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Abstract
Prior research indicates that there is much spatial

variation in applications' memory access patterns. Modern
memory systems, however, use small fixed-size cache blocks
and as such cannot exploit the variation. Increasing the block
size would not only prohibitively increase pin and interconnect
bandwidth demands, but also increase the likelihood of false
sharing in shared-memory multiprocessors.

In this paper, we show that memory accesses in
commercial workloads often exhibit repetitive layouts that
span large memory regions (e.g., several kB), and these
accesses recur in patterns that are predictable through code-
based correlation. We propose Spatial Memory Streaming, a
practical on-chip hardware technique that identifies code-
correlated spatial access patterns and streams predicted
blocks to the primary cache ahead of demand misses. Using
cycle-accurate full-system multiprocessor simulation of
commercial and scientific applications, we demonstrate that
Spatial Memory Streaming can on average predict 58% of L1
and 65% of off-chip misses, for a mean performance
improvement of 37% and at best 307%.

1. Introduction
Poor memory system behavior limits the performance of

commercial applications in high-end servers. One-half to two-
thirds of execution time in commercial online transaction pro-
cessing (OLTP), decision support system (DSS), and web
server workloads is spent on memory system-related stalls [2,
3,13,21,26,30]. These workloads challenge system designers
because they rely on complex algorithms and data structures,
have large code footprints, operate on data sets that greatly
exceed physical memory, and use sophisticated fine-grain syn-
chronization to maximize concurrency.

Microarchitectural innovations, such as out-of-order exe-
cution, non-blocking caches, and run-ahead execution [19],
improve memory system performance by increasing the off-
chip memory-level parallelism (MLP). However, to discover
parallel misses, these approaches must correctly predict and
execute the instruction stream, which restricts the depth of the
instruction window they can explore. In OLTP and web appli-
cations, these innovations provide limited benefit because of
frequent, long chains of dependent memory accesses [21,30].
Although modern servers provide copious memory

bandwidth [7], the memory system remains underutilized
because these dependence chains severely limit available
MLP—one study reports an average of just 1.3 parallel off-
chip misses for these applications on a current-generation out-
of-order system [6]. Enhancing the parallelism and hiding the
latency of memory accesses are the keys to server performance
improvement.

Although computer architects have demonstrated great
success in improving MLP and hiding memory latency in
desktop and scientific applications through memory prefetch-
ing or streaming (e.g., [18,20,24,25,29]), few studies have
demonstrated success at improving memory system perfor-
mance for commercial applications. Instruction stream buffers
reduce primary instruction cache stalls [21]. Software
prefetching can accelerate certain database operations, such as
hash joins [5]. Temporal streaming reduces coherence stalls by
streaming repetitive, temporally-correlated coherence miss
sequences [30]. However, all of these approaches target only
limited classes of memory accesses and a significant fraction
of memory stalls remain exposed.

Despite their complexity, commercial applications none-
theless utilize data structures with repetitive layouts and access
patterns—such as database buffer pool pages or network
packet headers. As these applications traverse their data sets,
recurring patterns emerge in the relative offsets of accessed
data. Unfortunately, these accesses are frequently non-contigu-
ous and do not follow a constant stride (e.g., binary search in a
B-tree). Because sparse patterns may span large regions (e.g.,
an operating system page), we use the term spatial correlation
rather than spatial locality to describe the relationship among
accesses. Increasing cache block size to capture spatial correla-
tion leads to inefficient storage and bandwidth utilization.

Past research on uniprocessor systems has shown that
spatial correlation can be predicted in hardware by correlating
patterns with the code and/or data address that initiates the pat-
tern [4,17]. Whereas existing spatial pattern prefetching
designs are effective for desktop/engineering applications [4],
the only practical implementation evaluated on server work-
loads provides less than 20% miss rate reduction [17].

In this paper, we reconsider prediction and streaming of
spatially-correlated access patterns to improve MLP and to
hide the long latencies of secondary cache and off-chip mem-
ory accesses. Our design, Spatial Memory Streaming (SMS),
targets commercial server applications and can reduce both
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primary cache and off-chip misses in multiprocessor servers.
SMS exploits repetitive access patterns to predict and stream
blocks to the primary cache ahead of demand misses. We
evaluate SMS through a combination of trace-based and
cycle-accurate full-system simulation of scientific and com-
mercial applications. This work demonstrates:
• Effective spatial correlation and prediction. Contrary to

previous findings [17], address-based correlation is not
needed to predict the access stream of commercial work-
loads. Instead, we show a strong correlation between code
and access patterns, which SMS exploits to predict pat-
terns even for previously-unvisited addresses. Because
there are far fewer distinct code sequences than data
addresses, SMS provides nearly four times the prediction
coverage of an address-based predictor with equivalent
storage.

• Accurate tracking of spatial correlation. We show that
the cache-coupled structures used in previous work
([4,17]) are suboptimal for observing spatial correlation.
Accesses to multiple independent patterns are frequently
interleaved, which induce conflict behavior in prior detec-
tion structures. Instead, we propose a decoupled detection
structure that identifies fewer and denser patterns, halving
predictor storage requirements and increasing coverage by
up to 20%.

• Performance enhancement. For commercial workloads,
we show that SMS predicts on average 55% and at best
78% of off-chip read misses, providing a mean speedup of
1.22 and at best 1.48 over a system without SMS. In con-
trast, the global history buffer (GHB) [20], the best pro-
posed prefetcher for desktop/engineering applications,
eliminates only 30% of off-chip misses on average and
62% at best. In scientific applications, SMS matches
GHB’s coverage to eliminate on average 81% of off-chip
misses, and yields speedups ranging from 1.26 to 4.07.

The remainder of this paper is organized as follows. We
describe Spatial Memory Streaming in Section 2 and present
the details of our hardware implementation in Section 3. In
Section 4, we evaluate our design and present performance
results. We discuss related work in Section 5 and conclude in
Section 6.

2. Spatial Memory Streaming
Spatial Memory Streaming (SMS) improves the perfor-

mance of scientific and commercial server applications by
exploiting spatial relationships among data beyond a single
cache block.

In choosing a cache block size, system designers are
forced to balance the competing concerns of spatial locality,
transfer latency, cache storage utilization, memory/processor
pin bandwidth utilization, and false sharing. Typically, the
optimal cache block size sacrifices opportunity to exploit spa-
tial locality for dense data structures to avoid excessive band-
width overheads for sparse data structures. For simple data
structures, such as arrays, spatial relationships can be
exploited through simple prefetching schemes, such as stride
prefetching [24].

Commercial applications exhibit complex access pat-
terns that are not amenable to simple prefetching or streaming
schemes. Nevertheless, data structures in these applications
frequently exhibit spatial relationships among cache blocks.
For example, in databases, pages in the buffer pool share
common structural elements, such as a log serial number in
the page header and a slot index that indicates tuple offsets in
the page footer, that are always accessed prior to scanning/
modifying the page. In web servers, packet headers and trail-
ers have arbitrarily complex but fixed structure. Further
examples appear in Figure 1 (left). Although accesses within
these structures may be non-contiguous, they nonetheless
exhibit recurring patterns in relative addresses. We call the
relationship between these accesses spatial correlation.

SMS extracts spatially-correlated access patterns at run-
time and predicts future accesses using these patterns. SMS
then streams the predicted cache blocks into the processor’s
primary cache as rapidly as allowed by available resources
and bandwidth, thereby increasing memory level parallelism
and hiding lower-level cache and off-chip access latencies.

2.1. Spatial Patterns and Generations
We formalize our notion of spatial correlation similar to

prior studies of spatial footprints [4,17]. We define a spatial
region as a fixed-size portion of the system’s address space,
consisting of multiple consecutive cache blocks. A spatial

FIGURE 1. Examples of spatial correlation and spatial region generations. The left figure shows example 
sources of spatial correlation in databases. The right figure illustrates an event sequence and the corresponding 
spatial region generations and patterns.
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region generation is the time interval over which SMS
records accesses within a spatial region. We call the first
access in a spatial region generation the trigger access. A
spatial pattern is a bit vector representing the set of blocks in
a region accessed during a spatial region generation. Thus, a
spatial pattern captures the layout of cache blocks accessed
near one another in time. Upon a trigger access, SMS predicts
the spatial pattern that will be accessed over the course of the
spatial region generation.

The precise interval over which a spatial region genera-
tion is defined can significantly impact the accuracy and cov-
erage of spatial patterns [17]. A generation must be defined to
ensure that, when SMS streams blocks into the cache upon a
future trigger access, no predicted block will be evicted or
invalidated prior to its use. Therefore, we choose the interval
from the trigger access until any block accessed during the
generation is removed from the processor’s primary cache by
replacement or invalidation. A subsequent access to any
block in the region is the trigger access for a new generation.
This definition ensures that the set of blocks accessed during
a generation were simultaneously present in the cache.
Figure 1 (right) shows an example of three spatial region gen-
erations and their corresponding patterns.

2.2. Identifying Recurring Spatial Patterns
Upon a trigger access, SMS predicts the subset of blocks

within the region that are spatially correlated and therefore
likely to be accessed. Thus, a key problem in SMS is finding
a prediction index that is strongly correlated to recurring spa-
tial patterns.

Spatial correlation arises because of repetition and regu-
larity in the layout and access patterns of data structures. For
instance, spatial correlation can arise because several vari-
ables or fields of an aggregate are frequently accessed
together. In this case, the spatial pattern correlates to the
address of the trigger access, because the address identifies
the data structure. Spatial correlation can also arise because a
data structure traversal recurs or has a regular structure. In
this case, the spatial pattern will correlate to the code (pro-
gram counter values) executing the traversal.

A variety of prediction indices have been investigated in
the literature. All prior studies found that combining both the
address and program counter to construct an index consis-
tently provides the most accurate predictions when correla-
tion table storage is unbounded [4,17]. By combining both
quantities, which we call PC+address indexing, a predictor
generates distinct patterns when multiple code sequences lead
to different traversals of the same data structure. However,
this prediction index requires predictor storage that scales
with data set size, and predictor coverage drops precipitously
with realistic storage constraints.

For SPEC CPU 2000 applications, PC+address indexing
can be approximated by combining the PC with a spatial
region offset [4,17]. The spatial region offset of a data address
is the distance, in cache blocks, of the address from the start
of the spatial region. The spatial region offset allows the pre-
dictor to distinguish repetitive patterns generated by the same
code fragment that only differ in their alignment relative to

spatial region boundaries. PC+offset indexing considerably
reduces prediction table storage requirements because appli-
cations have far fewer distinct miss PCs than miss addresses.

We observe that PC+offset indexing, in addition to its
storage savings, is fundamentally more powerful than
address-based indexing because it can eliminate cold misses.
When a code sequence repeats the same access pattern over a
large data set, the PC-correlated spatial patterns learned at the
start of the access sequence will provide accurate predictions
for data that have never previously been visited. Database
scan and join operations, which dominate the execution of
decision support queries [23], contain long repetitive access
patterns that visit data only once. In these applications,
PC+offset indexing substantially outperforms address-based
schemes.

3. Design
We now describe our design for Spatial Memory

Streaming. Unlike prior proposals, we target our design at
high-performance commercial server applications in a multi-
processor context. Our most significant departure from prior
designs is that those designs target decoupled sectored [22] or
sub-blocked caches. Integrating spatial pattern prediction
with such caches simplifies the hardware design because the
training structures for spatial region accesses can be inte-
grated with the sub-blocked cache tag array. However, inter-
leaved accesses to different spatial regions cause conflict
behavior within the sub-blocked tags, fragmenting spatial
region generations and reducing the accuracy of observed
patterns. Therefore, we design SMS to integrate with a tradi-
tional cache hierarchy.

SMS comprises two hardware structures. The active
generation table records spatial patterns as the processor
accesses spatial regions and trains the predictor. The pattern
history table stores previously-observed spatial patterns, and
is accessed at the start of each spatial region generation to
predict the pattern of future accesses. The next two subsec-
tions describe these structures and their operation.

3.1. Observing Spatial Patterns
Spatial Memory Streaming learns spatial patterns by

recording which blocks are accessed over the course of a spa-
tial region generation in the active generation table (AGT).
When a spatial region generation begins, SMS allocates an
entry in the AGT. As cache blocks are accessed, SMS updates
the recorded pattern in the AGT. At the end of a generation
(eviction/invalidation of any block accessed during the gener-
ation), the AGT transfers the spatial pattern to the history
table and the AGT entry is freed.

Although the AGT is logically a single table, we imple-
ment it as two content addressable memories, the accumula-
tion table and the filter table, to reduce the size of the
associative search within each memory and the overall size of
the structure. Because the AGT processes each L1 data
access, it is necessary that both tables be able to match the L1
data access bandwidth. The AGT is not on the L1 data access
critical path, and thus does not impact cache access latency.
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Spatial patterns are recorded in the accumulation table.
Entries in the accumulation table are tagged by the spatial
region tag, the high order bits of the region base address.
Each entry stores the PC and spatial region offset of the trig-
ger access, and a spatial pattern bit vector indicating which
blocks have been accessed during the generation.

New spatial region generations are initially allocated in
the filter table. The filter table records the spatial region tag,
and the PC and spatial region offset of the trigger access, for
spatial regions that have had only a single access in their cur-
rent generation. A significant minority of spatial region gen-
erations never have a second block accessed; there is no
benefit to predicting these generations because the only
access is the trigger access. By restricting such generations to
the filter table, SMS reduces pressure on the accumulation
table.

The detailed operation of the AGT is depicted in
Figure 2. Each L1 access first searches the accumulation
table. If a matching entry is found, the spatial pattern bit cor-
responding to the accessed block is set. Otherwise, the access
searches for its tag in the filter table. If no match is found, this
access is the trigger access for a new spatial region generation
and a new entry is allocated in the filter table (step 1 in
Figure 2). If an access matches in the filter table, its spatial
region offset is compared to the recorded offset. If the offsets
differ, then this block is the second distinct cache block
accessed within the generation, and the entry in the filter table
is transferred to the accumulation table (step 2). Additional

accesses to the region set corresponding bits in the pattern
(step 3).

Spatial region generations end with an eviction or inval-
idation (step 4). Upon these events, both the filter table and
accumulation table are searched for the corresponding spatial
region tag. (Note that this search requires reading the tags of
replaced cache blocks even if the replaced block is clean). A
matching entry in the filter table is discarded because it repre-
sents a generation with only a trigger access. A matching
entry in the accumulation table is transferred to the pattern
history table. If either table is full when a new entry must be
allocated, a victim entry is selected and the corresponding
generation is terminated (i.e., the entry is dropped from the
filter table or transferred from the accumulation table to the
pattern history table). In Section 4.5, we observe that small
(e.g., 32- or 64-entry) accumulation and filter tables make
this occurrence rare.

3.2. Predicting Spatial Patterns
SMS uses a pattern history table (PHT) for long-term

storage of spatial patterns and to predict the pattern of blocks
that will be accessed during each spatial region generation.
The implementation of the PHT and the address stream pre-
diction process is depicted in Figure 3. The PHT is organized
as a set-associative structure similar to a cache. The PHT is
accessed using a prediction index constructed from the PC
and spatial region offset of the trigger access for a generation.

FIGURE 2. Active Generation Table. The AGT consists of an accumulation table and a filter table. The figure 
illustrates the actions taken over the course of one spatial region generation.
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FIGURE 3. Pattern History Table and prediction process. Upon a trigger access that matches in the PHT, the 
region base address and spatial pattern are transferred to a prediction register, beginning the streaming process.
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Each entry in the PHT stores the spatial pattern that was accu-
mulated in the AGT.

Upon a trigger access, SMS consults the PHT to predict
which blocks will be accessed during the generation. If an
entry in the PHT is found, the spatial region’s base address
and the spatial pattern are copied to one of several prediction
registers. As SMS streams each block predicted by the pattern
into the primary cache, it clears the corresponding bit in the
prediction register. The register is freed when its entire pat-
tern has been cleared. If multiple prediction registers are
active, SMS requests blocks from each prediction register in a
round-robin fashion. SMS stream requests behave like read
requests in the cache coherence protocol.

4. Results
We evaluate SMS using a combination of trace-driven

and cycle-accurate full-system simulation of a shared-mem-
ory multiprocessor using FLEXUS [14]. FLEXUS can execute
unmodified commercial applications and operating systems.
FLEXUS extends the Virtutech Simics functional simulator
with cycle-accurate models of an out-of-order processor core,
cache hierarchy, protocol controllers and interconnect. We
simulate a 16-processor directory-based shared-memory mul-
tiprocessor system running Solaris 8. We employ a wait-free
implementation of the total store order memory consistency
model [1,10]. We perform speculative load and store
prefetching [9], and speculatively relax memory ordering
constraints at memory barrier and atomic read-modify-write
memory operations [10]. We list other relevant parameters of
our system model in Table 1 (left).

Table 1 (right) enumerates our commercial and scientific
application suite. We include the TPC-C v3.0 OLTP workload
on two commercial database management systems, IBM DB2
v8 ESE, and Oracle 10g Enterprise Database Server. We
select four queries from the TPC-H DSS workload based on
the categorization in [23]: one scan-dominated query, two
join-dominated queries, and one query exhibiting mixed

behavior. All four DSS queries are run on DB2. We evaluate
web server performance with the SPECweb99 benchmark on
Apache HTTP Server v2.0 and Zeus Web Server v4.3. We
drive the web servers using a separate client system and a
high-bandwidth link tuned to ensure that the server system is
fully saturated (client activity is not included in trace or tim-
ing results). Finally, we include three scientific applications
to provide a frame of reference for our commercial applica-
tion results.

Our trace-based analyses use memory access traces col-
lected from FLEXUS with in-order execution, no memory sys-
tem stalls, and a fixed IPC of 1.0. For OLTP and web
workloads, we warm main memory with functional simula-
tion for at least 5000 transactions (or web requests) prior to
starting traces, and then trace at least 1000 transactions. For
DSS queries, we analyze traces of over three billion total
instructions taken from the query execution at steady-state.
We have experimentally verified that varying trace start loca-
tion has minimal impact on simulation results. For scientific
applications, we analyze traces of five to ten iterations. We
use half of each trace for warm-up prior to collecting experi-
mental results. All results prior to Section 4.7 use this trace-
based methodology.

For cycle-accurate simulations, we use a sampling
approach developed in accordance with SMARTS [32]. Our
samples are drawn over an interval of 10 to 30 seconds of
simulated time (as observed by the operating system in func-
tional simulation) for OLTP and web applications, over the
complete query execution for DSS, and over a single iteration
for scientific applications. We show 95% confidence intervals
that target ±5% error on change in performance, using paired-
measurement sampling [31]. We launch measurements from
checkpoints with warmed caches, branch predictors, and pre-
dictor table state, then run for 100,000 cycles to warm queue
and interconnect state prior to collecting measurements of
50,000 cycles. We use the aggregate number of user instruc-
tions committed per cycle (i.e., committed user instructions
summed over the 16 processors divided by total elapsed

Processing Nodes UltraSPARC III ISA
4 GHz 8-stage pipeline; out-of-order
8-wide dispatch / retirement
256-entry ROB, LSQ; 64-entry store buffer

L1 Caches Split I/D, 64KB 2-way, 2-cycle load-to-use
4 ports, 32 MSHRs, 16 SMS stream requests

L2 Cache Unified, 8MB 8-way, 25-cycle hit latency
1 port, 32 MSHRs

Main Memory 3 GB total memory
60 ns access latency
64 banks per node
64-byte coherence unit

Protocol Controller 1 GHz microcoded controller
64 transaction contexts

Interconnect 4x4 2D torus
25 ns latency per hop
128 GB/s peak bisection bandwidth

Online Transaction Processing (TPC-C)
Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA
DB2  100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Decision Support (TPC-H on DB2)
Qry 1 Scan-dominated, 450 MB buffer pool
Qry 2 Join-dominated, 450 MB buffer pool

Qry 16 Join-dominated, 450 MB buffer pool 
Qry 17 Balanced scan-join, 450 MB buffer pool

Web Server
Apache 16K connections, FastCGI, worker threading model

Zeus 16K connections, FastCGI
Scientific

em3d 3M nodes, degree 2, span 5, 15% remote
ocean 1026x1026 grid, 9600s relaxations, 20K res., err tol 1e-07
sparse 4096x4096 matrix

TABLE 1. System and application parameters.
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cycles) as our performance metric, which is proportional to
overall system throughput [30].

4.1. Spatial Characterization
We begin by quantifying the spatial characteristics of

our application suite and identifying the maximum opportu-
nity to reduce miss rates with SMS. We show that there is
substantial spatial correlation over regions as large as the
operating system page size (8kB). However, an increased
cache block size cannot exploit this correlation because of
increased conflict misses, false sharing, and inefficient band-
width utilization. No single cache block size can capture spa-
tial correlation efficiently because access density varies
within and across applications. SMS does not suffer these
inefficiencies because it tracks spatial correlation at fine
granularity.

We quantify the opportunity for SMS to exploit spatial
correlation across a range of region sizes, and compare
against the effectiveness of increasing cache block size in
Figure 4. To assess opportunity, at each region size, we con-
sider an oracle predictor that incurs only one miss per spatial
region generation (labelled “opportunity”). We also show the
miss rate achieved by a cache with block size equal to the
region size. (We hold cache capacity fixed across all region/
block sizes). For block sizes larger than 64B, we separate
misses caused by false sharing (labelled “false sharing
beyond 64B”) from all other misses (labelled “other
misses”). We report results in terms of misses per instruction,
normalized to a cache with 64B blocks and no predictor.

Our oracle study demonstrates substantial opportunity
for SMS to eliminate read misses. Across applications and
cache hierarchy levels, SMS opportunity increases as spatial
regions are extended to the OS page size.

Increased cache block size leads to drastic increases in
L1 miss rates because of conflict behavior. The commercial
workloads use only a subset of the data in large regions and
interleave accesses across regions. Thus, as the cache block
size increases, conflicts increase, and the effective capacity
of the L1 cache is reduced, leading to a sharp increase in miss

rate with block sizes beyond 512B. The data sets of the scien-
tific applications are more tightly packed, but nevertheless
suffer from similar conflict behavior.

The larger capacity of L2 reduces the prevalence of con-
flict effects as compared to L1. However, commercial work-
loads instead incur misses from false sharing, which accounts
for 26%–42% of L2 misses at the 8kB block size.

The inefficient bandwidth utilization of larger blocks
makes it unclear if even block sizes of 512B, despite lower
miss rates, can improve performance over 64B blocks at any
hierarchy level. Unless data is densely packed, as in the sci-
entific applications, larger block sizes lead to the transfer of
more unused data. In the commercial applications, bandwidth
efficiency drops exponentially as block size increases above
512B.

Huh and co-authors demonstrate that the latency penalty
of false sharing can be eliminated through coherence decou-
pling—speculative use of incoherent data [15]. However,
even if false sharing is eliminated, true sharing and replace-
ment misses nonetheless result in nearly double the L2 miss
rate of the oracle opportunity at 8kB blocks. Furthermore,
coherence decoupling does not eliminate bandwidth wasted
by false sharing, and therefore cannot scale to the same
region sizes as SMS.

The root cause of the inefficiency of large cache blocks
is the variability of memory access density within and across
applications. We quantify memory access density as the frac-
tion of cache misses occurring in spatial region generations
that contain a particular number of misses. Figure 5 presents
a breakdown of memory access density for each application
for a 2kB region size (we establish 2kB as the best choice for
region size in Section 4.4). For example, in OLTP-DB2, 22%
of L1 misses come from spatial generations in which between
four and seven blocks are missed upon during the generation.
With the exception of ocean and sparse, all applications
exhibit wide variations in their memory access density at
both L1 and L2. Thus, no single block size can simulta-
neously exploit the available spatial correlation while using
bandwidth and storage efficiently.

FIGURE 4. L1 and L2 (off-chip) miss rates versus block/region size. Opportunity represents an oracle spatial 
predictor that incurs one miss per spatial region generation.
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Because SMS learns and predicts spatial patterns over
large regions at fine granularity, SMS can approach the miss
rates indicated by our opportunity study without the ineffi-
ciencies of large blocks. SMS fetches only the 64B blocks
within a region that are likely to be used, and therefore does
not incur the conflict, false sharing, or bandwidth overhead of
larger blocks. Our opportunity results for L1 indicate that
accurate spatial pattern prediction allows SMS to deliver
blocks directly into L1, despite its small capacity.

4.2. Indexing
Prior studies of spatial predictors [4,17] advocate predic-

tor indices that include address information. In this section,
we show that PC+offset indexing yields the same or signifi-
cantly higher coverage than address-based indices, as well as
lower storage requirements.

We compare the Address, PC+address, PC, and PC+off-
set indexing schemes in Figure 6, using an infinite PHT to
assess the true opportunity without regard to storage limita-
tions. Coverage represents the fraction of L1 read misses that
are eliminated by SMS. Overpredictions represent blocks that
are fetched but not used prior to eviction or invalidation, and
thus waste bandwidth. Overpredictions can also cause cache
pollution; this effect is implicitly taken into account because
the additional misses are categorized as uncovered.

In OLTP and web applications, a majority of spatially-
correlated accesses arise from heavily-visited code sequences
and data structures. Hence, both data addresses and PCs cor-
relate to similar spatial patterns, and the Address,
PC+address, and PC+offset indexing schemes perform simi-
larly. PC indexing (without any address information) is less
accurate because it cannot distinguish among distinct access
patterns to different data structures by the same code (e.g.,

FIGURE 5. Memory access density. Each segment represents the percentage of L1 or L2 misses from generations 
of the indicated density (i.e., the number of blocks in the 2kB spatial region that incur misses during the generation).
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accesses to database tuples of different sizes). PC+offset
indexing can distinguish patterns based on the spatial region
offset, which is sufficient to capture the common cases. Our
result contradicts a prior study of uniprocessor OLTP and
web traces [17], which indicated that PC+address provides
superior coverage.

Indices that correlate primarily based on program con-
text (PC, PC+offset) are fundamentally more powerful than
alternatives that include complete addresses (Address,
PC+address) because they can predict accesses to data that
have not been used previously—a crucial advantage for DSS.
The scan and join operations that dominate DSS access many
data only once. Address-based indices cannot predict previ-
ously-unvisited addresses and thus fail to predict many spa-
tially-correlated accesses. Both the PC and PC+offset
schemes can predict unvisited addresses, but, as with OLTP
and web applications, the ability of PC+offset to distinguish
among traversals allows it to achieve the highest coverage.

For scientific applications, we corroborate the conclu-
sions of prior work [4] that indicate PC+offset indexing gen-
erally approaches the peak coverage achieved by the
PC+address indexing scheme.

A second advantage of PC+offset indexing over alterna-
tives that include complete addresses is that its storage
requirements are proportional to code size rather than data set
size. Figure 7 compares PC+offset and PC+address at practi-
cal PHT sizes. PC+offset attains peak coverage with 16k
entries—roughly the same hardware cost as a 64kB L1 cache
data array. For PC+address, in all workloads except OLTP,
16k entries is far too small to capture a meaningful fraction of
program footprint and provide significant coverage. In OLTP,
where most coverage arises from frequent accesses to rela-
tively few structures, PC+address achieves 75% of peak cov-
erage with a 16k-entry PHT.

4.3. Decoupled Training
The training structure (e.g., the AGT) is a key compo-

nent in any spatial-correlation predictor because structural
limitations can prematurely terminate spatial region genera-
tions—particularly when accesses to different regions are
interleaved—and thus reduce predictor coverage and/or frag-
ment prediction entries, consequently polluting the PHT.

Past predictors [4,17] couple the predictor training struc-
ture to a sectored (i.e., sub-blocked) cache tag array. In a sec-
tored cache, the valid bits in the tag array for each sector
implicitly record a spatial pattern, thus requiring only mini-
mal hardware changes to train a predictor (e.g., to track PC/
address of the trigger access). However, sectored caches are
less flexible than traditional caches and experience worse
conflict behavior. To mitigate this disadvantage, the spatial
footprint predictor [17] employed a decoupled sectored cache
[22], whereas the spatial pattern predictor [4] provided a log-
ical sectored-cache tag array alongside a traditional cache.
The logical sectored-cache tag array calculates cache contents
as if the cache was sectored, but does not affect actual cache
replacements. Nevertheless, both these organizations incur
more address conflicts than a traditional cache, and thus can-
not accurately track available spatial correlation.

We compare the AGT to both of these organizations in
Figure 8. We measure coverage by comparing the miss rate of
each implementation against a baseline traditional cache. We
model an infinite PHT to factor out predictor storage limita-
tions from this analysis.

In commercial workloads, the additional constraints that
the decoupled sectored cache (DS) places on cache contents
lead to considerably more misses than in both other
approaches. The conflict effects are magnified in applications
where few generations are dense (OLTP and web; see
Figure 5). In the scientific applications, blocks in the same

FIGURE 8. Comparison of training structures. 
DS=Decoupled Sectored. LS=Logical Sectored. 
AGT=Active Generation Table. PHT size is unbounded.
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sector tend to be replaced together, and thus the decoupled
and logical sectored tags behave identically.

Although the logical sectored scheme achieves similar
coverage to AGT, when accesses across regions are inter-
leaved, logical tag conflicts still fragment generations and
create more history patterns. Figure 9 compares the two
approaches in terms of PHT storage requirements. In general,
for any coverage that the logical sectored design can achieve,
it requires twice the PHT storage of AGT. The gap is largest
for OLTP, which exhibits the most interleaving.

4.4. Spatial Region Size
Our oracle study (Figure 4) indicates that there is

increasing opportunity as spatial region size increases to 8kB.
For SMS to exploit this opportunity, accesses in a region must
be repetitive and correlate to the trigger access. However,
larger regions are more likely to span unrelated data struc-
tures, and therefore some accesses may not be repetitive with
respect to the trigger access. We explore SMS's sensitivity to
region size in Figure 10, using AGT training and unlimited
PHT storage. We vary region size from 128B (two blocks) to
the OS page size of 8kB (128 blocks).

In the database workloads, spatial regions do not span
data structures, because the structures are aligned to database
pages. Thus, in OLTP, coverage increases with region size. In
DSS, most patterns are dense, so the benefit to merging adja-
cent spatial regions (i.e., eliminating the trigger misses of
additional regions) is negligible.

In scientific applications, at region sizes above 2kB, we
observe the negative effect of spanning data structures. Using
PC+address (rather than PC+offset) indexing can mitigate
this effect by learning specific patterns for each boundary
between data structures, at the cost of drastically increased
PHT storage requirements.

Choosing a spatial region size involves a tradeoff
between coverage and storage requirements. Storage is domi-

nated by PHT size, which scales linearly with the size of spa-
tial regions. All applications except OLTP exhibit peak
coverage with 2kB regions. The 2% coverage increase for
OLTP when increasing region size to 4kB does not justify the
doubled PHT size. Unless otherwise specified, we use 2kB
spatial regions for the results in this paper.

4.5. Active Generation Table
The AGT is responsible for recording all blocks

accessed during a spatial region generation. If the AGT is too
small, generations will be terminated prematurely by replace-
ment, leading to reduced pattern density and increased PHT
storage requirements. Fortunately, SMS is able to attain the
same coverage with a practical AGT as with an infinite
AGT—across all applications, a 32-entry filter table and a 64-
entry accumulation table are sufficient. OLTP-Oracle places
the largest demand on the accumulation table; it is the only
application to require more than 32 accumulation table
entries.

4.6. Comparison to State-of-the-Art Prefetchers
Although many prefetching and streaming techniques

have been proposed, they do not target general memory
access patterns for commercial workloads. We compare SMS
against the Global History Buffer (GHB) [20], whose PC/DC
(program counter / delta correlation) variant was shown to be
the most effective prefetching technique for desktop/engi-
neering applications [12]. Like SMS, GHB-PC/DC exploits
spatial relationships between addresses. However, GHB
seeks to predict the sequence of offsets across consecutive
memory accesses by the same instruction.

We consider GHB with two history buffer sizes: 256
entries (sufficient for SPEC applications [12,20]) and 16k
entries (to roughly match the capacity of the SMS PHT). The
GHB lookup mechanism requires multiple buffer accesses
upon each prefetch; as such, GHB was proposed for and is
only applicable to L2 caches. Thus, we compare the off-chip
miss coverage of GHB and SMS in Figure 11.

SMS outperforms GHB in OLTP and web applications.
These applications interleave accesses to multiple spatial
regions. SMS captures these accesses because the trigger
access in each region independently predicts a pattern for the
region. With GHB, however, when multiple access sequences
are interleaved, the offset sequences are disrupted. Therefore,
GHB can only predict interleaved sequences if the interleav-
ing itself is repetitive.

The DSS workloads access fewer regions in parallel;
hence, interleaving is less frequent. Furthermore, DSS access
sequences are highly structured—scans and joins, instead of
the searches common in OLTP—which allow GHB to nearly
match SMS’s coverage. Likewise, in the scientific applica-
tions, both predictors capture the repetitive access sequences.

4.7. Performance Results
We evaluate the performance impact of SMS on scien-

tific and commercial applications with respect to a baseline
system without SMS. Figure 12 show the performance
improvement for each application with 95% confidence inter-

FIGURE 10. Spatial region size. SMS with PC+offset 
indexing and AGT training. PHT size is unbounded.
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vals given by our sampling methodology. Figure 13 presents
execution time breakdowns for both systems. The two bars
for each application are normalized to represent the same
amount of completed work. Thus, the relative height of the
bars indicates speedup, while the size of each component
indicates the time per unit of forward progress spent on the
corresponding activity. User busy and system busy time indi-
cate cycles in which at least one instruction is committed. The
three depicted stall categories represent stalls waiting for load
data from off-chip, from an on-chip cache (e.g., L2), and
store-buffer-full stalls. Finally, the remaining category accu-
mulates all other stall sources (e.g., branch mispredictions,
instruction cache misses, etc.). 

In all workloads, SMS improves performance by reduc-
ing off-chip read stalls. We observe performance improve-

ments of over 20% in the web, scientific, and DSS (except
Qry1) workloads.

In OLTP workloads, many of the misses that SMS pre-
dicts coincide with misses that the out-of-order core is able to
overlap. Even though overall MLP is low [6], misses that the
core can issue in parallel also tend to be spatially correlated
(e.g., accesses to multiple fields in a structure). Therefore, the
impact of correctly predicting these misses is reduced and
speedup is lower than our coverage results suggest.

In the scan-dominated Qry1, SMS has no statistically
significant effect, despite high prediction coverage. In this
query, a large amount of data is copied to a temporary data-
base table, which rapidly fills the store buffer with requests
that miss in the cache hierarchy. Hence, store-buffer-full
stalls limit performance improvement. In this situation, load
streaming by SMS is counterproductive, because the read-
only blocks fetched by SMS must all be upgraded (i.e., write
permission obtained via the coherence protocol), delaying the
critical path of draining the store buffer.

One surprising effect we see is an apparent reduction in
system busy time with SMS for web and DSS workloads.
However, the absolute fraction of system busy time (i.e., not
normalized to forward progress) is identical between the base
and SMS systems. We infer that the OS activity during these
system-busy intervals is not on behalf of the application, but
instead OS work that is proportional to time—for example,
servicing traffic from a saturated I/O subsystem.

In em3d, MLP is high (>4.5) and SMS coverage (63%)
is insufficient to predict all misses in a burst. Therefore much
of the latency for each burst remains exposed. In sparse,
because prediction coverage is high (92%), SMS eliminates
nearly all off-chip miss time, improving performance
by 307%.
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5. Related work
Several prior proposals use offline analysis to exploit

variations in spatial locality. Vleet and co-authors [28] pro-
pose offline profiling to select fetch size upon a miss. Guided
region prefetching [29] uses compiler hints to direct both spa-
tial and non-spatial (e.g., pointer-chasing) prefetches. How-
ever, the complex access patterns and rapid changes in data
set common in commercial applications present a challenge
for static and profile-based approaches. Moreover, these
approaches require application changes or recompilation,
whereas SMS is software transparent and adapts at runtime to
changing application behavior.

A variety of hardware approaches exploit variations in
spatial locality at runtime, including the dual data cache [11],
the spatial locality detection table [16], and caches that
dynamically adjust block size [8,27]. All of these techniques
exploit spatial locality variation at coarse granularity, thus
sacrificing either bandwidth efficiency or prefetch opportu-
nity. SMS does not modify the fetch/block size, and instead
predicts, at fine granularity, precisely which blocks to fetch
from a larger region.

A large class of prediction approaches exploit temporal
rather than spatial correlation among addresses (e.g., [25,
30]). These approaches eliminate recurring pairs or sequences
of consecutive misses. SMS identifies multiple simulta-
neously-active spatially-correlated regions whose accesses
are interleaved. Such spatially-correlated accesses appear
uncorrelated to temporal predictors because of the interleav-
ing. Furthermore, the storage requirements of temporal pre-
dictors are proportional to data set size, and are therefore
larger than for SMS.

6. Conclusion
In this paper, we showed that memory accesses in com-

mercial workloads are spatially correlated over large memory
regions (e.g., several kB) and that this correlation is repetitive

and predictable. We demonstrated that code-based correlation
is fundamentally superior to address-based correlation
because it can predict previously-unvisited addresses. We
proposed Spatial Memory Streaming, a practical on-chip
hardware technique that identifies code-correlated spatial pat-
terns and streams predicted blocks to the primary cache ahead
of demand misses. Using cycle-accurate full-system multi-
processor simulation running commercial and scientific
applications, we demonstrated that SMS can on average pre-
dict 58% of L1 and 65% of off-chip misses, for an average
speedup of 1.37 and at best 4.07.
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