
Efficiently Scaling Out-of-Order Cores for Simultaneous Multithreading

Faissal M. Sleiman and Thomas F. Wenisch
Computer Engineering Laboratory

EECS Department, University of Michigan
Ann Arbor, Michigan, USA

{sleimanf, twenisch}@umich.edu

Abstract—Simultaneous multithreading (SMT) out-of-order
cores waste a significant portion of structural out-of-order core
resources on instructions that do not need them. These re-
sources eliminate false ordering dependences. However, because
thread interleaving spreads dependent instructions, nearly half
of instructions dynamically issue in program order after all
false dependences have resolved. These in-sequence instructions
interleave with other reordered instructions at a fine granularity
within the instruction window. We develop a technique to
efficiently scale in-flight instructions through a hybrid out-
of-order/in-order microarchitecture, which can dispatch in-
structions to efficient in-order scheduling mechanisms—using
a FIFO issue queue called the shelf—on an instruction-by-
instruction basis. Instructions dispatched to the shelf do not
allocate out-of-order core resources in the reorder buffer, issue
queue, physical registers, or load-store queues. We measure
opportunity for such hybrid microarchitectures and design and
evaluate a practical dispatch mechanism targeted at 4-threaded
cores. Adding a shelf to a baseline 4-thread system with 64-
entry ROB improves normalized system throughput by 11.5%
(up to 19.2% at best) and energy-delay product by 10.9% (up
to 17.5% at best).

Keywords-microarchitecture; in-sequence; reorder

I. INTRODUCTION

Modern processors use a variety of microarchitectural
techniques to enhance application performance. Out-of-
order (OOO) execution and simultaneous multithreading [1]
(SMT) are two such techniques, which seek to utilize su-
perscalar execution resources by increasing single-threaded
instruction-level parallelism and thread-level parallelism, re-
spectively. By incorporating both OOO and SMT hardware,
some designs seek to balance single-threaded performance
and throughput. This combination comes at an efficiency
cost, as OOO and SMT mechanisms compete to fill the
same functional units using different types of parallelism.
As such, prior work finds that the throughput of an in-order
(INO) core approaches that of an OOO core as the number
of SMT threads is increased [2].

OOO hardware enables early issue of instructions that
encounter false dependences, for which INO cores must stall.
However, in SMT cores, the last-arriving input operand (true
dependence) for a significant fraction of instructions arrives
after all false dependences have resolved. Such instructions,
which we call in-sequence, do not stall in INO cores and
naturally issue after all elder instructions (i.e., in program

1 2 4 8
SMT Threads

0

20

40

60

80

100

Dy
na

m
ic

In
st

ru
ct

io
ns

 (%
)

Figure 1: Fraction of instructions wasting OOO resources.

order) in OOO cores. Conversely, we refer to instructions
that naturally issue out of program order as reordered. We
find that having more SMT threads increases the fraction
of in-sequence instructions observed in a particular OOO
instruction window. Figure 1 illustrates the extent of this
effect; as the number of threads in a 128-entry OOO
instruction window is increased, the fraction of in-sequence
instructions more than doubles to more than 50% on average.

In-sequence instructions gain no benefit from the OOO
microarchitecture structures they occupy. In fact, these in-
structions can be safely executed on schedule without al-
locating in OOO structures, including the reorder buffer,
issue queue, load-store queue, and physical register file.
However, in-sequence instructions interleave at fine gran-
ularity with reordered instructions. We find that groups
of consecutive in-sequence or reordered instructions aver-
age 5 to 20 instructions per group. So, existing hybrid
INO/OOO microarchitectures [3], [4], which switch at 1000-
instruction (or higher) granularity, cannot exploit the in-
sequence phenomenon without sacrificing performance on
reordered instructions.

Instead, we propose a microarchitecture where in-
sequence instructions occupy an energy-efficient FIFO
queue, which we call the shelf 1, from which instructions
may issue only in sequence (reordered instructions occupy
a conventional, unordered issue queue). By shifting in-

1 We borrow the naming concept for the shelf from the Metaflow
architecture [5], as our structure is based on the principle of shelving
deferred instructions.

sequence instruction occupancy to the inexpensive shelf, ca-
pacity in OOO structures is freed for reordered instructions.
As Figure 1 shows that more than half of instructions are in-
sequence in a 4-thread SMT, we aim to double the effective
instruction scheduling window simply with the allocation of
FIFO queues.

This paper makes contributions in three areas. First, we
report on the correlation between in-sequence instructions
and the effectiveness of OOO hardware—in-sequence in-
structions gain no benefit from OOO mechanisms. Second,
we leverage that insight to design a microarchitecture that
integrates a shelf into an SMT-enabled out-of-order core. To
our knowledge, this is the first design that enables a modern
dynamically scheduled instruction window, with instruc-
tion reordering and register renaming, to contain statically
scheduled, unreordered instructions, which reuse the same
registers, chosen at instruction granularity. We evaluate the
opportunity for such microarchitectures to improve energy-
delay product under an oracle dispatch mechanism. Finally,
we design a simple hardware steering mechanism that de-
termines whether instructions must be steered to the shelf
based on whether they are predicted to be in-sequence or
reordered in the future schedule. With this practical steering
mechanism, a 64-entry shelf improves normalized system
throughput (a metric that considers both performance and
fairness across threads [6]) by 11.5% (up to 19.2% at best)
and energy-delay-product by 10.9% (up to 17.5% at best)
over a baseline 4-thread OOO core with a 64-entry ROB.

II. BACKGROUND AND DESIGN OVERVIEW

OOO cores dispatch instructions into a dynamic schedul-
ing window where they can be selected to issue to functional
units out of program order. On the other hand, a simple INO
core stalls at the issue stage until all ordering dependences
resolve. We identify three such dependences that cause
simple INO cores to stall, but do not stall OOO cores.
These are data, speculation, and structural dependences.
We consider an instruction to be reordered if it issues to
functional units before all three types of dependences are
resolved, otherwise the instruction is in-sequence.

Data dependences govern the order in which register
reads and writes must be performed. These comprise the
well-known Read-After-Write (RAW) or true dependence,
as well as the Write-After-Write (WAW) and Write-After-
Read (WAR) false dependences. The simple INO core stalls
for true and false data dependences by issuing instructions in
program order, which takes care of WAR hazards, and with
the use of a register ready bit-vector, which can detect RAW
and WAW dependences. Speculation dependences involve
speculative execution of instructions, including processor
speculation on control flow, such as after a branch or
excepting instruction, or on values, such as those returned
by loads executed early in memory order. We consider that
speculation is bounded by a known maximum latency that

100 101 102

Consecutive In-sequence
Instructions

0

20

40

60

80

100

In
-s

eq
ue

nc
e

In
st

ru
ct

io
ns

 (%
) GEOMEAN Range

100 101 102

Consecutive Reordered
Instructions

0

20

40

60

80

100

Re
or

de
re

d
In

st
ru

ct
io

ns
 (%

) GEOMEAN Range

Figure 2: Weighted cumulative distribution of consecutive
in-sequence and reordered instruction series lengths.

is a function of the pipeline, especially for relaxed memory
models (Section III-D). Speculation dependences can be
handled at the issue stage using Smith and Pleszkun’s result
shift register [7]. Structural dependences represent resource
constraints that prevent instructions from proceeding to the
next stage, as in pipeline stalls in an INO core, or a tem-
porary shortage of functional units for a particular type of
operation. Structural dependences are honored automatically
by the FIFO nature of the INO issue stage.

Thus, all instructions in a simple INO core are in-
sequence, while OOO cores allow some instructions to issue
sooner (relative to other instructions) than they would have
in an INO core. OOO achieve this dynamic scheduling
window by provisioning a number of hardware structures,
including a reorder buffer (ROB), issue queue (IQ), load-
store queue (LSQ), and physical register file (PRF). These
structures alleviate data, speculation, and structural depen-
dences by implementing register renaming, instruction re-
ordering, and associative wakeup. Larger OOO cores scale
all structures in a balanced fashion so that no single structure
is a dominant bottleneck.

In-sequence and reordered instructions interleave at fine
granularity in an OOO core. Figure 2 depicts the cumulative
distribution of consecutive in-sequence and reordered series
lengths, weighted by the number of instructions in the
series (the series length). The plot shows the geometric
mean across benchmarks, as well as their range of behavior,
for single-threaded benchmarks. We find that 99% of in-
sequence instructions occur in series with 30 instructions
or fewer, while a series of reordered instructions is bound
by the ROB size (128 entries in this case). SMT workload
mixes with 2, 4 and 8 threads generally produce similar
distributions.

Our main observation is that in-sequence instructions do
not need costly OOO structures to execute correctly on
schedule. We demonstrate in the coming sections a practical
OOO microarchitecture wherein in-sequence instructions

Stall for
false hazards

Shelf
(FIFO)

Wakeup
Frontend

steer
decision

to
 S

h
e
lf

to
 I

Q
Allocated in-order
hardware

Saved out-of-order
hardware

Load
Store

Queue

Issue
Queue

Reorder Buffer

Physical
Register

File

Functional
Units

S
e
le

ct

Figure 3: Design overview with FIFO shelf.

can be selected on an instruction-by-instruction basis and
skip allocation in OOO structures, while still executing
correctly in the same schedule as a conventional OOO core.

Nevertheless, in-sequence instructions must still be
buffered so as to extend the OOO instruction window. We
provide this buffering via a per-thread in-order issue queue,
which we call a shelf. A shelf is a FIFO buffer that holds
instructions in between the dispatch and issue stages much
like the (fully associative) IQ. It serves to unblock the
dispatch stage to allow reordered instructions to proceed
past stalled in-sequence instructions. Shelf instructions are
not allocated a new PRF or ROB entry. As such, shelf issue
logic must detect and handle false dependences by stalling.
Ideally, instructions steered to the Shelf are in-sequence
instructions, which do not incur additional stalls for false
dependences. We discuss steering instructions to the shelf
or IQ in Section IV.

Figure 3 illustrates the shelf within a generic OOO
pipeline. It depicts incoming instructions from the dispatch
stage as steered to the shelf or to the IQ. The steering
mechanism may interleave shelf and IQ instructions on
an instruction-by-instruction basis. Once instructions have
dispatched to the shelf and IQ, the microarchitecture must
correctly and quickly resolve true and false dependences
across the two queues to prevent unnecessary stalls. Prior
hybrid INO/OOO microarchitectures [3], [4] cannot exploit
such fine-grain interleaving, while our design can. As the
average series length of in-sequence or reordered is on
the order of 10 instructions, the instruction window will
simultaneously contain multiple series that interdepend. The
next section focuses on the details of our mechanism.

III. A HYBRID INSTRUCTION WINDOW

The FIFO shelf is designed to avoid costly associative
operations like the tag comparison in the IQ as well as store-
to-load forwarding and memory order violation detection
in the LSQ. We implement the shelf as a circular buffer

ShelfIQ

select

...

Update
head pointer

1
0

0

1
0

1

1

...

...

rdy? rdy?rdy?

ROB
idx

ROB
idx

ROB
idx

...

tags tagstags ...
rdy? prev. ROB idx ...
rdy? prev. ROB idx ...

rdy? prev. ROB idx ...

ta
g

br
oa

d
ca

st

<

Is
su

e-
tr

ac
ki

n
g

 b
it

v
ec

to
r

(b
y

R
O

B
 id

x)

Figure 4: In-order issue of shelf instructions.

with head and tail pointers, much like the ROB. All shelf
instructions will block behind a stalled head instruction even
if they are ready to issue. Each instruction at the head of
the shelf will check for false and true dependences before
issuing to the functional units.

Ideally, the shelf would only require mechanisms like
the simple INO core to ensure that instructions issue in-
sequence. However, in-order issue is complicated by the
dynicamically-scheduled OOO instruction window. To de-
tect false dependences inexpensively, we maintain the in-
variant that instructions issue from the shelf in program
order. The main implication of INO shelf issue is that
shelf instructions must issue after preceding IQ instructions,
which we describe in Section III-A. We also modify the
stalling mechanisms for speculation (Section III-B) and data
dependences (Section III-C). Finally, we discuss memory
ordering in Section III-D.

A. Issuing from the Shelf in Program Order

By virtue of the shelf being a FIFO buffer, its instructions
are already ordered with respect to each other. So, an
instruction at the head of the shelf need only stall for
unissued instructions from the immediately preceding series
of IQ instructions (earlier series of IQ instructions must have
already issued for the shelf instruction to reach the head). For
this reason, we designate that a new run of instructions starts
when an IQ instruction is steered immediately following a
shelf instruction from the same thread. One run consists of
a series of IQ instructions followed by a series of shelf
instructions. An instruction at the head of the shelf that
issues after all IQ instructions in the same run is guaranteed
to issue in program order.

Since IQ instructions are dynamically scheduled, the first
instruction to dispatch is not necessarily the first one to issue.
Additionally, consecutive instructions are generally not allo-
cated adjacent entries in an IQ. To track the issue order of IQ
instructions, we allocate a per-thread issue-tracking bitvector
with one bit per ROB entry, which represents whether the
corresponding instruction has yet to issue (see Figure 4). The
bit corresponding to an instruction is cleared upon dispatch,

and set upon issue. A head pointer is maintained to track
the oldest unissued IQ instruction, similarly to how the
ROB tracks the oldest instruction that has not retired. To
be eligible for issue, a shelf instruction must ensure that the
head pointer has moved past the last IQ instruction in its run.
So, as an instruction is dispatched to the shelf, it records the
ROB index of the last preceding IQ instruction (i.e., the tail
pointer of the ROB/issue-tracking bitvector for its thread).
Once the head pointer advances past this index, the shelf
head is the eldest unissued instruction and can proceed to
issue in program order.

Critical Path Considerations. In a superscalar machine,
we may desire to issue a shelf instruction in the same cycle
as the last older IQ instruction. We consider the circuit-level
critical path challenges associated with same-cycle issue.
An issue cycle consists of selecting a number of ready
instructions, followed by waking up their dependents to mark
them ready for the next cycle. To determine if the head of
the shelf is eligible for issue, the issue-tracking bitvector
must be updated to reflect the elder IQ instructions selected
for issue this cycle. Same-cycle issue of an IQ instruction
and subsequent shelf instructions requires this combinational
logic to be placed on the critical path of wakeup and select.

In OOO cores with relatively small issue queues, this ad-
ditional logic may not affect the processor clock frequency.
However, in larger OOO designs, issue logic is often already
among the longest paths. Hence, we propose the design
depicted in Figure 4, which does not bypass issue-tracking
bitvector updates, removing these updates from the wakeup-
select critical path. As the shelf extends the instruction
window, it effectively competes against larger OOO cores
with longer critical paths. We evaluate various OOO sizes
under the same clock frequency to isolate microarchitectural
effects; nevertheless, we assume that small critical path
overheads induced by our shelf design compare favorably
to the critical paths in larger, slower designs.

B. Handling Speculation

The ROB is the conventional OOO structure that enables
misspeculation recovery by maintaining the program order
retirement of architectural state. If an instruction misspecu-
lates, the implementation is able to recover the architectural
state prior to that instruction, squashing younger instructions
in the process. The PRF buffers the alternative versions of
register state needed for this recovery process, and typically
scales with the OOO instruction window. An instruction is
considered committed once it can no longer be squashed,
and any state it overwrites is no longer needed for recovery.
By orchestrating the in-sequence completion of shelf instruc-
tions, we find we are able to forego allocation of ROB entries
and overwrite previously allocated PRF entries. Shelf in-
structions must be delayed at issue until they are guaranteed
to be committed. We discuss the shelf delay mechanisms
below, then discuss how to squash shelf instructions and

prevent them from writing back on a misspeculation. Finally
we consider coordinating the ROB retire order with shelf
instructions.

Delaying Shelf Instructions for Speculation. We first
describe the simplest method to delay shelf instruction
writeback correctly. This method is based on the result shift
register proposed by Smith and Pleszkun in the context
of in-order cores with varying but deterministic instruction
execution latencies [7]. We introduce a speculation shift
register (SSR) per thread, which tracks the maximum re-
maining resolution cycles for any in-flight instruction. As
each speculative instruction issues, it sets the SSR to the
maximum of its resolution delay and the current SSR value.
Since shelf instructions issue in program order, when the
instruction at the head of the shelf is eligible for issue, the
SSR will have been updated by all older instructions. A shelf
instruction can only issue once its minimum execution delay
compares greater than or equal to the value in the SSR. Any
earlier and it becomes unsafe to issue the shelf head (i.e., it
could overwrite the value in its destination register, which
is later needed for recovery).

Although the mechanism we have described thus far
maintains precise state, it can unnecessarily delay shelf
instructions due to speculative execution of younger re-
ordered instructions; such younger instructions may issue
early, merging their resolution time into the SSR. In patho-
logical cases, the shelf head may be the eldest incomplete
instruction and yet stall indefinitely, until the issue of all
younger instructions becomes blocked due to dependences
on the shelf. (This pathology could not arise in Smith and
Pleszkun’s setting, where issue is in-order [7].) To avoid this
pathology, we provision additional SSRs. We could enforce
precise speculation stalls by provisioning a separate SSR for
each run; however, the number of in-flight runs varies greatly
over the course of execution. Moreover, to support per-run
SSRs, each IQ instruction would need to track which SSR
it must update.

Instead, we propose a design with only two SSRs, an
IQ SSR and a shelf SSR as shown in Figure 5. All IQ
instructions update only the IQ SSR with their resolution
time as they issue. Shelf instructions refer only to the shelf
SSR to determine if they are safe to issue. Whenever the first
shelf instruction in a particular run becomes eligible for in-
order issue, the IQ SSR is first copied to the shelf SSR. At
this moment, it is guaranteed that all elder IQ instructions
have issued and updated the SSR (as the shelf head is the
eldest unissued instruction). The IQ SSR may include the
resolution delay of younger instructions that issued early,
for which we (unnecessarily, but conservatively) enforce a
delay. However, the starvation pathology described above is
no longer possible, since no more IQ instructions will affect
the shelf SSR until the shelf head issues.

Shelf Retirement and Squashing. Having been delayed
sufficiently, a shelf instruction that arrives at the writeback

ShelfIQ

select

...

...

rdy? rdy?rdy?

delay delaydelay

...

rdy? delay ...
rdy? delay ...

rdy? delay ...

11000 0 1...11110 0 1...

max max

>>1 >>1
IQ SSR Shelf SSR

First-in-series (fst?)
and oldest

IQ inst.
delays

Shelf inst.
delays

fst?

fst?

fst?

from issue-tracking
head update

Figure 5: Delaying the shelf for speculation.

stage without being squashed is definitely committed and
can be retired. There can be no readers, writers or recoveries
to the state that it will overwrite (data dependences are
handled in Section III-C). A consequence of this is that shelf
instructions may retire out of program order. We discuss
coordinating the retire order with the ROB in Section III-B.
On a misspeculation, all shelf instructions that need to be
squashed are either unissued or still in-flight in execution
pipelines. These shelf instructions, possibly including the
misspeculating instruction itself, must be prevented from
writing back as they complete.

There may also be elder in-flight shelf instructions mixed
in, which must not be squashed. Hence, a misspeculating
instruction must indicate precisely the index of the first
shelf instruction to be squashed. This shelf squash index
can be used to filter out younger shelf instructions as they
write back. For misspeculating shelf instructions, identifying
the shelf squash index is trivial: it is the misspeculating
instruction’s own index. For IQ instructions, we store during
dispatch the index that the next shelf instruction will be
assigned, indicated by the shelf tail pointer.

A consequence of this recovery design is that a shelf index
may not be recycled for use by another instruction until its
first assignee writes back. In contrast, IQ entries may be
recycled immediately once the instruction occupying them
issues. A simple solution is to release shelf entries only upon
writeback. However, this approach greatly increases shelf
occupancy; as our goal is to squeeze the most efficiency out
of as little hardware as possible, the increased occupancy
is undesirable. We discuss an alternative that decouples the
shelf index (which cannot be reused) from the shelf entry
(which may then be used by another instruction) below.

ROB Retirement. For IQ instructions, the ROB ensures
in-order retirement with respect to other IQ instructions;
however, the ROB must also coordinate with the out-of-order
retirement of shelf instructions to ensure precise state in the
event of a misspeculation—ROB instructions may not retire
before older shelf instructions. We address this by tracking

shelf instruction retirement in a shelf retire bitvector, much
like the completion bit associated with each ROB entry.
Similar to the head pointer of the ROB, a shelf retire pointer
advances over this bitvector, always pointing to the eldest
unretired shelf index. Each ROB entry tracks the index of
the next shelf instruction to follow it in program order (recall
that this is the shelf squash index, discussed above, which
we must already track for misspeculation recovery). Once
the shelf retire pointer matches or exceeds the stored shelf
index, the ROB can retire the next IQ instruction.

Whereas this design ensures correct ordering of ROB
retirement with respect to shelf instructions, shelf indices
must now be reserved until they are no longer referenced
by the ROB. The shelf squash index at the head of the ROB
is effectively a shelf reservation pointer, preventing a second
shelf instruction from retiring an ambiguous shelf index.
This shares the downside noted previously: shelf entries may
not be recycled for use by a new instruction, in this case until
elder ROB entries retire.

We solve this potential resource shortage by decoupling
the allocation and deallocation of the (comparatively) ex-
pensive shelf entry from that of the shelf index (a virtual
resource). We assume the size of the shelf is a power of
two, and allow the shelf index to span a range double
the shelf size. The shelf retire and reservation pointers
now track shelf indexes in this larger index space, but the
most significant bit of the shelf index is not used when
accessing shelf entries. Shelf entries may now be reused as
soon as the corresponding shelf instruction issues. A single
shelf tail pointer is used to allocate a shelf index and the
corresponding entry (i.e., ignoring the most significant bit).

C. Handling Data Hazards

To handle data hazards, shelf instructions must stall at is-
sue until it is guaranteed that data dependences are resolved,
similar to the simple INO core. Once all data dependences
are resolved, in-sequence instructions from the shelf may
correctly overwrite the previous value for their destination
register. Our strategy, then, is to reuse the previous physical
register allocated to the logical identifier for each shelf
instruction’s destination. We do not allocate new physical
registers for shelf instructions, thus reducing the occupancy
of the PRF.

Both shelf and IQ instructions translate their source reg-
ister identifiers in the rename stage to pick up the physical
register identifiers (PRI). They also pick up the existing
destination register translation; the shelf simply uses it as
a destination physical register, while the IQ will retire the
identifier back onto the free list as it replaces the translation
with a newly allocated physical register mapping. Figure 6
illustrates the life cycle of a PRI. A physical register is
first allocated and written by an IQ instruction, and then
overwritten by any number of shelf instructions until the next

i2 i3 i4 i7 i10i1 i5 i6 i8 i9

Mapping

Architectural
destination

r1 r2 r1 r3 r2 r3 r2 r1 r3 r2

Instruction

r1

r2

r3

p1

p2

p3

p4

p5

p6

p7

p8

Steer to IQ Steer to Shelf

reused by shelf
instruction

Figure 6: Life-cycle of register alias.

IQ instruction renames the corresponding logical register and
eventually retires it.

Instructions at the head of the shelf monitor a ready
bitvector for their operand readiness (or may use pipeline
interlocks like INO cores) using a conventional scoreboard.
The same method can be used to stall shelf instructions for
WAW dependences. Nothing additional needs to be done
for WAR dependences as the shelf issues in program order.
Complications arise, however, when an IQ instruction waits
on a true data dependence from an instruction on the shelf;
the IQ cannot distinguish the potentially multiple writes to
the same physical register by different shelf instructions,
which all use the same PRI. In other words, there is an
ambiguity in RAW dependences. Shelf instructions avoid
this problem because they issue in program order. Once
an instruction reaches the head of the shelf, only the last
instruction to write a source operand may be outstanding,
so there is no ambiguity. Dependent IQ instructions, on
the other hand, join a dynamic instruction window, so
they observe tag broadcast for multiple shelf writes to the
same physical register. The rest of this section describes
a mechanism to uniquely identify shelf writes to the same
register for the IQ.

Separation of Tag and Physical Register Index. The
problem at hand is that the PRI no longer uniquely identifies
one instruction in the OOO window, as it does in a conven-
tional PRF-based microarchitecture. Thus, a tag broadcast
from one shelf instruction that writes a physical register
might incorrectly wake up IQ instructions that depend on a
different shelf instruction. To solve this problem while allow-
ing shelf instructions to share a physical register, we must
decouple the two traditional roles of the PRI as a destination
register and as a unique identifier; each instruction acquires
both a PRI and a unique tag from rename. Thus an entry
in the mapping table (MT) will now map an architectural
register identifier to both a PRI and a tag.

Our implementation expands the tag space in a special
way given the life-cycle of an architectural register. For IQ
instructions, we retain the original tag space, where each

pn+1

pn+2

pn+3

..
.

pn+o

..
.

r1

r2

r3

rma
rc

h
it

e
ct

u
ra

l
re

g
is

te
r

sp
a
ce

p4

p5

p6

..
.

pn

p
h
y
si

ca
l

re
g
is

te
r

sp
a
ce

e
x
te

n
d
e
d

ta
g
 s

p
a
ce

ta
g
 s

p
a
ce

..
.

architectural to
physical mapping

IQ instructions use
same tag as PRI

Shelf assigns new
extended tag

Figure 7: Extended tag space and mapping.

tag corresponds to a particular physical register. When an
IQ instruction allocates a new physical register, both its
destination PRI and tag are set to that register’s index.
Shelf instructions allocate a new tag from an extended tag
space without allocating a new register, and only change the
mapping for the tag. We see that IQ instructions draw only
from the original tag space, while shelf instructions draw
only from the extended tag space, as depicted in Figure 7.
We manage these two portions of the tag space on separate
free lists, one physical free list for the original tag space and
one extension free list for the extension.

At rename, IQ instructions read the current mapping for
their source operands, noting both the PRI and tag. The PRI
is used to index into the PRF, and the tag is used to check
readiness and for the wakeup operation. IQ instructions also
pick up the current mapping for their destination registers,
so as to retire the identifiers from the ROB to their respective
free lists. The PRI is retired to the physical free list. If the
current PRI and the tag differ, then the tag must be from the
tag space extension and is retired to the extension free list.
Finally, IQ instructions allocate a new PRI from the physical
free list and set both tag and PRI mappings to it.

Shelf instructions similarly record all current mappings.
At retire, they only return the tag to the extension free list
if it differs from the PRI. Shelf instructions do not retire
the PRI as the register remains in use and no new PRI is
allocated. Only a tag is allocated from the extension free
list, and used to broadcast to the IQ.

Rename Stage. Figure 8 depicts the extended rename
stage. Steering is performed during decode, prior to re-
name, as steering decisions depend only on opcode and the
architectural register names of operands and destinations.
Depending on whether an instruction is steered to the shelf
or to the IQ, its destination register and tag will be different.
Tags from the extended tag space are offered by the extended
free list (Ext. FL) and register alias table (Ext. RAT), while
conventional PRI’s are offered by their physical counterparts.
The steering decision determines which structures are con-
sulted to allocate a tag.

Dependency
Checking

Logic

steering decision
from decode

Priority

Mask

dest Tag

Multiplexing
src1 PRI
src2 PRI
prev PRI

Multiplexing
src1 Tag
src2 Tag
prev Tag

Priority

Additional logic
or structures

Phys.
RAT

Ext.
RAT

Phys.
FL

Ext.
FL

Figure 8: Extended rename stage.

D. Memory Accesses and the LSQ

We first describe the ordering of shelf loads and stores
under uniprocessor and relaxed/weak consistency models,
which include the ARM v7 memory model used in our
evaluation. Shelf loads and stores issue in program order,
and thus follow all older loads and stores in the address
calculation pipeline. As such, shelf loads and stores do not
require their own load or store queue entries; instead, they
record the tail pointers of both structures at dispatch to track
their relative order.

Shelf loads associatively scan older IQ stores in the store
queue, all of which have calculated their addresses and
values, and younger IQ loads in the load queue, some of
which may have been reordered and issued early to memory.
(IQ loads perform the same operations as they execute). The
shelf load receives the value from the youngest scanned
instruction with a matching address. In particular, it must
receive a value from a younger matching load to avoid
a memory ordering violation [8]. Loads with no matches
issue to the cache hierarchy. Loads that issue to the cache
wake dependent instructions non-speculatively, resulting in
a minimum 2-cycle load-to-use distance for L1 data cache
hits. Upon a cache miss, loads (whether from the shelf
or IQ) are allocated a miss status holding register, which
arbitrates for writeback and tag wakeup when the cache miss
returns, unblocking the memory execution pipeline. Memory
dependence mispredictions cause a pipeline flush and restart
at the mispredicted instruction.

Shelf stores scan younger load instructions for matching
addresses to perform store-to-load forwarding, or to squash
IQ loads that have speculatively issued early. We use a
“store sets” [9] memory dependence predictor to prevent
frequent squashes. Shelf stores use their store set identifier
to release dependent younger loads, just as IQ stores do.
Finally, since uniprocessors and relaxed consistency models
support coalescing store buffers and do not require ordering
of stores to different addresses, shelf stores scan for the
next older matching store and immediately coalesce into its
store queue or store buffer entry. It is permissible to skip
over older loads in this case because they will have already

received a value from the coalescing buffer and taken their
place in memory order (non-speculatively). Stores that find
no match are released to the cache. We assume memory
barriers synchronize the pipeline at the dispatch stage.

Stricter consistency models, like Total Store Order and
Sequential Consistency, require in-window speculation [10]
for high performance. Amongst other constraints, loads are
speculative until all older loads to any address have at
least completed (obtained a value from memory). As a
consequence, all shelf instructions, including non-memory
instructions, that follow a speculative load are specula-
tive and may not writeback/retire until all preceding loads
become non-speculative—an uncertain time interval (e.g.,
duration of a cache miss). Shelf stores additionally need
to allocate store queue entries, as strong consistency models
often do not permit coalescing in the store buffer. Evaluating
the shelf under these models is beyond the scope of this
paper. We suggest that steering mechanisms could steer
those instructions to the shelf that are predicted to depend
on long-latency misses, similarly to recent latency-tolerant
designs [11], [12], [13].

IV. INSTRUCTION STEERING

Instruction steering determines whether an instruction is
dispatched to the IQ or the shelf, which directly affects the
instruction schedule. Whereas the microarchitecture ensures
correct execution under any steering policy, poor steering
can result in poor performance. If we steer all instructions
to the IQ, then the shelf provides no window size benefit.
Conversely, if all instructions are steered to the shelf, the
resulting performance will match that of an in-order core.

A. Oracle Steering

To measure the inherent opportunity of a shelf-augmented
microarchitecture, we first study an oracle steering mecha-
nism. Unfortunately, a perfect steering mechanism, which
steers optimally for maximum performance, is a global
optimization requiring complete knowledge of the whole-
program critical path. Although mechanisms to predict in-
struction criticality have been proposed [14], [15], steering
compounds the optimization problem: it adds/removes false
dependence edges, which changes the very shape of the
graph. Hence, even in the context of an offline oracle, perfect
steering is intractable.

Instead, we study an oracle that steers each instruction
according to whether it would issue earlier from the IQ
or the shelf (breaking ties in favor of the shelf). While
this determination is made greedily without regard to future
(younger) instructions, the greedy oracle steering algorithm
requires precise knowledge of the future schedule. Such
a mechanism cannot be implemented in practice, since
these future arrival times are not always known at dispatch.
However, in simulation, we can closely approximate this
future schedule using complete knowledge of instruction

Ready
Cycle
Table

r1

rn

r2

earliest-issue
earliest-writeback

Parent
Loads
Table

stalled loads

#

#
#

#
#

...

--

--
--

--
--

......
0 1 0 0

...

0 0 1 0
1 1 0 0

0 0 1 0

...

src1

src2

max +

latency

dependences

issue
writeback

Figure 9: Practical steering.

latencies, dependences, and memory addresses. For memory
operations, we functionally query the cache (atomically,
instantly and not modifying state) to accurately predict
memory latencies.

Note that, because of the complexity of the gem5 sim-
ulation model, even with oracle knowledge, we still steer
an average of 4% of instructions incorrectly. Though it
is highly detailed, our prediction of the future schedule
does not account for all corner cases that arise in the
simulation. So, our oracle algorithm additionally tracks the
actual execution schedule as the simulation progresses to
correct its representation of the schedule and recover from
mispredictions.

B. Practical Steering

As we will show, our oracle opportunity study reveals
relatively limited opportunity for a shelf-augmented mi-
croarchitecture in single-threaded executions; as indicated
in Figure 1, less than 25% of instructions are in-sequence.
In contrast, we demonstrate considerable opportunity as the
number of SMT threads increases. Hence, we design a prac-
tical steering method targeted for four-threaded execution.
The flexibility of the SMT thread fetch policy (ICOUNT
in our design [16]) is synergistic with simple instruction
steering. When instructions are fetched from a slow-moving
thread, they are steered to the shelf, avoiding IQ congestion.
Conversely, when an instruction is mis-steered to the shelf,
stalling execution, other threads benefit from the available
IQ capacity and fill the bubbles with useful execution. This
synergy facilitates a steering design without large and power-
hungry meta-data structures, which would undermine the
energy-efficiency objective of our microarchitecture.

At the heart of steering lies (1) the ability to predict the
future execution schedule, and (2) the ability to recover from
schedule mispredictions. We describe a practical hardware
solution to project instruction completion times and track
dependence chains, and show how these mechanisms can be
used for steering and misprediction recovery, with reference
to Figure 9.

Schedule Prediction. For each architectural register, we
maintain a prediction of its future writeback/ready cycle in
a Ready Cycle Table (RCT). RCT entries are decremented
each cycle to count down how many cycles are left until the
register is predicted to be ready.

If we dispatch an instruction to the IQ, we can predict
its issue cycle as the maximum ready cycle of its source
operands, and its completion cycle as the issue cycle plus
the instruction’s predicted latency. Instruction latencies are
usually available from decode. The prediction ignores struc-
tural hazards, such as issue width, and predicts all loads to
be L1 hits; the resulting schedule errors are handled via the
recovery mechanism. By predicting that all loads hit in L1,
we avoid the need for any prediction table.

An instruction dispatched to the shelf will issue after all
previously dispatched instructions even if its operands are
ready, since the shelf issues in program order. Hence, for the
shelf, we maintain an earliest-allowable issue cycle, which
is the maximum issue cycle of all previous instructions.
Shelf instructions also must stall at writeback while any
preceding instruction is speculative. So, we also track an
earliest-allowable writeback cycle, which is the maximum
speculation resolution cycle for any previous instruction. We
can then predict that, if dispatched to the shelf, an instruction
will issue at the maximum of its operands’ RCT entries and
the earliest-allowable issue cycle. Its completion cycle is
predicted as the maximum of its predicted issue cycle plus
the instruction latency and the earliest-allowable writeback
cycle.

With these estimates, we can then steer an instruction by
comparing its predicted completion cycle for the shelf and
IQ, choosing the earlier of the two and breaking ties in favor
of the shelf. Our design exploration shows that it is sufficient
to track a range of 32 cycles using 5-bit counters per register.

Schedule Recovery. Our schedule prediction mechanism
is approximate; most importantly, it assumes all loads are
hits. As schedule errors accumulate, steering accuracy will
worsen and performance will suffer. So, we correct sched-
ule misprediction errors by observing the actual execution
schedule and using the observed instruction completions to
correct predictions for their dependent instructions.

Once a register’s RCT counter decrements to zero, the
register is predicted to be ready. However, if the instruction
took longer than expected (e.g., an L1 miss), the register
will not be marked ready in the issue dependency checking
logic. In this circumstance, the predicted schedule for all the
instruction’s dependents is also incorrect. We correct these
errors by freezing the decrement of the RCT entry for the
destinations of all these dependents. We thereby push back
the predicted completion time of the entire dependency tree
by one cycle each cycle until the mispredicted instruction
ultimately completes.

Maintaining RCT counters as we have just described
requires tracking the dependency information among all
instructions, which is expensive. Interestingly, we find that
tracking the dependents of only a small sample of in-
structions is sufficient to correct the schedule; a schedule
misprediction for an untracked instruction will rapidly be
detected when one if its dependents is sampled. Since most

schedule mispredictions are for loads that miss in L1, we
track dependents for a sample of loads.

We use a simple bit matrix, the Parent Loads Table
(PLT), to track the relationship between sampled loads and
their dependents. As loads are steered, each is assigned a
column of bits in the PLT, if one is available. Rows in the
table correspond to architectural registers; a bit is set if the
architectural register depends directly or indirectly on the
load. When a load is steered, it sets the bit for its assigned
column and destination register row. As further instructions
are decoded, they set the row for their destination to the
superset of their operands’ parent loads (i.e., the bitwise OR
of the operands’ rows). When loads complete, they reset the
bits in their assigned column, freeing the column for reuse.
We find it is sufficient to track 4 loads per thread.

If any register’s ready cycle reaches zero while its parent
loads’ bitvector is non-zero, we simply stall the decrement
operation for all other registers that share those parents. The
register’s bitvector is loaded into a special row, the stalled
loads bitvector, as shown in Figure 9, which is compared to
all rows. Any row with a matching bit (i.e., it is directly or
indirectly dependent on a stalled load) has its RCT counter
stalled.

V. EVALUATION

We model our design in gem5 [17] and run the SPEC
CPU2006 benchmark suite with the ARM v7 ISA using
system call emulation. We have excluded only dealII of the
29 SPEC benchmarks as it is not functional in our simulation
infrastructure. For SMT workloads, we generate mixes of
28 different SPEC benchmarks, such that each benchmark
appears an equal number of times in each workload, accord-
ing to the “Balanced Random” mix methodology proposed
by Velasquez et al. [18]. We measure performance using
system throughput (STP), a metric proposed by Eyerman and
Eeckhout [6] that considers both performance improvement
and fairness across threads in a multi-threaded mix. STP is
the sum of the ratios of each thread’s clocks-per-instruction
in single-threaded and multi-threaded execution. It reflects
the number of programs completed per unit time. We report
results for the benchmark mix with the maximum, minimum,
and median STP improvement over the baseline, as well
as averages across the random mixes. Using the reference
input set, we fast forward all threads to the highest-weighted
SimPoint [19] within 50 billion instructions of the start of
the benchmark. We warm microarchitectural structures for
100 million instructions on each thread prior to the SimPoint
location.

Table I details our configuration. We assume a 2GHz
clock for all configurations to focus on the microarchitectural
effects of our technique. Unless otherwise stated, our eval-
uation focuses on a 4-thread SMT configuration using the
ICOUNT fetch policy [16]. The ROB, load queue (LQ) and
store queue (SQ) structures are partitioned across threads,

Component Configuration

Core 4-thread SMT OOO @ 2.0 GHz
4-wide OOO with 8-wide fetch
6 cycles fetch-to-dispatch

ROB 64 or 128
IQ, LQ, SQ 32 or 64

Shelf 64
Steering 5-bit RCT entries, 4-load PLT

L1I 32KB, 2-way, 1-cycle
L1D 32KB, 2-way, 2-cycle

L2 2MB, 8-way, 32-cycle
Memory 100ns latency

Table I: System Configuration

based on [20], as are the front-end pipeline buffers and
the shelf to prevent stalled threads from blocking others.
Our baseline core has a 64-entry ROB and 32-entry IQ,
LQ, and SQ. We augment this core with a 64-entry shelf.
We also measure a core where all structures are doubled
(128-entry ROB, 64-entry IQ, LQ, SQ), which represents an
upper bound for the performance improvement the shelf can
provide.

For power, energy, and area analysis, we use the Mc-
PAT framework [21] to model the power breakdown of a
physical register-based OOO design, incorporating changes
from [22]. We extend McPAT to model the shelf, RAT/free
list, rename logic, expanded issue/scheduling logic, spec-
ulation shift registers, dependency tracking, and steering
structures/logic. Our additions to McPAT are consistent with
its models for baseline scheduling and mapping logic and
storage structures. We report on the power consumption of
the core including L1 caches.

A. Performance

We first consider the performance impact of our design
with practical shelf and steering mechanisms. Figure 10
reports the improvement in system throughput over the
baseline 64-entry ROB design. We include results for the
workload mixes with the lowest, median, and highest STP
improvement over the baseline (the axis labels in Figure 11
report the benchmarks in these three mixes). Finally, we
report a geometric mean across all 28 mixes. The rightmost
(dark-blue) bar in each group reflects the STP improvement
of an out-of-order core where all microarchitecture structures
are doubled. This bar represents a theoretical upper bound
for the improvement of the shelf.

The shelf-augmented microarchitectures improve perfor-
mance over the baseline by 8.6% and 11.5% on average and
up to 15.1% and 19.2% for the conservative and optimistic
microarchitecture assumptions, respectively. Our approach
captures almost half of the throughput improvement of the
larger OOO core with substantially less hardware. In partic-

Base+Shelf (conservative)
Base+Shelf (optimistic)

Limit

64
+6

4
64

+6
4

12
8

64
+6

4
64

+6
4

12
8

64
+6

4
64

+6
4

12
8

64
+6

4
64

+6
4

12
8

ROB(+Shelf) sizes

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
iz

ed
 S

TP

min median max MEAN

Figure 10: Performance of the shelf with conservative and
optimistic microarchitecture assumptions.

h2
64

re
f

om
ne

tp
p

pe
rlb

en
ch

so
ple

x

go
bm

k
les

lie
3d

sje
ng

sp
hin

x3

go
bm

k
lbm m

ilc
ze

us
m

p

ME
AN

Selection of 4-thread benchmark mixes

0
10
20
30
40
50
60

Pe
r-t

hr
ea

d
Dy

na
m

ic
In

st
ru

ct
io

ns
 (%

)

min median max MEAN

Figure 11: Fraction of in-sequence instructions for a selec-
tion of 4-thread benchmark mixes.

ular, the larger design has a 64-entry issue queue, whereas
the scheduling logic in our 64+64 entry design considers
only 32 reordered instructions and the heads of each shelf.
Hence, it is likely the 64+64 design can achieve a higher
clock frequency, which is not reflected in this comparison.
Nevertheless, the shelf is not as flexible as a larger OOO
instruction window. The shelf loses performance when (1)
less than half of all in-flight instructions are in-sequence, (2)
when window requirements are imbalanced across threads
(the shelf is staticly partitioned), (3) the steering heuristic
mis-steers instructions, or (4) when reordered instructions
require more LQ or SQ resources.

Figure 11 shows the fraction of instructions from each
thread that are in-sequence for the three selected mixes,
as well as the arithmetic mean across all benchmarks.
On average, about half of instructions are in-sequence,
but some benchmarks have fewer in-sequence instructions.
The imbalance in in-sequence instructions across workloads
contributes to the gap between the 64+64 entry design and
the theoretical upper bound.

The practical steering mechanism makes numerous sim-
plifying assumptions about the future instruction schedule.
To gauge the degree to which these approximations lead
to mis-steered instructions, we compare oracle and prac-

Base+Shelf (optimistic) Base+Shelf (opportunity)

64
+6

4
64

+6
4

64
+6

4
64

+6
4

64
+6

4
64

+6
4

64
+6

4
64

+6
4

ROB(+Shelf) sizes

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
iz

ed
 S

TP

min median max MEAN

Figure 12: Performance impact of practical steering.

Base+Shelf (conservative)
Base+Shelf (optimistic)

Limit

64
+6

4
64

+6
4

12
8

64
+6

4
64

+6
4

12
8

64
+6

4
64

+6
4

12
8

64
+6

4
64

+6
4

12
8

ROB(+Shelf) sizes

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz

ed
 E

DP
min median max MEAN

Figure 13: Energy delay.

tical steering. Figure 12 shows the resulting performance
comparison. Approximately 16% of instructions are steered
incorrectly by the practical mechanism relative to the or-
acle. Nevertheless, the ability of one SMT thread to make
progress while another is stalled hides the brief stalls created
by incorrect steering decisions, allowing even our simple
mechanisms that assumes all memory accesses are L1 cache
hits to nonetheless make effective use of the shelf.

B. Energy and Area Efficiency

We compare the energy efficiency of the 64+64-entry
shelf-augmented design to both the baseline 64-entry and
doubled 128-entry microarchitectures. Figure 13 shows the
energy-delay product (EDP) of each design. Although it
consumes more power, a 128-entry design is more energy-
efficient on the average than a 64-entry design, improving
EDP by 4.9%. However, a 64+64-entry shelf-augmented
design is even more energy efficient. The performance
advantage of the shelf more than compensates for the slight
increase in power consumption, resulting in a net energy-
delay win relative to the 64-entry baseline. Adding a shelf
improves energy-delay product by 8.6% and 10.9% on
average for conservative and optimistic microarchitecture
assumptions, respectively.

Table II reports the area increase of the 64+64 and 128-
entry designs relative to the 64-entry baseline. Excluding
the area of L1 caches, adding a shelf and the associated

L1 caches Base+Shelf Base
included 64+64 128

no 3.1% 9.7%
yes 2.1% 6.6%

Table II: Area increase over Base 64.

4 2 1
SMT Threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz

ed
 S

TP

4 2 1
SMT Threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz

ed
 E

DP

Figure 14: Opportunity with fewer threads.

scheduling, steering, and tracking structures increases the
core area by 3.1%. In contrast, doubling the capacity of the
IQ, ROB, LQ, SQ, and instruction scheduling logic for the
128-entry design increases area by 9.7%.

C. Fewer Threads

Although in-sequence instructions arise in single-threaded
execution, the interleaving of multiple threads in a SMT
core spreads the issue of dependent instructions apart, sub-
stantially increasing the fraction of in-sequence instructions
(see Figure 1). Hence, we do not expect a shelf to improve
performance in single-threaded execution. Nevertheless, it is
desirable that the shelf not adversely impact performance
or energy-efficiency when an SMT core is running only
a single thread. Figure 14 compares the STP and energy-
delay product of the 64-entry and 64+64-entry designs for
single-threaded and two-threaded executions, averaged over
28 benchmarks/mixes. There is no opportunity for a shelf
in single-threaded execution. With two threads, the shelf
provides a modest improvement in performance and energy
delay. Nevertheless, we find that the shelf does not adversely
affect performance. Note that the shelf can easily be disabled
by steering all instructions to the IQ if it causes pathological
behavior in a particular workload.

VI. RELATED WORK

Hily and Seznec [2] show that the performance of an in-
order core approaches that of an out-of-order core as the
number of SMT threads increases, and argue that OOO cores
are not cost-effective for SMT designs with many threads
(four in their study). At the two extremes, OOO cores are
suited to single-threaded workloads or those with few SMT
threads, while workloads with a high number of threads
favor in-order cores for efficiency. We reason that middle-
range designs, which balance single-threaded performance
and throughput, require a new underlying microarchitecture.

We borrow the name and concept for the shelf from the
Metaflow architecture [5], which focused on the principle
of shelving instructions to defer their execution, thereby
enabling the out-of-order execution of other instructions.
Ultimately, the Metaflow design was an OOO core centered
on the DRIS structure, a combination of the ROB, IQ and
renaming logic for all instructions. Our shelf physically
separates in-sequence (deferred) instructions into a more
efficient structure, while reordered instructions utilize the
full capabilities of a modern OOO core.

Khubaib et al. rely on the same observations as Hily
and Seznec to propose MorphCore [23], a design wherein
the core can “morph” from an OOO with a low number
of threads (two threads in their work) into an INO core
with many (eight) threads. Whereas MorphCore offers a
coarse-grain switching mechanism, our design enables the
selection of OOO versus INO mechanisms on an instruction-
by-instruction basis. MorphCore and our work target differ-
ent objectives: MorphCore attempts to capture two work-
loads that do not often coincide, single-threaded and highly
threaded, on one core; whereas, our design highlights an area
where neither INO nor OOO cores are an efficient design
point. Similar works provide a set of configurable cores by
morphing, fusing or composing standalone cores [24], [25].

Viewed from another angle, our design attempts to ap-
proach the performance of a larger OOO instruction window
through the use of in-order hardware. [26], [27] relieve
the IQ by redirecting ready-before-dispatch instructions
through energy-efficient functional units. Seng, Tune and
Tullsen [28] advocate reducing power by utilitizing in-order
IQs. Tseng and Patt [29] utilize compiler techniques to
achieve a high performing schedule on in-order hardware,
which approaches the single-threaded performance of OOO
hardware. These designs, however, do not alleviate pressure
on the ROB, LSQ and PRF. McFarlin, Tucker and Zilles [30]
advocate similar designs by showing that OOO performance
can be mostly achieved with static schedules, given the
speculation support needed to permit those schedules. One
such design is the in-order Continual Flow Pipeline (iCFP)
[12], which targets long-latency operations like cache misses
that block in-order cores. Miss-dependent instructions drain
into a slice buffer, including any “side” inputs, to allow
independent younger instructions to execute out-of-order.
Drained instructions are re-executed from the slice buffer
once the miss returns. In contrast, we steer instructions to
OOO/INO up front (one-time execution). To enable correct
out-of-order execution on iCFP, speculation is handled via
checkpointing, which may be undesirable for SMT where
the aggregate architectural state of all threads is much larger.
Our mechanism does not require checkpoints. Several other
latency-tolerant designs [31], [11], [32], [13] similarly rely
on potentially expensive checkpoints; none of these designs
leverage in-order hardware.

The shelf effectively reduces instruction occupancy in

OOO structures. Several related works target similar goals
without leveraging in-sequence instructions. Whereas there
are many ways to reduce pressure on OOO structures, we
note here those mechanisms most closely relate to our
contributions. Sembrant et al. [33] park instructions that
are predicted to be non-critical to memory-level parallelism
(MLP) prior to renaming, temporarily reducing pressure
on the IQ and PRF until those instructions are resumed.
Elmoursy and Albonesi [34] reduce pressure on the IQ
via predictive SMT fetch policies. Gonzalez et al. [35]
reduce pressure on the PRF by decoupling tags (virtual reg-
isters) from PRIs (physical registers). Some works leverage
checkpointing to release OOO resources early [36], [37].
Adaptive cores additionally provide the ability to disable
unused structure entries [38], [39], [40].

Clustered microarchitectures divide the monolithic IQ
structure across functional unit clusters to improve cycle
time and scalability. Palacharla, Jouppi and Smith [41] advo-
cate using FIFO queues in this manner to reduce complexity.
Prior work focuses on steering instructions to clusters so
as to minimize inter-cluster forwarding penalties and for
load balancing [15], [42], [43]. Similar to our practical
steering algorithm, these designs make use of dependence
chain information for steering. While we do not cluster our
execution units in this paper, it is a possible dimension for
the shelf and the IQ to belong to different clusters.

Several works examine heterogeneous cores [3] and data-
paths [4]. These works fix a set of heterogeneous hardware
resources, e.g., an OOO and an INO core, and attempt to
schedule threads among them. Note that threads do not si-
multaneously use two heterogeneous components, but rather
switch from one to the other. Scheduling schemes have tar-
geted specific ILP/MLP regions [44], serializing bottlenecks
in parallel code [45], and other indicators [46]. A number of
these works advocate fine-grained switching at hundred- or
thousand-instruction granularity [47], [4] but still fall short
of interleaving in-sequence and reordered instructions in the
same window. Our shelf and IQ datapaths can be seen as
statically provisioned heterogeneous backends, however, a
single-thread context is able to utilize both simultaneously,
which is a central contribution of our microarchitecture.

VII. CONCLUSION

Whereas OOO execution can improve performance for
moderately threaded SMT designs, the resulting hardware
utilization is inefficient, as many instructions are scheduled
in-sequence. We have described a new microarchitecture
that augments an OOO core with an energy-efficient in-
order scheduling mechanism, the shelf, allowing in-sequence
instructions to interleave correctly at fine granularity with
reordered instructions. Adding a shelf to a baseline 4-thread
core with a 64-entry ROB improves performance by 11.5%
(up to 19.2% at best) and energy delay by 10.9% (up to
17.5% at best).

ACKNOWLEDGMENT

The authors thank Scott Mahlke, Ronald Dreslinski,
Reetuparna Das, Shruti Padmanabha, Andrew Lukefahr, and
the anonymous reviewers for their feedback. This work was
partially supported by grants from ARM, Ltd.

REFERENCES

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” in Proc. 22nd Int’l Symp.
on Computer Architecture, Jun 1995.

[2] S. Hily and A. Seznec, “Out-of-order execution may not be cost-
effective on processors featuring simultaneous multithreading,” in
Proc. 5th Int’l Symp. on High-Performance Computer Architecture,
Jan 1999.

[3] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-isa heterogeneous multi-core architectures: The po-
tential for processor power reduction,” in Proc. 36th Int’l Symp. on
Microarchitecture, Dec 2003.

[4] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogene-
ity into a core,” in Proc. 45th Int’l Symp. on Microarchitecture, Dec
2012.

[5] V. Popescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner, and
D. Isaman, “The metaflow architecture,” IEEE Micro, vol. 11, no. 3,
June 1991.

[6] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, May 2008.

[7] J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts
in pipelined processors,” in Proc. 12th Int’l Symp. on Computer
Architecture, Jun 1985.

[8] I. Park, C. L. Ooi, and T. N. Vijaykumar, “Reducing design complex-
ity of the load/store queue,” in Proc. 36th Int’l Symp. on Microarchi-
tecture, Dec 2003.

[9] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in Proc. 25th Int’l Symp. on Computer Architecture, Jun
1998.

[10] K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in Proc.
20th Int’l Conf. on Parallel Processing, Aug 1991.

[11] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual flow pipelines,” in Proc. 11th Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, Oct
2004.

[12] A. Hilton, S. Nagarakatte, and A. Roth, “icfp: Tolerating all-level
cache misses in in-order processors,” in Proc. 15th Int’l Symp. on
High Performance Computer Architecture, Feb 2009.

[13] A. Hilton and A. Roth, “Bolt: Energy-efficient out-of-order latency-
tolerant execution,” in Proc. 16th Int’l Symp. on High Performance
Computer Architecture, Jan 2010.

[14] B. Fields, S. Rubin, and R. Bodı́k, “Focusing processor policies
via critical-path prediction,” in Proc. 28th Int’l Symp. on Computer
Architecture, May 2001.

[15] P. Salverda and C. Zilles, “A criticality analysis of clustering in su-
perscalar processors,” in Proc. 38th Int’l Symp. on Microarchitecture,
Nov 2005.

[16] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” in Proc. 23rd
Int’l Symp. on Computer Architecture, May 1996.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
Aug 2011.

[18] R. Velasquez, P. Michaud, and A. Seznec, “Selecting benchmark
combinations for the evaluation of multicore throughput,” in Proc.
Int’l Symp. on Performance Analysis of Systems and Software, Apr
2013.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. 10th Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems, Oct 2002.

[20] D. Koufaty and D. Marr, “Hyperthreading technology in the netburst
microarchitecture,” IEEE Micro, vol. 23, no. 2, March 2003.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Int’l Symp. on Microarchitecture, Dec 2009.

[22] S. Likun Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks,
“Quantifying sources of error in mcpat and potential impacts on
architectural studies,” in Proc. 21st Int’l Symp. on High Performance
Computer Architecture, Feb 2015.

[23] K. Khubaib, M. Suleman, M. Hashemi, C. Wilkerson, and Y. Patt,
“Morphcore: An energy-efficient microarchitecture for high perfor-
mance ilp and high throughput tlp,” in Proc. 45th Int’l Symp. on
Microarchitecture, Dec 2012.

[24] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler, “Composable lightweight
processors,” in Proc. 40th Int’l Symp. on Microarchitecture, Dec 2007.

[25] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
Accommodating software diversity in chip multiprocessors,” in Proc.
34th Int’l Symp. on Computer Architecture, Jun 2007.

[26] H. Vandierendonck, P. Manet, T. Delavallee, I. Loiselle, and J.-D.
Legat, “By-passing the out-of-order execution pipeline to increase
energy-efficiency,” in Proc. 4th Int’l Conf. on Computing Frontiers,
May 2007.

[27] R. Shioya, M. Goshima, and H. Ando, “A front-end execution
architecture for high energy efficiency,” in Proc. 47th Int’l Symp. on
Microarchitecture, Dec 2014.

[28] J. S. Seng, E. S. Tune, and D. M. Tullsen, “Reducing power with
dynamic critical path information,” in Proc. 34th Int’l Symp. on
Microarchitecture, Dec 2001.

[29] F. Tseng and Y. Patt, “Achieving out-of-order performance with
almost in-order complexity,” in Proc. 35th Int’l Symp. on Computer
Architecture, Jun 2008.

[30] D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the dominant
out-of-order performance advantage: Is it speculation or dynamism?”
in Proc. 18th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, Mar 2013.

[31] A. Cristal, O. J. Santana, M. Valero, and J. F. Martı́nez, “Toward
kilo-instruction processors,” ACM Trans. Architecture and Code Op-
timiztion, vol. 1, no. 4, Dec 2004.

[32] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A high-performance sparc cmt
processor,” IEEE Micro, vol. 29, no. 2, March 2009.

[33] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais,

A. Seznec, and P. Michaud, “Long term parking (ltp): Criticality-
aware resource allocation in ooo processors,” in Proc. 48th Int’l Symp.
on Microarchitecture, Dec 2015.

[34] A. El-Moursy and D. Albonesi, “Front-end policies for improved
issue efficiency in smt processors,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture, Feb 2003.

[35] A. Gonzalez, J. Gonzalez, and M. Valero, “Virtual-physical registers,”
in Proc. 4th Int’l Symp. on High Performance Computer Architecture,
Feb 1998.

[36] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas,
“Cherry: Checkpointed early resource recycling in out-of-order mi-
croprocessors,” in Proc. 35th Int’l Symp. on Microarchitecture, Dec
2002.

[37] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-order commit
processors,” in Proc. 10th Int’l Symp. on High-Performance Computer
Architecture, Feb 2004.

[38] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,
E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E.
Schuster, “Dynamically tuning processor resources with adaptive
processing,” IEEE Computer, vol. 36, no. 12, Dec 2003.

[39] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power re-
quirements of instruction scheduling through dynamic allocation of
multiple datapath resources,” in Proc. 34th Int’l Symp. on Microar-
chitecture, Dec 2001.

[40] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and
P. Cook, “A circuit level implementation of an adaptive issue queue
for power-aware microprocessors,” in Proc. 11th Great Lakes Symp.
on VLSI, Mar 2001.

[41] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” in Proc. 24th Int’l Symp. on Computer
Architecture, May 1997.

[42] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Dynamically
managing the communication-parallelism trade-off in future clustered
processors,” in Proc. 30th Int’l Symp. on Computer Architecture, Jun
2003.

[43] A. Baniasadi and A. Moshovos, “Instruction distribution heuristics
for quad-cluster, dynamically-scheduled, superscalar processors,” in
Proc. 33rd Int’l Symp. on Microarchitecture, Dec 2000.

[44] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proc. 39th Int’l Symp. on Computer Architecture,
Jun 2012.

[45] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,” in Proc.
17th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, Mar 2012.

[46] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in hetero-
geneous multi-core architectures,” in Proc. 5th European Conf. on
Computer Systems, Apr 2010.

[47] H. Najaf-abadi and E. Rotenberg, “Architectural contesting,” in Proc.
15th Int’l Symp. on High Performance Computer Architecture, Feb
2009.

