraction
of all consumptions that TSE correctly predicts and eliminates.
Discards are cache blocks erroneously forwarded, also presented
as a fraction of all consumptions. When TSE uses only a single
stream, and therefore has no mechanism to gauge stream accu-
racy, commercial applications suffer very high discard rates.
Although the commercial workload results in Figure 6 show that
the majority of consumptions exhibit temporal address correla-
tion, there remains a fraction that does not. Streaming on these
non-correlated addresses produces many discards, but yields
little coverage.

When TSE uses multiple streams, discards drop drastically to
40%–50% of total consumptions with minimal reduction in
coverage. Further increasing the number of compared streams
does not yield significant additional improvements, and does not
warrant the increase in complexity. We configure TSE to
compare two streams throughout the remainder of our results.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Temporal Correlation Distance (+/-)

C
um

. %
 C

on
su

m
pt

io
ns

Apache em3d
DB2 moldyn
Oracle ocean
Zeus

FIGURE 6: Opportunity to exploit temporal correlation.

7

Effective streaming requires a stream lookahead sufficiently
high to enable the SVB to satisfy consumption bursts by the
processor. However, a stream lookahead higher than the required
for effective streaming may erroneously stream too many blocks
(i.e., discards) and degrade streaming accuracy. Figure 8 shows
the effect of the stream lookahead on discards. For the scientific
applications, which all exhibit near-perfect temporal correlation,
even a high stream lookahead results in few discards. For the
commercial applications, discards grow linearly with lookahead.
In contrast, TSE coverage grows only slightly with increasing
stream lookahead, as Figure 6 suggests. Thus, the ideal stream
lookahead is the minimum sufficient to satisfy consumption
bursts by the processor. We describe how to determine the value
for the stream lookahead in Section 5.6.

5.3 Sensitivity to SVB Size and Stream Queues
Figure 6 suggests that an application typically follows only a

single stream at a time. Were an application to interleave
consumptions from two different streams, our temporal correla-
tion measurement would classify them as uncorrelated accesses.
Intuitively, we do not expect interleaved streams, as they imply
the current consumer is interleaving the data access patterns of

two previous consumers, or from two moments in time. We
tested our intuition experimentally, and found no sensitivity to
the number of stream queues.

Nevertheless, providing multiple stream queues in a TSE
implementation compensates for the delays and event reorder-
ings that occur in a real system. Most importantly, additional
stream queues are necessary to avoid stream thrashing [28],
where potentially useful streams are overwritten with useless
streams from a non-correlated miss.

Our results show that applications typically follow one
perfectly correlated stream at a time. Thus, the required SVB
capacity in number of blocks is equal to the stream lookahead.
For a stream lookahead of eight, the required SVB capacity is
512 bytes. Figure 9 confirms that there is little increase in cover-
age when moving from a 512-byte to an infinite SVB. The small
increase in coverage results from the rare case of blocks that are
accessed long after they are retrieved. We choose a 32-entry
(2 KB) SVB because it offers near-optimal performance and is
easy to implement a low-latency fully-associative buffer of this
size.

5.4 CMOB Storage and Bandwidth Requirements
Effective streaming requires the CMOB on each node to be

large enough to record all the consumptions incurred by that
node until a subsequent sharer begins following the sequence. In
the worst case, for a system with 64-byte cache blocks and 6-byte
physical address entries in the CMOB, the CMOB storage over-
head is 11% of the aggregate shared data accessed by a node
before the sequence repeats. The directory overhead for CMOB
pointers grows logarithmically with CMOB size.

Figure 10 explores the CMOB storage requirements of our
applications. The figure shows the fraction of maximum cover-
age attained as the CMOB ranges in size up to 6 MB. TSE
achieves low coverage for the scientific applications until the
CMOB capacity matches the shared data active working set for
the problem sizes we simulate. For the commercial applications,
TSE coverage improves smoothly with increasing CMOB capac-
ity, reaching its peak at 1.5 MB. We also quantify the additional
processor pin bandwidth due to recording the order off chip to be
4%-7% for the scientific and less than 1% for the commercial
workloads.

0%

50%

100%

150%

200%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

em3d moldyn ocean Apache DB2 Oracle Zeus

Benchmark & Number of Compared Streams

%
 C

on
su

m
pt

io
ns

Discards

Coverage

220% 224% 239% 238%

FIGURE 7: TSE sensitivity to the number of compared streams.

≈ ≈ ≈ ≈

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25
 Stream Lookahead

D
is

ca
rd

s
(n

or
m

. t
o

co
ns

um
pt

io
ns

)

Apache DB2 Oracle Zeus
em3d moldyn ocean

FIGURE 8: Effect of stream lookahead on discards.
Discards are normalized to true consumptions.

8

Figure 11 shows the interconnect bisection bandwidth over-
head associated with TSE. Each bar represents the bandwidth
consumed by TSE overhead traffic (correctly streamed cache
blocks replace processor coherent read misses in the baseline
system one-for-one). The annotation above each bar indicates the
ratio of overhead traffic to traffic in the base system. The domi-
nant component of TSE’s bandwidth overhead arises from
streaming addresses between nodes.

The bandwidth overhead of TSE is a small fraction of the
available bandwidth in current multiprocessor systems. The HP
GS1280 multiprocessor system provides 49.6 GB/s interconnect
bisection bandwidth in a 16-processor 2D-torus configuration
[7]. Thus, the interconnect bandwidth overhead of TSE is less
than 7% of available bandwidth in current technology, and less
than 3% of bandwidth available in our DSM timing model.

5.5 Competitive Comparison
We compare TSE’s effectiveness in eliminating consumptions

against two previously-proposed prefetching techniques. We
compare TSE against a stride-based stream buffer [28], as stride
prefetchers are common in commercial microprocessors avail-
able today (e.g., AMD Opteron, Intel Xeon, Sun UltraSPARC
III). We implement an adaptive stride predictor that detects
strided access patterns if two consecutive consumption addresses

are separated by the same stride, and prefetches eight blocks in
advance of a processor request. Prefetched blocks are stored in a
small cache identical to TSE’s SVB. We also compare against the
Global History Buffer (GHB) prefetcher proposed by Nesbit and
Smith [25]. GHB was recently shown to outperform a wide
variety of other prefetching mechanisms on SPEC applications
[26]. In GHB, consumption misses are recorded in an on-chip
circular buffer similar to the CMOB, and are located using an on-
chip fully-associative index table. GHB supports several index-
ing options. We evaluate global distance-correlation (G/DC) as
advocated by [26], and global address correlation (G/AC), as this
is more similar to TSE. We use a 512-entry history buffer and
fetch eight blocks per prefetch operation. We compare to TSE
with a 1.5 MB CMOB and other parameters as previously
described. Because TSE targets only consumptions, we configure
the other prediction mechanisms to train and predict only for
consumptions.

Figure 12 shows that TSE outperforms the other techniques
by eliminating 43%-100% of consumptions. Because none of the
applications exhibit significant strided access patterns, the stride
prefetcher rarely prefetches, resulting in both low coverage and
low discards. Address-correlating GHB (G/AC) outperforms
distance correlation (G/DC) in terms of discards across commer-
cial applications, but falls short of TSE coverage because its 512-
entry consumption history is too small to capture repetitive
consumption sequences.

0%

50%

100%

150%

200%

51
2 2k 8k in
f

51
2 2k 8k in
f

51
2 2k 8k in
f

51
2 2k 8k in
f

51
2 2k 8k in
f

51
2 2k 8k in
f

51
2 2k 8k in
f

em3d moldyn ocean Apache DB2 Oracle Zeus
Benchmark & SVB Size (in bytes)

%
 C

on
su

m
pt

io
ns

Discards

Coverage

FIGURE 9: Sensitivity to SVB size. ‘inf’ indicates infinite storage.

FIGURE 10: CMOB storage requirements.

0%

20%

40%

60%

80%

100%

0 12 48 19
2

76
8 3k 12
k

48
k

19
2k

76
8k 3M

CMOB capacity per node (bytes)

%
 o

f P
ea

k
C

ov
er

ag
e

Apache DB2 Oracle Zeus

em3d moldyn ocean

29%

21%

57%

34%

41%

55%

 16%

0

1

2

3

4

em
3d

m
ol

dy
n

oc
ea

n

A
pa

ch
e

D
B

2

O
ra

cl
e

Z
eu

s

B
W

 O
ve

rh
ea

d
(G

B
/s

)

FIGURE 11: Interconnect bisection bandwidth
overhead. The annotation above each bar indicates the
ratio of overhead traffic to traffic in the base system.

9

5.6 Streaming Timeliness
To eliminate consumptions effectively, streaming must both

achieve high coverage—to stream the needed blocks—and be
timely—so that blocks arrive in advance of processor requests.
Timeliness depends on the stream lookahead, the streaming rate
and the delay between initiating streaming and receiving the first
data. TSE matches the consumption rate to the streaming rate
simply by retrieving an additional block upon an SVB hit. Thus,
in this section we focus on the effects of the streamed data delay
and the stream lookahead.

Long temporally-correlated streams are insensitive to the
delay of retrieving their first few blocks, as TSE can still elimi-
nate most consumptions. Figure 13 shows the prevalence of
streams of various lengths for our applications. The scientific
applications are dominated by very long streams, hundreds to
thousands of blocks each. Timely streaming for scientific appli-
cations requires configuring a sufficiently high stream looka-
head. As Figure 8 shows, scientific applications exhibit low
discard rates, allowing us to configure very high lookaheads
without detrimental effects.

The commercial workloads obtain 30%-45% of their cover-
age from streams shorter than 8 blocks. Thus, the timely retrieval
of the beginning of streams may impact significantly the overall

performance. However, the data-dependent nature of the
commercial workloads [27] and instruction window constraints
may restrict the processor’s ability to issue multiple outstanding
consumptions. Whereas the processor may quickly stall, TSE can
retrieve all blocks within a stream in parallel, thereby eliminating
consumptions despite short stream lengths.

To verify our hypothesis, we measure the consumption
memory level parallelism (MLP) [4]—the average number of
coherent read misses outstanding when at least one is outstand-
ing—in our baseline timing model, and report the results in
Table 3. Our results show that, in general, the commercial appli-
cations issue consumptions serially. The latency to fill the
consumption miss that triggers the stream lookup is approxi-
mately the same as the latency to retrieve streams and initiate
streaming. Thus, streaming can begin at the time the processor
requests the first block on the stream without sacrificing timeli-
ness.

We determine the appropriate stream lookaheads for em3d
and moldyn by first calculating the rate at which consumption
misses would be issued in our base system if all coherent read
latency was removed. We then divide the stream retrieval round-
trip latency (i.e., 3-hop coherence miss latency) by the no-wait
consumption rate. For ocean, this simple approach fails because
all coherence activity occurs in bursts, as evidenced by its high
consumption MLP in the baseline system. To improve cache
locality, ocean blocks its computation, which, as a side effect,
groups consumptions into bursts. We set the stream lookahead to
a maximal reasonable value of 24 for ocean based on the number
of available L2 MSHRs in our system model.

There is relatively little sensitivity to stream lookahead in
commercial applications because of their low consumption MLP.
We found that a lookahead of eight works well across these
applications.

Table 3 shows the effect of streaming timeliness on TSE
coverage using both trace analysis and cycle-accurate simulation.
Trace Cov. indicates consumptions eliminated by TSE as
reported by our trace analysis. Full Cov. indicates consumptions
eliminated completely by TSE in the cycle-accurate simulation.
Partial Cov. indicates consumptions whose latency was partially

0%

50%

100%

150%

200%

250%

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

em3d moldyn ocean Apache DB2 Oracle Zeus

Benchmark & Forwarding Technique

%
 C

on
su

m
pt

io
ns

Coverage Discards

FIGURE 12: TSE compared to recent prefetchers. G/DC refers to distance-correlating Global History Buffer,
G/AC refers to address-correlating Global History Buffer.

0%

20%

40%

60%

80%

100%

0 1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

Length (# of streamed blocks)

C
u

m
. %

 o
f

A
ll

H
it

s

Apache DB2 Oracle Zeus
em3d moldyn ocean

FIGURE 13: Stream length.

10

covered by TSE—the processor issued a request while a
streamed value was still in flight.

TSE on the cycle-accurate simulator attains lower coverage
relative to the trace analysis because streams may arrive late—
after the processor has issued requests for the addresses in the
stream. With the exception of ocean, most of the trace-measured
coverage is timely (the consumptions are fully covered) in the
cycle-accurate simulation of TSE, while the remaining consump-
tions are partially covered. We measured that partially covered
consumptions hide on average 40% of the consumption latency
in commercial workloads, and 60%-75% in scientific applica-
tions. In the case of ocean, partial coverage is particularly high.
Even a stream lookahead of 24 blocks is insufficient to fully hide
all coherent read misses, as the communication bursts in ocean
are bandwidth bound.

5.7 Performance
We measure the performance impact of TSE using our cycle-

accurate full-system timing model of a DSM multiprocessor.
Figure 14 (left) illustrates the opportunity and effectiveness of
TSE at eliminating stalls caused by coherent read misses. The
base and TSE time breakdowns are normalized to represent the
same amount of completed work. Figure 14 (right) reports the
speedup achieved by TSE, with 95% confidence intervals for the
sample-derived commercial application results.

TSE eliminates nearly all coherent read stalls in em3d and
moldyn. TSE provides a drastic speedup of nearly 3.3 in commu-

nication-bound em3d. Despite high coverage, TSE eliminates
only ~40% of coherent read stalls in ocean, as the majority of
coherent read misses are only partially hidden. Although
partially covered consumptions in ocean hide on average 60% of
the consumption latency, much of the miss latency is overlapped
in the baseline case as well because of the high MLP.

The commercial applications spend between 30%-35% of
overall execution time on coherent read stalls. The TSE’s perfor-
mance impact is particularly large in DB2 because coherent read
stalls are more prevalent in user (as opposed to OS) code than in
the other commercial applications. User coherent read stalls have
a disproportionately large impact on database throughput
because misses in database code form long dependence chains
[27], and are thus on the critical execution path. DB2 spends 43%
of user execution time on coherent read stalls. TSE is particularly
effective on these misses, eliminating 53% of user coherent read
stalls.

As cache sizes continue to increase in future processors,
coherence misses will become a larger fraction of long-latency
off-chip accesses [2], and the performance impact of TSE and
similar techniques will grow.

6. Related Work
Prior correlation-based prefetching approaches (e.g., Markov

predictors [14] and Global History Buffer [25]) only considered
locality and address correlation local to one node. In contrast,
temporal streaming finds candidate streams by locating the most
recent occurrence of a stream head across all nodes in the system.

Thread-based prefetching techniques [5] use idle contexts on
a multithreaded processor to run helper threads that overlap
misses with speculative execution. However, the spare resources
the helper threads require (e.g., idle thread contexts, fetch and
execution bandwidth) may not be available when the processor
executes an application exhibiting high thread-level parallelism
(e.g., OLTP). TSE, on the contrary, does not occupy processor
resources.

Huh et al., [13] split a traditional cache coherence protocol
into a fast protocol that addresses performance, and a backing
protocol that ensures correctness. Unlike their scheme, which
relies on detecting a tag-match to an invalidated cache line, TSE
directly identifies coherent read misses using directory informa-

Table 3. Streaming timeliness.

Benchmark
Trace
Cov.

Cycle-accurate Simulation

MLP Lookahead Full Cov. Partial Cov.

em3d 100% 2.0 18 94% 5%

moldyn 98% 1.6 16 83% 14%

ocean 98% 6.6 24 27% 57%

Apache 43% 1.3 8 26% 16%

DB2 60% 1.3 8 36% 11%

Oracle 53% 1.2 8 34% 9%

Zeus 43% 1.3 8 29% 14%

-

0.2

0.4

0.6

0.8

1.0

ba
se

T
S

E

ba
se

T
S

E

ba
se

T
S

E

ba
se

T
S

E

ba
se

T
S

E

ba
se

T
S

E

ba
se

T
S

E

em3d moldyn ocean Apache DB2 Oracle Zeus

N
o

rm
al

iz
ed

 T
im

e

Busy Other Stalls Coherent Read Stalls

FIGURE 14: Performance improvement from TSE. The left figure shows an execution time breakdown. The right figure
shows the speedup of TSE over the base system, with 95% confidence intervals for commercial application speedups.

3.3

1.0

1.1

1.2

1.3

em
3

d

m
o

ld
yn

o
ce

an

A
p

a
ch

e

D
B

2

O
ra

cl
e

Ze
us

S
pe

ed
up

≈

11

tion, thus ensuring independence from the employed cache size.
Moreover, coherent reads in [13] are still speculative for the
entire length of a long-latency coherence miss and therefore
stress the ROB, while our scheme allows coherent read refer-
ences that hit in the SVB to retire immediately.

Keleher [16] describes the design and use of Tapeworm, a
mechanism implemented as a software library that records
updates to shared data within a critical section, and pushes those
updates to the next acquirer of the lock. While tapeworm can be
efficiently implemented in software distributed shared-memory
systems, a hardware-only realization requires either the introduc-
tion of a race-prone speculative data push operation in the coher-
ence protocol, or a split performance/correctness protocol as in
[13]. Instead, our technique relies on streaming to communicate
shared data to consumers, without changes to the coherence
protocol or application modifications.

Recent research has also aimed at making processors more
tolerant of long-latency misses. Mutlu et al. [24] allow MLP to
break past ROB limits, by speculatively ignoring dependencies
and continuing execution of the thread upon a miss to issue
prefetches. However, their method is constrained by branch
prediction accuracy and hides only part of the latency, as the
runahead thread may not be able to execute far enough in
advance during the time it takes to satisfy a miss. Techniques
seeking to exceed the dataflow limit through value prediction or
to increase MLP at the processor (e.g., SMT) or the chip level
(e.g., CMP) are complementary to our work.

7. Conclusion
In this paper, we presented temporal streaming, a novel

approach to eliminate coherent read misses in distributed shared-
memory systems. Temporal streaming exploits two phenomena
common in the shared memory access patterns of scientific and
commercial multiprocessor workloads: temporal address correla-
tion, that sequences of shared addresses are repetitively accessed
together and in the same order; and temporal stream locality, that
recently-accessed streams are likely to recur. We showed that
temporal streaming has the potential to eliminate 98% of coher-
ent read misses in scientific applications, and 43% to 60% in
OLTP and web server applications. Through cycle-accurate full-
system simulation of a cache-coherent distributed shared-
memory multiprocessor, we demonstrated that our hardware real-
ization of temporal streaming yields speedups of 1.07 to 3.29 in
scientific applications, and 1.06 to 1.21 in commercial work-
loads, while incurring overhead of less than 7% of available
bandwidth in current technology.

Acknowledgements
The authors would like to thank Sumanta Chatterjee and Karl

Haas for their assistance with Oracle, and the members of the
Carnegie Mellon Impetus group and the anonymous reviewers
for their feedback on earlier drafts of this paper. This work was
partially supported by grants and equipment from IBM and Intel
corporations, the DARPA PAC/C contract F336150214004-AF,
an NSF CAREER award, an IBM faculty partnership award, a
Sloan research fellowship, and NSF grants CCR-0113660, IIS-
0133686, and CCR-0205544.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consisten-

cy models: A tutorial. IEEE Computer, 29(12):66–76, Dec.
1996.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In Pro-
ceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[3] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream
prefetching for general-purpose programs. In Proceedings of
the SIGPLAN ’02 Conference on Programming Language
Design and Implementation (PLDI), June 2002.

[4] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-
mizations for exploiting memory-level parallelism. In Pro-
ceedings of the 31st Annual International Symposium on
Computer Architecture, June 2004.

[5] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dy-
namic speculative precomputation. In Proceedings of the
34th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 34), December 2001.

[6] D. E. Culler, A. Dusseau, S. C. Goldstein,
A. Krishnamurthy, S. Lumetta, T. von Eicken, and
K. Yelick. Parallel programming in Split-C. In Proceedings
of Supercomputing ’93, pages 262–273, Nov. 1993.

[7] Z. Cvetanovic. Performance analysis of the alpha 21364-
based hp gs1280 multiprocessor. In Proceedings of the 30th
Annual International Symposium on Computer Architecture,
pages 218–229, June 2003.

[8] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. In Proceedings of the 1991 International Confer-
ence on Parallel Processing (Vol. I Architecture), pages I–
355–364, Aug. 1991.

[9] C. Gniady and B. Falsafi. Speculative sequential consistency
with little custom storage. In Proceedings of the 10th Inter-
national Conference on Parallel Architectures and Compila-
tion Techniques, Sept. 2002.

[10] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP =
RC? In Proceedings of the 26th Annual International Sym-
posium on Computer Architecture, pages 162–171, May
1999.

[11] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri,
H. Nueckel, and J. P. Shen. Scaling and characterizing data-
base workloads: Bridging the gap between research and
practice. In Proceedings of the 36th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO 36),
Dec. 2003.

[12] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderli-
ch, S. Chen, J. Kim, B. Falsafi, J. C. Hoe, and A. G. No-
watzyk. Simflex: A fast, accurate, flexible full-system
simulation framework for performance evaluation of server
architecture. SIGMETRICS Performance Evaluation Re-
view, 31(4):31–35, April 2004.

[13] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence de-
coupling: making use of incoherence. In Proceedings of the

12

11th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
XI), October 2004.

[14] D. Joseph and D. Grunwald. Prefetching using Markov Pre-
dictors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 252–263, June
1997.

[15] S. Kaxiras and C. Young. Coherence communication predic-
tion in shared memory multiprocessors. In Proceedings of
the 6th IEEE Symposium on High-Performance Computer
Architecture, January 2000.

[16] P. Keleher. Tapeworm: High-level abstractions of shared ac-
cesses. In Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI), February 1999.

[17] D. A. Koufaty, X. Chen, D. K. Poulsena, and J. Torrellas.
Data forwarding in scalable shared-memory multiproces-
sors. In Proceedings of the 1995 International Conference
on Supercomputing, July 1995.

[18] A.-C. Lai and B. Falsafi. Memory sharing predictor: The key
to a speculative coherent DSM. In Proceedings of the 26th
Annual International Symposium on Computer Architecture,
May 1999.

[19] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In Proceedings of
the 27th Annual International Symposium on Computer Ar-
chitecture, June 2000.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, February 2002.

[21] M. K. Martin, M. D. Hill, and D. A. Wood. Token coher-
ence: Decoupling performance and correctness. In Proceed-
ings of the 30th Annual International Symposium on
Computer Architecture, June 2003.

[22] S. S. Mukherjee and M. D. Hill. Using prediction to acceler-
ate coherence protocols. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, June
1998.

[23] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus,
A. Rogers, and J. Saltz. Efficient support for irregular appli-

cations on distributed-memory machines. In 5th ACM SIG-
PLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), pages 68–79, July 1995.

[24] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
execution: an effective alternative to large instruction win-
dows. IEEE Micro, 23(6):20–25, November/December
2003.

[25] K. J. Nesbit and J. E. Smith. Data cache prefetching using a
global history buffer. In Proceedings of the 10th IEEE Sym-
posium on High-Performance Computer Architecture, Feb.
2004.

[26] D. G. Perez, G. Mouchard, and O. Temam. Microlib: a case
for the quantitative comparison of micro-architecture mech-
anisms. In Proceedings of the 3rd Annual Workshop on Du-
plicating, Deconstructing, and Debunking (WDDD04), June
2004.

[27] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso. Performance of database workloads on shared-
memory systems with out-of-order processors. In Proceed-
ings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS VIII), pages 307–318, Oct. 1998.

[28] T. Sherwood, S. Sair, and B. Calder. Predictor-directed
stream buffers. In Proceedings of the 33rd Annual IEEE/
ACM International Symposium on Microarchitecture (MI-
CRO 33), pages 42–53, December 2000.

[29] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim,
A. Ailamaki, and B. Falsafi. Memory coherence activity pre-
diction in commercial workloads. In 3rd Workshop on Mem-
ory Performance Issues, June 2004.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, July
1995.

[31] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
Smarts: Accelerating microarchitecture simulation via rigor-
ous statistical sampling. In Proceedings of the 30th Annual
International Symposium on Computer Architecture, June
2003.

