
Hardware Acceleration for Similarity Measurement in
Natural Language Processing

Prateek Tandon? Jichuan Chang† Ronald G. Dreslinski?

Vahed Qazvinian? Parthasarathy Ranganathan† Thomas F. Wenisch?
?Department of Computer Science and Engineering, University of Michigan †HP Labs

Abstract—The continuation of Moore’s law scaling, but in the
absence of Dennard scaling, motivates an emphasis on energy-
efficient accelerator-based designs for future applications. In nat-
ural language processing, the conventional approach to automat-
ically analyze vast text collections—using scale-out processing—
incurs high energy and hardware costs since the central compute-
intensive step of similarity measurement often entails pair-wise, all-
to-all comparisons. We propose a custom hardware accelerator for
similarity measures that leverages data streaming, memory latency
hiding, and parallel computation across variable-length threads.
We evaluate our design through a combination of architectural
simulation and RTL synthesis. When executing the dominant kernel
in a semantic indexing application for documents, we demonstrate
throughput gains of up to 42× and 58× lower energy per similarity-
computation compared to an optimized software implementation,
while requiring less than 1.3% of the area of a conventional core.

Keywords-hardware acceleration, cosine similarity, natural lan-
guage processing

I. INTRODUCTION

Whereas technology trends indicate that transistor dimen-
sions will likely continue to scale for several technology gener-
ations, the anticipated end of CMOS voltage (a.k.a. Dennard)
scaling has led many researchers and industry observers to
predict the advent of “dark silicon”; that is, that much of a
chip must be powered off at any time [3], [9], [17], [24].
This forecast has renewed interest in domain specific hardware
accelerators that drastically improve the energy-efficiency of
compute intensive tasks to create value from otherwise dark
portions of a chip.

One target domain for such accelerators is natural language
processing (NLP). With the explosive growth in electronic text,
such as emails, tweets, logs, news articles, and web documents,
there is a growing need for efficient automatic text processing
(e.g., summarization, indexing, and semantic search). The
conventional approach to analyze vast text collections—scale-
out processing on large clusters with frameworks such as
Hadoop—incurs high costs in energy and hardware [11]. We
propose and evaluate a hardware accelerator that addresses one
of the most data- and compute-intensive kernels that arises
in many NLP applications: calculating similarity measures
between millions (or even billions) of text fragments [1], [4],
[6], [19], [21].

We develop this accelerator in the context of a motivating
NLP application: constructing an index for semantic search
(search based on similarity of concepts rather than string
matching) over massive text corpora such as Twitter feeds,
Wikipedia articles, logs, text messages, or medical records.

The objective of this application is to construct an index where
queries for one search term (e.g., “Mitt Romney”) can locate
related content in documents that share no words in common
(e.g., documents containing “GOP candidate”). The intuition
underlying semantic search is that the relationship among
documents can be discovered automatically by clustering on
words appearing in many documents (e.g., “GOP” frequently
appearing in documents also containing “Romney”). Such
a search index can be constructed by generating a graph
where nodes represent documents (such as tweets) and edges
represent their pairwise similarity according to some distance
measure (e.g., the number of words in common) [8], [16].
A semantic search can then be performed by using exact
text matching to locate a node of interest in this graph,
and, thereafter, using breadth-first search, random walks, or
clustering to navigate to related nodes.

Constructing the search graph nominally requires a distance
calculation (e.g., cosine similarity) between all document
pairs, and is hence quadratic in the number of documents. This
distance calculation is the primary computational bottleneck
of the application. As an example, over half a billion new
tweets are posted to Twitter daily [25], implying roughly
1017 distance calculations per day, and this rate continues to
grow. Clever pre-filtering can reduce the required number of
comparisons by an order of magnitude; nevertheless, achieving
the required throughput on conventional hardware remains
expensive. For example, based on our measured results of an
optimized C implementation of this distance calculation kernel
running on Xeon-class cores, we estimate that a cluster of over
2000 servers, each with 32 cores is required to compare one
day’s tweets within a 24-hour turnaround time.

Instead, we develop an accelerator that can be integrated
alongside a multicore processor, connected to its last-level
cache, to perform these distance calculations with extreme
energy efficiency at the bandwidth limit of the cache interface.
The accelerator performs only the distance calculation kernel;
other algorithm steps, such as tokenization, sorting, and pre-
filtering, have runtimes that grow linearly in the number
of documents and are easily completed in software. Our
design is inspired by the latency hiding concepts of multi-
threading and simple scheduling mechanisms to maximize
functional unit utilization. The accelerator comprises a window
of active threads (each corresponding to a single document
pair), a simple round-robin functional unit scheduler, and three
kinds of functional units: intersection detectors (XDs), which
identify matching tokens (words) in documents; floating point

multiply-accumulate units (MACs), which perform distance
calculations; and floating point multiply-divide units (MDIVs),
which normalize the distance measure before it is written back
to memory. We evaluate the design through a combination
of cycle-accurate simulation in the gem5 framework (perfor-
mance analysis) and RTL-level synthesis (energy analysis).
For Twitter and Wikipedia datasets, our accelerator enables
36×-42× speedup over a baseline software implementation of
the distance measurement kernel on a Xeon-like core, while
requiring 56×-58× lower energy.

II. RELATED WORK

Hardware accelerators for text processing, clustering, se-
mantic search, and database applications have been the focus
of extensive research in the architecture community. Tan
and Sherwood present a specialized, high-throughput string
matching architecture for intrusion detection and prevention
[23]. Chen and Chien investigate low-power and flexible
hardware architectures for k-means clustering [5]. Fushimi
and Kitsuregawa describe a co-processor with hardware sorters
for database applications [10], and Moscola et al. implement
reconfigurable hardware that extracts semantic information
from volumes of data in real-time [13]. Roy et al. present
an algorithm for frequent item counting that leverages SIMD
instructions [18].

Our accelerator relies on a fast set intersection detector, a
topic of much prior work. Wu and co-authors demonstrate
a GPU-based solution for set intersection detection on the
CUDA platform [26]. Schlegel et al. propose an algorithm for
sorted set intersection computation that speculatively executes
comparisons between sets using SIMD instructions available
on modern processors [20]. Ding and Konig develop linear
space data structures to represent sets such that their intersec-
tion can be computed in a worst-case efficient way and within
memory [7]. In contrast to these works, we propose custom
hardware to perform set intersection that is particularly suited
to the NLP domain.

Perera and Li have done extensive work in the area of hard-
ware support for distance measurement computation [14], [15].
Their work targets FPGAs and smaller, fixed length vectors.
Our proposed design, however, overcomes the drawbacks of
FPGAs, and targets variable vector lengths, which is important
when dealing with documents larger than a few words.

III. DESIGN

We briefly describe the overall problem of constructing
a semantic search index and then focus on the dominant
kernel, distance calculation between documents, and how our
hardware accelerates this operation.

A. Constructing a Semantic Search Index

The motivating context for our accelerator is the problem
of constructing a semantic search index over snippets of text.
We implement an algorithm based on the text similarity quan-
tification work of Erkan and Radev [8]. The full application is
described in informal psuedo-code in Figure 1. In the first
step, the textual documents are transformed into a vector

representation to reduce their memory footprint. Each word
in a document is replaced with a tuple comprising a token
id and a weight that represents the information content of the
word (based, e.g., on the word’s a priori appearance frequency
in English text). We then sort the tokens so that the set
intersection of two documents can easily be determined with
a merge join.

The similarity calculation step nominally must compare all
documents pairs, however, documents that share no word in
common have a similarity score of zero. The total number
of comparisons can be reduced by an order of magnitude by
first bucketizing documents (step 2), i.e., adding a pointer to
the document into a bucket corresponding to each token in
the document. Hence, each bucket contains only documents
sharing at least one word in common.

The similarity calculation step then processes each bucket,
calculating the similarity of each document pair via a merge
join. Our hardware design accelerates this step. Following
common practice [8], [16], we use cosine similarity (the
normalized dot product of the two weight vectors) as the
distance measure, but our hardware architecture could easily
implement other distance measures by replacing the multiply-
accumulate operation with an appropriate alternative.

Once the complete similarity matrix of all document pairs
has been calculated, the final step is to construct a graph where
nodes correspond to documents, and edges connect together
documents with similarity scores above some fixed threshold.
Then, a conventional search index, mapping search terms to
nodes for documents containing those words, is constructed.
Starting from these exact-word-match nodes, additional related
documents can be discovered through traversal of the graph
(e.g., via random walk).

Whereas GPUs are often used for problems that exhibit
large-scale parallelism, they are not well-suited to calculating
distance measures using the method described in Figure 1.
Because input documents vary in length, the merge-join set
intersection operation does not lend itself to SIMT parallelism,
since loop bounds for each document-pair depend on docu-
ment length. It is unclear how to stage the input data to avoid
substantial thread divergence and many idle GPU threads. It is
also unclear how to lay out data in memory to enable coalesced
accesses, which are crucial to high GPU performance.

B. Accelerator Architecture
Our accelerator implements step three of Figure 1 entirely in

hardware. Figure 2 shows a block diagram of our accelerator.
The accelerator is connected to the L2 bus and reads from the
system’s L2 cache. Since the accelerator never reads its own
output, it writes memory, via the L2 bus, with non-cacheable
transactions that bypass L2. The CPU controls the accelerator
by preparing a region of memory with an array of document-
pair descriptors. Each descriptor contains the address of the
vector representing each document and a destination address
for the similarity calculation result. The accelerator is activated
through programmed I/Os that provide the start address and
length of the descriptor array. The CPU can then sleep until
an interprocessor interrupt from the accelerator is delivered to
indicate completion.

[Step 1: Build vocabulary, tokenize, and sort]
1. For all documents:
2. Split into sub-strings at whitespace and punctuation
3. Replace each sub-string with {token id, IDF weight}; add new tokens as needed
4. Sort tokens in ascending order; replace duplicates with count
5. Write out documents as sorted vectors of { token, weight = count * IDF }

[Step 2: Pre-filter and bucketize]
1. For all documents:
2. For all tokens in document:
3. Insert pointer to document into a bucket corresponding to the token

[Step 3: Similarity calculation]
1. For all buckets:
2. For all document pairs {d1, d2} in bucket:
3. while d1 or d2 has more tokens:
4. if d1.token == d2.token: //XD
5. numerator = numerator + d1.weight * d2.weight //MAC
6. pop front token from d1 and d2
7. else:
8. pop front token with lower token id
9. similarity[d1,d2] = numerator / (||d1|| * ||d2||) //MDIV

[Step 4: Build similarity graph]
1. Construct graph with node for each document and edges connecting documents with similarity > threshold
2. Traverse graph (e.g., via random walk) to discover related documents and build index

Fig. 1: High-level description of semantic search index construction

Requests to L2 Data from L2

Writes to
Memory

Distance
Measurement

Unit

Distance
Measurement

Unit

Distance
Measurement

Unit

Distance
Measurement

Unit
Intersection

Detector (XD)

Distance
Measurement

Unit

Distance
Measurement

Unit

Multiply-
Accumulate
Unit (MAC)

Distance
Measurement

Unit

Distance
Measurement

Unit

Distance
Measurement

Unit

Multiply-
Divide Unit

(MDIV)

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

Document1: Cacheline Buffer

Document1: Cacheline Buffer

Document1:
Next Fetch Addr

Document1:
Remaining

Scan

Numerator
Thread

1 Thread State

Thread
2 Thread State

Thread
3 Thread State

Thread
N Thread State

Thread
Controller

&
Scheduler

1

2

3 4 5

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

[Token,
Weight]

Document2: Cacheline Buffer

Document2: Cacheline Buffer

Document2:
Remaining

Document2:
Next Fetch Addr

Scan

Dest Addr Ready? Done?

Fig. 2: Accelerator block diagram.

The accelerator is architected much like an in-order core
and has six major architectural blocks: a memory read in-
terface, a thread controller/scheduler, intersection detectors
(XDs), multiply-accumulate units (MACs), multiply-divide
units (MDIVs), and finally, a memory write interface. As most
NLP algorithms represent concepts like document similarity
with floating-point values, we use floating-point functional
units. We describe the operation of the accelerator by walking
through a simple example. Numerical labels in Figure 2
correspond to the steps described below.

(1) Fill thread window. The thread controller maintains
a window of active threads (each thread corresponding to a
document pair specified in a descriptor), and schedules threads
to functional units using a simple round-robin scheduler.
Each thread window entry comprises thread status informa-
tion (addresses for the next data fetches, destination address,
remaining indices to be scanned, partial sum) and several
cacheline-sized data blocks for each input document. If any
thread window entry is empty, the controller fills it with the
next descriptor in the input array. The controller then iterates

over all active threads and issues requests to L2 to fill all avail-
able buffer space for each document. While our simulations
ignore virtual memory, in a practical implementation, virtual
addresses must be translated by either a dedicated TLB or by
the TLB of a core neighboring the accelerator.

(2) Token data arrives. Once document data arrive for
a particular thread, processing can begin. Each document is
represented as an array of {token, weight} tuples. Each cycle,
a ready thread arbitrates for an XD unit which will compare
the next two tokens sent to it.

(3) XD comparison. The operation of the XD units is
conceptually similar to a sort-merge join. In a particular cycle,
the XD unit compares the token ids of the next tokens from
each document. Recall that tokens in each document have
been sorted. Hence, if the token ids do not match, the head
pointer for the document with the smaller token is advanced
and updated tokens are compared again in the next cycle. If
the tokens match, the thread is marked and will arbitrate for
a MAC unit in the next cycle.

(4) MAC calculation. When an XD unit reports a match,
the MAC unit performs the floating-point multiply-accumulate

Parameter Range
Number of XDs 1-32

Number of MACs 1-32
Number of MDIVs 1-32

Thread Window Size 1-64
XD Delay 1 cycle

MAC Delay 3 cycles
MDIV Delay 7 cycles

TABLE I: Simulation Parameters.

Statistic Twitter Wikipedia
Number of documents in dataset 10,000,000 100,000

Number of documents in bucket of interest 2,500,000 15,000
Average document length (tokens) 9.3 511.5

Minimum document length (tokens) 2 24
Maximum document length (tokens) 39 4,107

Average number of intersections 1.01 200.9

TABLE II: Statistics for Twitter and Wikipedia Datasets

Unit Area (µm2) Delay (ns) Power (mW)
XD 1,143 0.5 0.5

MAC 14,232 1.5 4.93
MDIV 18,216 3.5 3.95

Controller+Thread Window 293,878 0.5 69.4

TABLE III: Synthesis Results.

to calculate an updated numerator for the document similarity
computation. The input weight values from the two documents
are multiplied and summed with the current numerator, and the
result is stored back into the active thread entry.

(5) Normalization. When the end of either input docu-
ment is reached, the merge-join set-intersection operation is
complete. The thread then arbitrates for an MDIV unit to
normalize the accumulated numerator by the product of the
magnitudes of the input documents, and then arbitrates for the
store interface unit to write its output value to the destination
address in memory. The thread window entry is then freed.

IV. METHODOLOGY

We use a two-pronged approach to evaluate our design
relative to an optimized software baseline. We measure per-
formance of both the pure software implementation and
hardware-accelerated kernel using the gem5 architectural sim-
ulator [2]. To investigate energy savings and area overheads,
we implement our design in Verilog and synthesize using
industrial 45nm standard cells.

A. Simulation

To compare the performance of our accelerator to a CPU
baseline, we extend the gem5 simulator with a device model
for our accelerator. The accelerator connects to the L2 in-
terface. It can read and write 64-byte cache blocks from L2
and is controlled via programmed I/O to special memory
locations. We vary the hardware parameters of our design
(number of threads, XDs, MACs, and MDIVs) to determine
the minimum hardware needed to saturate L2 and/or main
memory bandwidth, which ultimately limits the performance
of the accelerator. Table I shows the various parameters of the
design space we explore. We determine functional unit delays
from synthesized timing results targeting a 2 GHz clock.

We contrast our hardware design with a SSE-accelerated C
implementation of the cosine similarity kernel compiled with
gcc -O3. We model a 4-wide out-of-order processor running
at 2 GHz with 64kB L1 caches and an 8MB L2. As operating
system interactions and I/O do not contribute significantly to
the runtime of this workload, we use gem5’s syscall emulation
mode. Note that this simulation mode does not model virtual
memory; nevertheless, because of the high data locality, TLB
misses are unlikely to significantly affect the runtime of the
baseline or hardware-accelerated execution. We validate that
the CPU runtimes reported by gem5 are, on average, within
6% of the runtimes observed on a comparable 8-core Xeon-
class server. For consistent energy comparisons between the
CPU baseline and our hardware design, we report the gem5
results.

We construct benchmarks for Twitter and Wikipedia from
databases of 10 million tweets and 100,000 articles respec-
tively. Table II shows various statistics for the datasets we
use. The software pre-processing steps of the semantic index
construction algorithm (tokenization, sorting, and bucketizing)
are performed offline in advance; our measurements focus only
on the dominant distance calculation step. From the Twitter
database, we select the most frequently occurring token (cor-
responding to the string “RT”) and construct a bucket of all
tweets containing this token (2.5 million entries, requiring 6.25
trillion distance calculations). As it is impossible to process
this vast dataset in simulation, we simulate only the first 5
million tweet-pair comparisons and use the first 1 million
tweet-pairs for warm-up. We follow a similar bucketization
process for the Wikipedia data, and simulate 50,000 article-
pair comparisons with the first 2000 pairs used for warm-up.

When processing the entire data set, the document-pair
comparisons are blocked to maximize L2 locality. Thus, the
computation will alternate between one phase where a large
fraction of document accesses miss to main memory and a
much longer phase where a block of documents is resident
in L2 and there are no main memory accesses. The relative
time spent in each phase depends on the relative size of the
document bucket and the L2 cache. To ensure that our accel-
erator design hides latency and saturates available L2/memory
bandwidth in both phases, we construct two test cases: Fit,
wherein all documents are L2-resident, and Spill, wherein the
L2 is empty and documents must be retrieved from memory.
We report speedup of the accelerator relative to the CPU
baseline for both phases. To avoid L2 cache pollution, and
since the accelerator never reads its own output, outputs are
written directly to main memory using uncacheable writes.

B. Timing, Power, and Area Analysis

We implement the accelerator in Verilog and synthesize
using an industrial 45nm standard cell library to obtain delay,
area, and power results assuming a 0.72V supply voltage.
Table III shows the post-synthesis delays and areas for each
of the sub-units of the accelerator (the thread window size
is 6, the configuration we use in our final design). We use
these synthesized delay results to set functional unit latencies
within the gem5 model. Our floating-point multiply, multiply-

1 2 3 4 5 6 7 8
Number of Processing Units

0

5

10

15

20

25

30

35

40

45
Sp

ee
du

p-
-N

or
m

al
iz

ed
 t

o
1-

Co
re

 (
Sp

ill
)

Twitter (Fit)
Twitter (Spill)
Wikipedia (Fit)
Wikipedia (Spill)

Fig. 3: Speedup. Normalized to 1-core CPU (Spill) case.

accumulate, and divide units are from the Synopsys Design-
Ware IP suite [22]. The delays reported in the table are rounded
up to the next 0.5ns clock edge. We use system configuration
and functional unit activity results from gem5 to generate
estimates of CPU core and cache power using McPAT [12].

V. RESULTS

The following subsections outline the performance and
energy improvements afforded by our design.

A. Performance

We first contrast the performance and performance scalabil-
ity of the accelerator relative to the baseline cosine similarity
software kernel running on conventional out-of-order CPU
cores. Figure 3 shows the speedup provided by the accelerator
for the Twitter and Wikipedia datasets for both the Fit and
Spill scenarios normalized to each single-core Spill CPU
baseline. On the horizontal axis, we vary the amount of
hardware dedicated to the accelerator. To simplify presentation
of the results, in this experiment, we vary the number of XD,
MAC, MDIV units together, from 1 to 8. Each configuration
has double the number of thread slots as XD units. These
configurations all overprovision MAC and MDIV units relative
to XD units; we further optimize the functional unit mix in
subsequent experiments.

Through a combination of simulation, and experiments
on a Xeon-class server, we verify that the baseline CPU
performance scales roughly linearly with the number of CPU
cores, up to about an 8.5× speedup with 8 cores for the Twitter
(Fit) scenario over the single-core Twitter (Spill) case. CPU
performance is limited because of the overheads of instruction
execution (memory addressing, loop flow control, etc.).

The accelerator enables substantial speedups. Even with
only one of each functional unit, the accelerator can achieve
speedups of 8× and 14× in the Twitter (Spill) and Wikipedia
(Spill) scenarios respectively. In general, three XD units are
required to achieve peak speedup. The accelerator improves
performance because it eliminates all software overheads; e.g.,
in the Twitter (Fit) case, each XD unit can process a tweet-pair
roughly every 24 clock cycles, while a CPU core on average
requires 353 cycles to execute 469 instructions per tweet-pair.

1 2 3 4 5 6 7 8
Number of Processing Units

0

20

40

60

80

100

Pe
rc

en
t

L2
 B

us
 U

ti
liz

at
io

n

Twitter (Fit)
Twitter (Spill)
Wikipedia (Fit)
Wikipedia (Spill)

(a) Percent Accelerator-L2 Bus Utilization

1 2 3 4 5 6 7 8
Number of Processing Units

0

20

40

60

80

100

Pe
rc

en
t

M
em

or
y

Bu
s

U
ti

liz
at

io
n

Twitter (Fit)
Twitter (Spill)
Wikipedia (Fit)
Wikipedia (Spill)

(b) Percent L2-Memory Bus Utilization

Fig. 4: L2 and Memory Bus Utilization. (a) L2 bus satu-
rates for both Spill scenarios and the Twitter (Spill) case. (b)
Memory bus is a bottleneck for the Spill configurations.

Performance generally saturates beyond three XDs since the
accelerator fully utilizes either the L2 bus for Twitter (Fit
and Spill) and Wikipedia (Fit) scenarios, or main memory
bandwidth for both Spill scenarios. We show the relevant bus
utilization results in Figure 4. Twitter (Spill) is L2- or memory-
bandwidth bound depending on the number of processing
units deployed; this configuration also demonstrates decreased
performance with more than three processing units due to
destructive interference effects. Wikipedia (Fit) shows little
memory traffic since the number of writes to memory is
negligible, and all reads are serviced by the L2. As a point of
comparison, for the CPU case, even with 8 cores, the L2 and
memory bus utilizations peak at 8.5% for Wikipedia (Fit) and
at 19% for Twitter (Spill) respectively.

We find that the pareto-optimal design, when considering
performance, energy, and area in conjunction, consists of
three XD units, two MAC units, one MDIV unit, and six
thread slots. The Wikipedia dataset tends to favor slightly
more functional units compared to the Twitter dataset due to
its larger document size. Further, larger thread windows are
favored in the Spill scenarios since they must maintain more
outstanding accesses to the memory system to hide the long
delay to access main memory.

Accelerator Configuration
[XDs, MACs, MDIVs] [3, 2, 1]

Issue Window 6
Area

Core 24.88 mm2

Accelerator 0.31 mm2

Power
Core 6 W

Uncore 14.8 W
Accelerator 0.43 W

Fit Energy & Performance – CPU 1-core Baseline
Twitter Wikipedia

Core Energy/Document-Pair 1.18 µJ 96.5 µJ
Chip Energy/Document-Pair 4.09 µJ 339.4 µJ

Fit Energy & Performance – Accelerator
Twitter Wikipedia

Accelerator Energy/Document-Pair 2.12 nJ 170.9 nJ
Chip Energy/Document-Pair 72.7 nJ 5.8 µJ

Chip Energy Ratio (Core:Accelerator) 56.3:1 58.5:1

TABLE IV: Power & Area Results.

B. Area and Energy

Table IV shows the area overhead and energy savings
when using our accelerator in the [3 XD, 2 MAC, 1 MDIV]
configuration with a thread window size of six. Note that,
we assume that the accelerator is power-gated when cores are
active and vice-versa. The accelerator only imposes an area
overhead of 0.31 mm2, less than 1.3% of the area of a core.
Because of its simple microarchitecture and lack of instruction
fetch/decode bottlenecks, the accelerator’s power requirements
are much lower than that of a core. The power savings translate
to an even larger energy-efficiency gain, since the accelerator
can also process document-pairs much faster (and hence incur
less leakage overhead per processed document-pair). Overall,
the accelerator improves energy efficiency by approximately
two orders of magnitude relative to the CPU baseline.

VI. CONCLUSION

The conventional approach of using scale-out methods to
automatically analyze vast text collections incurs high energy
and hardware costs since the central compute-intensive step
of similarity measurement often entails pair-wise, all-to-all
comparisons. We propose a custom hardware accelerator for
similarity measures that leverages data streaming and parallel
computation, and, due to its low-power requirements, utilizes
dark silicon areas of the chip that would otherwise have to be
powered down. Architectural simulations and RTL synthesis
demonstrate throughput gains of up to 42× and 58× lower
energy consumption compared to an optimized software im-
plementation of cosine similarity calculation, while incurring
minimal area overheads.

ACKNOWLEDGMENTS

This work was partially supported by NSF CCF-0815457.

REFERENCES

[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs Similarity
Search. In Proceedings of the 16th International Conference on World
Wide Web, WWW ’07, pages 131–140, 2007.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 Simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[3] S. Borkar and A. A. Chien. The Future of Microprocessors. Commun.
ACM, 54(5):67–77, May 2011.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
Clustering of the Web. Comput. Netw. ISDN Syst., 29(8-13), 1997.

[5] T.-W. Chen and S.-Y. Chien. Flexible Hardware Architecture of
Hierarchical K-Means Clustering for Large Cluster Number. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 19(8), 2011.

[6] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding Replicated Web
Collections. SIGMOD Rec., 29(2):355–366, May 2000.

[7] B. Ding and A. C. König. Fast set intersection in memory. Proc. VLDB
Endow., 4(4):255–266, Jan. 2011.

[8] G. Erkan and D. R. Radev. LexRank: Graph-Based Lexical Centrality
as Salience in Text Summarization. J. Artif. Int. Res., 22(1), Dec. 2004.

[9] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and
D. Burger. Dark Silicon and the End of Multicore Scaling. In Computer
Architecture (ISCA), 2011 38th Annual Intl. Symposium on, 2011.

[10] S. Fushimi and M. Kitsuregawa. GREO: A Commercial Database
Processor Based on a Pipelined Hardware Sorter. In Proceedings of
the 1993 ACM SIGMOD international conference on Management of
data, SIGMOD ’93, pages 449–452, 1993.

[11] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop
Clusters. SIGOPS Operating Systems Review, 44(1), 2010.

[12] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi.
McPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, 2009.

[13] J. Moscola, Y. Cho, and J. Lockwood. Hardware-Accelerated Parser
for Extraction of Metadata in Semantic Network Content. In Aerospace
Conference, 2007 IEEE, pages 1–8, March 2007.

[14] D. Perera and K. F. Li. On-Chip Hardware Support for Similarity
Measures. In Communications, Computers and Signal Processing, 2007.
PacRim 2007. IEEE Pacific Rim Conference on, pages 354–358, 2007.

[15] D. Perera and K. F. Li. Hardware Acceleration for Similarity Com-
putations of Feature Vectors. Electrical and Computer Engineering,
Canadian Journal of, 33(1):21–30, 2008.

[16] V. Qazvinian and D. R. Radev. Scientific Paper Summarization Using
Citation Summary Networks. In Proceedings of the 22nd International
Conference on Computational Linguistics, COLING ’08, 2008.

[17] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe,
T. Wenisch, and M. Martin. Computational Sprinting. In High Perfor-
mance Computer Architecture (HPCA), 2012 IEEE 18th International
Symposium on, pages 1–12, 2012.

[18] P. Roy, J. Teubner, and G. Alonso. Efficient Frequent Item Counting
in Multi-Core Hardware. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge discovery and data mining,
KDD ’12, pages 1451–1459, 2012.

[19] M. Sahami and T. D. Heilman. A Web-Based Kernel Function for
Measuring the Similarity of Short Text Snippets. In Proceedings of the
15th International conference on World Wide Web, WWW ’06, 2006.

[20] B. Schlegel, T. Willhalm, and W. Lehner. Fast Sorted-Set Intersection
using SIMD Instructions. ADMS Workshop 2011, 2011.

[21] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating Similarity
Measures: A Large-Scale Study in the Orkut Social Network. In
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, KDD ’05, pages 678–684, 2005.

[22] Synopsys. DesignWare Building Blocks. Synopsys Inc., 2011.
[23] L. Tan and T. Sherwood. A High Throughput String Matching Architec-

ture for Intrusion Detection and Prevention. In Computer Architecture,
2005. ISCA ’05. Proceedings. 32nd International Symposium on, 2005.

[24] M. Taylor. Is Dark Silicon Useful? Harnessing the Four Horsemen of
the Coming Dark Silicon Apocalypse. In Design Automation Conference
(DAC), 2012 49th ACM/EDAC/IEEE, pages 1131–1136, 2012.

[25] D. Terdiman. CNET: Twitter hits half a billion tweets a day.
http://news.cnet.com/8301-1023 3-57541566-93/report-twitter-hits-half-
a-billion-tweets-a-day/.

[26] D. Wu, F. Zhang, N. Ao, F. Wang, J. Liu, and G. Wang. A Batched
GPU Algorithm for Set Intersection. In Pervasive Systems, Algorithms,
and Networks (ISPAN), 2009 10th International Symposium on, 2009.

