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ABSTRACT
Current simulation-sampling techniques construct accurate model
state for each measurement by continuously warming large microar-
chitectural structures (e.g., caches and the branch predictor) while
functionally simulating the billions of instructions between measure-
ments. This approach, called functional warming, is the main perfor-
mance bottleneck of simulation sampling and requires hours of
runtime while the detailed simulation of the sample requires only
minutes. Existing simulators can avoid functional simulation by
jumping directly to particular instruction stream locations with
architectural state checkpoints. To replace functional warming, these
checkpoints must additionally provide microarchitectural model state
that is accurate and reusable across experiments while meeting tight
storage constraints.

In this paper, we present a simulation-sampling framework that
replaces functional warming with live-points without sacrificing
accuracy. A live-point stores the bare minimum of functionally-
warmed state for accurate simulation of a limited execution window
while placing minimal restrictions on microarchitectural configura-
tion. Live-points can be processed in random rather than program
order, allowing simulation results and their statistical confidence to
be reported while simulations are in progress. Our framework
matches the accuracy of prior simulation-sampling techniques (i.e.,
±3% error with 99.7% confidence), while estimating the performance
of an 8-way out-of-order superscalar processor running
SPEC CPU2000 in 91 seconds per benchmark, on average, using a
12 GB live-point library.

1. INTRODUCTION
Computer architecture research routinely employs detailed cycle-
accurate simulation to explore and validate microarchitectural inno-
vations. Ideally, simulation studies should use the same benchmarks
used to assess real hardware. Unfortunately, benchmark applications
that are tuned to run for minutes on real hardware can require over a
month to execute on today’s high performance microarchitecture
simulators [2,11,26,30].

Past research advocates sampling [5,9,19,20,32,37,38]—that is,
measuring only a subset of benchmark execution—as a technique to
accelerate microarchitecture simulation. Many such studies advocate
uniform sampling using rigorous statistical theory [5,9,20,37] to
provide explicit validation that the measured portions accurately
represent the behavior of a benchmark.

A recent study of prevailing simulation-sampling approaches by Yi et
al. [38] concluded that the SMARTS simulation-sampling approach
[37] provides the highest estimation accuracy. The SMARTS design
minimizes instructions simulated by measuring a large number (e.g.,
10,000) of brief (e.g., 1000-instruction) simulation windows.

SMARTS avoids measurement error from cold state by continuously
warming large microarchitectural structures (e.g., caches and the
branch predictor) while functionally simulating the billions of
instructions between measurements, a warming strategy referred to
as functional warming.

Although functional warming enables accurate performance estima-
tion, it limits SMARTS’s speed, occupying more than 99% of simula-
tion runtime. Functional warming dominates simulation time because
the entire benchmark’s execution must be functionally simulated,
even though only a tiny fraction of the execution is simulated using
detailed microarchitecture timing models.

The second shortcoming of SMARTS is that functional warming
requires simulation time proportional to benchmark length rather
than sample size. As a result, the overall runtime of a SMARTS exper-
iment remains constant even when the measured sample size is
reduced by relaxing an experiment’s statistical confidence require-
ments or through recently-proposed sampling optimizations such as
matched-pair comparison [9] and stratified sampling [36]. Moreover,
functional warming time will increase with the advent new bench-
mark suites, such as SPEC CPU2006, that lengthen benchmarks to
scale with hardware performance improvement [33]. Optimizations
that accelerate functional warming, such as direct execution [4], do
not improve SMARTS’s scaling behavior.

In this paper, we propose live-points as a replacement for functional
warming to provide reduced simulation turnaround time, propor-
tional to sample size, without sacrificing accuracy. A live-point stores
the necessary data to reconstruct warm state for a simulation
sampling execution window. Although modern computer architecture
simulators frequently provide checkpoint creation and loading capa-
bilities [2,23], current checkpoint implementations: (1) do not
provide complete microarchitectural model state, and (2) cannot
scale to the required checkpoint library size (~10,000 checkpoints per
benchmark) because of multi-terabyte storage requirements.

We address the first limitation of conventional checkpoints by storing
selected microarchitectural state in live-points, an approach we call
checkpointed warming. The key challenge of checkpointed warming
lies in storing microarchitectural state such that live-points can still
simulate the range of microarchitectural configurations of interest.
Fortunately, previous studies have shown that, with the exception of
the branch predictor and memory hierarchy, the vast majority of
microarchitectural state can be reconstructed dynamically with
minimal simulation (a few thousand instructions), and thus need not
be stored [37]. For the exceptional structures, researchers can often
place limits on the configurations of interest (e.g., through trace-
based studies). We design checkpointed warming to reproduce these
structures under user-specified limits.

We reduce the size of conventional checkpoints by three orders of
magnitude through storing in live-points only the subset of state



necessary for limited execution windows, an approach we call live-
state. Live-state exploits the brevity of simulation sampling execu-
tion windows (thousands of instructions) to omit the vast majority of
state. The minimal state subset can be known a priori only for the
commit instruction stream, and is not known for wrong-path (specu-
lative) instructions. However, whereas wrong-path instruction
latency affects scheduling through pipeline resource contention,
wrong-path operand values rarely affect instruction throughput. We
exploit this observation by storing only the state required for correct
path execution and approximate wrong-path scheduling.

We present results from a live-point-enabled simulator derived from
SimpleScalar 3.0 sim-outorder [2] simulating the execution of
the SPEC CPU2000 (SPEC2K) benchmarks on two microarchitec-
tural configurations to show:

• Accelerated simulation with practical storage. Live-point
simulation sampling is over 250 times faster than existing simu-
lation sampling approaches (on average 91 seconds per bench-
mark) for an 8-way out-of-order superscalar while maintaining
the estimated CPI error at ±3% with 99.7% confidence. Although
functional warming produces an aggregate of 36 TB of state
while sampling SPEC2K, a gzip-compressed SPEC2K live-point
library supporting 1 MB caches requires just 12 GB of storage.

• Parallel simulation and online results. We construct indepen-
dent live-points that can be processed in parallel and in an arbi-
trary order. By randomizing the processing order, we can report
unbiased results and their statistical confidence continuously
during simulation. As more live-points are processed, results
converge toward their final values and confidence improves. In
contrast, simulators that use functional warming cannot report
results until simulation is complete and require strict program-
order simulation to allow for unbiased sampling, preventing
parallel simulation.

• Reusable live-point libraries. We ensure reusability of a fixed-
size live-point library across comparative performance studies
that have unpredictable sample size requirements using matched-
pair sample comparison. Individual live-points can simulate a
wide range of microarchitectural configurations using our check-
pointed warming approach. Our live-points constrain only the
configuration of the branch predictor (to a user-selected set of
alternatives) and the cache/TLB hierarchy (through user-selected
upper bounds on size and associativity). Our results demonstrate
that checkpointed warming is more accurate (1.6% worst-case
CPI bias) than currently-known checkpoint-based alternatives
that do not constrain microarchitectural configuration (5.4%
worst-case CPI bias).

This paper is organized as follows. Section 2 presents background on
functional warming. We present our methodology in Section 3. In
Section 4, we compare checkpointed warming to alternative warming
methods in terms of accuracy, flexibility, and speed. We describe
live-state, our storage approach for live-points, in Section 5, and
present the live-point experiment framework in Section 6. Section 7

presents performance results and analysis. Related work is described
in Section 8. We conclude in Section 9.

2. BACKGROUND
Simulation sampling derives estimates of performance (CPI, power,
etc.) of benchmark applications on a simulated microarchitecture
from measurements of a sample of the benchmark’s dynamic instruc-
tion stream. By choosing the measured sample according to estab-
lished statistical sampling methods [16], simulation sampling can
rely on statistical measures of confidence to validate that estimated
results represent the behavior of the full benchmark.

Although statistics provides us with probabilistic guarantees that esti-
mated results are representative, these guarantees do not assure us
that estimated results are error-free. Errors introduced into the indi-
vidual measurements that make up a sample (e.g., by the measure-
ment methodology) are referred to as bias, and are not accounted for
by statistical confidence calculations. In simulation sampling, the
most common cause of bias is the cold-start effect of unwarmed
microarchitectural structures. For example, assuming empty caches
may result in incorrectly low performance estimates.

The primary challenge in simulation sampling is to devise a strategy
to construct accurate initial state rapidly. For each measurement, the
simulator must construct both architectural state (e.g., register and
memory values) and microarchitectural state (e.g., pipeline compo-
nents and the cache hierarchy) to avoid cold-start bias. A recent
survey of simulation sampling approaches [38] concluded that the
SMARTS simulation sampling approach [37] provides the highest esti-
mation accuracy.

SMARTS uses a two-tiered strategy to construct every measurement’s
initial state as depicted in Figure 1. Prior to each measurement,
microarchitectural structures for which current state reflects the
history of a small, bounded set of recent instructions—such as the
reorder buffer or issue queue—are warmed through detailed warm-
ing: brief simulation (e.g., a few thousand instructions) of the
complete detailed performance model sufficient to warm such small
structures. We refer to adjacent detailed warming and measurement
intervals as a detailed window.

The second component of the SMARTS warming strategy, functional
warming, addresses state updates between two detailed windows.
Like other simulation sampling frameworks [19,22,32,35], SMARTS
functionally simulates each instruction to update architectural state.
To minimize and bound detailed warming requirements, SMARTS
continuously updates structures with microarchitectural state that
persists across detailed windows—caches, TLBs, and branch predic-
tors. These structures cannot be warmed sufficiently by a brief
detailed warming period.

Unfortunately, as proposed, functional warming is a performance
bottleneck in simulation sampling [12,37]. Given typical cycle-accu-
rate simulation models (e.g., SimpleScalar sim-outorder [2]),
the performance measurement of a wide-issue out-of-order supersca-

SMARTS warming strategy …
Functional warming
(~50x faster than detailed sim.)

Measurement
(~1000 instructions of detailed simulation)

Detailed warming (~2000 instructions of detailed simulation)
Detailed
window

Figure 1. SMARTS two-tier warming strategy. Functional warming dominates runtime because it must cover billions of instructions.



lar processor using the SMARTS strategy requires little detailed simu-
lation: typically about a minute on a modern host machine. A
SMARTS-based simulator’s total runtime, however, is orders of
magnitude longer because the functional warming between detailed
windows dominates runtime.

Unlike functional warming, live-point simulation time is directly
proportional to sample size. Sample size depends only on a proces-
sor’s performance variability across a benchmark’s execution, and
the desired statistical confidence [22,37].

3. METHODOLOGY
We evaluate live-points in a sampling simulator based on the
SimpleScalar 3.0 sim-outorder simulator [2] for the Alpha ISA.
We modify sim-outorder’s memory subsystem to include a store
buffer and miss status holding registers (MSHRs), and model inter-
connect bottlenecks in the memory hierarchy. We encode live-points
using ASN.1 DER format [15] and gzip compression, which incur
minimal storage and processing time overhead. We use all 26
SPEC2K benchmarks [13] and evaluate all reference inputs except
vpr-place and three perlbmk inputs, as these inputs fail to simulate
correctly in sim-outorder. Overall, we include 41 benchmark/
input set combinations in this study.

Without loss of generality, we use CPI (cycles-per-instruction) as our
target metric for estimation. Simulation sampling, however, has been
shown to be applicable to other performance metrics of choice [37,
38]. We measure CPI bias by averaging actual error (relative to full
sim-outorder simulations) over five different samples, according
to the methodology described in [37].

We evaluate live-points with two microarchitectural configurations.
Our baseline 8-way out-of-order superscalar model represents a
processor in the current technology generation. The 16-way out-of-
order superscalar configuration is included to reflect an aggressive
future design point. This configuration has a wider datapath, larger
out-of-order window, and larger caches, to exercise the effects of
enlarged microarchitectural state. The details of the 8-way and 16-
way configurations are summarized in Table 1.

We use the sampling approach from [37], periodic 1000-instruction
measurement intervals, to identify measurement locations for all
experiments. This sample design has been demonstrated to minimize
the total number of instructions in detailed windows, and thus,
detailed simulation time. However, live-points can also be applied to
other sample designs (e.g., random sampling). We choose sample
size to achieve precisely 99.7% confidence of ±3% error for each
result.

We report simulation runtimes for systems with 2.80 GHz Intel Xeon
(512 KB L2) processors.

4. WHY CHECKPOINTED WARMING?
Functional warming repeats architectural state updates across differ-
ent simulations of the same benchmark. (Simulating workloads for
which architectural state varies across repeated runs—i.e., because of
interrupt timing or different interleaving of multiprocessor instruc-
tion streams—is beyond the scope of this work.) Frequently, microar-
chitectural state updates are also identical across runs. Checkpoints
can memoize the redundant calculation across runs, amortizing the
one-time cost of computing warmed state. We are interested in

finding the best way to take advantage of checkpoints to accelerate
warming.

Although some microarchitecture studies have suggested or used
checkpoints to accelerate simulation [1,9,10,28], none have explored
the space of microarchitecture warming solutions in the context of
checkpointing. For each portion of model state generated by func-
tional warming, we may choose either to construct the state dynami-
cally, or store it in checkpoints. This choice impacts simulation
sampling along three dimensions: the accuracy of the warmed state,
the reusability of checkpoints across microarchitectural configura-
tions, and the speed of simulation. In this section, we explore the
warming method design space with respect to these three dimensions
and justify our choice of checkpointed warming to implement live-
points.

4.1 Simulation sampling warming methods
There is a rich design space of possible warming strategies that
combine checkpoints and dynamic warming for various portions of
architectural and microarchitectural model state. We restrict our
exploration to strategies that use detailed warming to initialize queue
and pipeline state. Detailed warming can reconstruct state for the vast
majority of microarchitectural structures rapidly, and the amount of
required warming can be determined via worst-case analysis [37]. By
warming most structures dynamically, we avoid storing any state for
these structures, and do not constrain model parameters that affect
this state.

Evaluation criteria. We focus our design exploration on warming
alternatives for long-history structures, such as caches and branch
predictors, for which detailed warming is prohibitively slow. We
evaluate alternatives based on their accuracy, checkpoint reusability,
and speed.

With respect to accuracy, we consider only the bias introduced by the
warming strategy. SMARTS demonstrated low bias—0.6% on aver-
age, 1.6% worst case [37]—using functional warming. It is essential

Table 1. Microarchitectural configurations.

Parameter 8-way (baseline) 16-way

RUU/LSQ size 128/64 256/128
Memory system 32KB 2-way L1I/D

2 ports, 8 MSHRs
1MB 4-way L2

16-entry store buffer

64KB 2-way L1I/D
4 ports, 16 MSHRs

4MB 8-way L2
32-entry store buffer

L1/L2 line size 32/128 bytes 32/128 bytes 
L1/L2/mem latency 1/12/100 cycles 2/16/100 cycles 

ITLB/DTLB 4-way 128 entries/
4-way 256 entries

200 cycle miss

4-way 128 entries/
4-way 256 entries

200 cycle miss
Functional units 4 I-ALU

2 I-MUL/DIV
2 FP-ALU

1 FP-MUL/DIV

16 I-ALU
8 I-MUL/DIV

8 FP-ALU
4 FP-MUL/DIV

Branch predictor Combined 2K tables
7 cycle mispred.

1 prediction/cycle

Combined 8K tables
10 cycle mispred.

2 predictions/cycle
Detailed warming 2000 instructions 4000 instructions



to maintain this high accuracy when accelerating warming because
we cannot detect bias through statistical confidence calculations.

We evaluate the reusability of a warming methodology in terms of
the restrictions it places on simulator configuration. When we store
the warmed state of microarchitectural structures in a checkpoint, we
may be forced to limit some of the configuration parameters for that
structure.

Finally, we evaluate the speed of warming alternatives in two ways.
First, we consider how fast measurements can be processed. For all
alternatives, time to simulate the detailed window is the same, while
functional warming and checkpoint decompression/loading time
varies. Second, we consider whether detailed windows are indepen-
dent, or must be simulated in program order. Independent windows
can be simulated in parallel, and enable online reporting of measure-
ment results.

Warming methods. Figure 2 depicts alternatives in the warming
strategy design space. At one extreme, functional warming is used for
the entire duration between measurements, without checkpoints (as
in SMARTS). We refer to this method as full warming. The opposite
extreme, checkpointed warming, eliminates all functional warming
and stores long-history state in checkpoints. This approach requires
limiting some design parameters of the checkpointed structures.

Functionally-warming microarchitectural state for the entire duration
between measurements is usually not necessary. In adaptive warm-
ing, we store architectural state in checkpoints, and reconstruct long-
history state with a reduced functional warming period. Adaptive
warming requires a mechanism to determine precisely how little
functional warming each detailed window requires.

Trade-offs. Figure 3 illustrates the relationship between each
warming alternative and our three evaluation criteria. Each alterna-
tive optimizes for two of the design criteria (the two depicted nearest
it), at the expense of the third.

Full warming maximizes accuracy and flexibility, but its need for
long periods of functional warming makes it slow, and its turnaround
time scales with benchmark length. As full warming requires no
checkpoints, no configuration parameters are fixed.

Adaptive warming maintains the reusability of full warming and
improves speed, but we show that it sacrifices accuracy. The accu-
racy and speed of adaptive warming depend on a rigorous determina-
tion of the minimal functional warming period for each detailed
window. Unfortunately, determining the correct amount of warming
remains a difficult and unsolved problem [18].

Checkpointed warming matches the accuracy of full warming and
maximizes speed, at the expense of checkpoint reusability. Check-
pointed warming achieves this accuracy because it uses full warming
simulation to generate the checkpointed state.

Because checkpointed warming spends no time performing func-
tional warming, it is the fastest alternative. The drawback of check-
pointed warming is that it imposes limits on some aspects of the
simulated microarchitectural parameters (e.g., the maximum size or
associativity of a cache), which constrains checkpoint reusability.
Reusability is important because we must amortize the one-time cost
of checkpoint creation (roughly the cost of a full-warming simula-
tion) over a series of experiments.

Each of the three warming approaches suffers from a different key
weakness. The speed of full warming has been quantified in [37]. We
evaluate the accuracy of adaptive warming in Section 4.2. We then
explore the reusability of checkpointed warming in Section 4.3.

4.2 Adaptive warming
The key challenge of achieving accuracy with adaptive warming lies
in determining the functional warming period length. If the warming
period is underestimated, simulation results will be biased. If the
warming period is overestimated, we sacrifice simulation speed.

A recently-proposed technique for determining cache warming
requirements is Memory Reference Reuse Latency (MRRL) [12].
MRRL collects a histogram of memory access reuse distances
between each pair of detailed windows during a functional simulation
of a benchmark. The warming length reported by MRRL is the length
sufficient to cover 99.9% of the observed reuse distances. This prob-
abilistic bound on cache warming requirements is configuration inde-
pendent, because reuse latency is measured by instruction count in a
functional simulator. The MRRL analysis outputs specific warming
lengths (in instructions) for each detailed window, and must be run
once per benchmark and sample design. The offline analysis pass
takes roughly the same time as a full-warming simulation.

MRRL has demonstrated low bias on large detailed windows (worst-
case error of 2% for 50-million-instruction windows). This paper
evaluates MRRL on the small detailed windows required by the

Full warming
(e.g., S )MARTS

Checkpointed warming

Adaptive warming
Functional warming
Detailed warming

Checkpoint load

Measurement

...

...

...

Figure 2. Simulation sampling warming methods. All methods use the same sample design and confidence intervals, only bias differs.

Accuracy

SpeedCheckpoint
reusability

Full warming

Adaptive warming

Checkpointed warming

Figure 3. Relative merits of warming methods.



optimal sample design. Small windows are more susceptible to bias
because warming errors are not amortized over a large measurement
interval.

We evaluate MRRL with a reuse probability of 99.9% as recom-
mended in [12]. This reuse probability results in an average of 4.1
million instructions of warming prior to each detailed window, which
is 20% of the average full warming interval (20.5 million instruc-
tions). Thus, an approximation for the runtime of the adaptive
warming strategy is 20% of the functional warming time of SMARTS,
plus detailed simulation time, or about 1.5 hours on average per
benchmark (8-way).

We present the results of our accuracy evaluation of adaptive
warming with MRRL for small windows in Figure 4. Both average
(1.1%) and worst-case error (5.4%) are considerably worse than full
warming (0.6% on average; 1.6% worst-case). Error is high because
short detailed windows are sensitive to accurate cache state.

MRRL does not allow detailed windows to be simulated indepen-
dently because cache state must be stitched [18] between consecutive
windows. To obtain low bias, detailed windows must be simulated in
program order, precluding parallelization and online result reporting
(see Section 6). If MRRL is used without stitched state (thereby
assuming an empty cache at the start of each functional warming
period) we observe a considerably higher CPI bias of 1.9% on aver-
age, with a worst case of 11%.

Because of the high worst-case error and relatively modest speedup
of adaptive warming, we do not choose adaptive warming to imple-
ment live-points. Increasing warming over MRRL (or increasing the
MRRL reuse probability threshold) will improve accuracy, but
further reduces the speed of adaptive warming.

4.3 Checkpointed warming
The key concern in evaluating checkpointed warming is the reusabil-
ity of a set of checkpoints across a series of experiments. Because
checkpointed warming uses a full-warming simulation to generate
microarchitectural state for large structures, its accuracy is identical
to full warming. When the generated live-points can be used for at
least two experiments, checkpointed warming provides a net speed
gain over full warming.

To maximize the reusability of live-points, we wish to place as few
constraints as possible on microarchitectural configuration. Check-
pointed warming dynamically reconstructs the vast majority of
microarchitectural structures (e.g., queues, ROB, etc.) through
detailed warming. As such, the configurations of these dynamically-
warmed structures are not constrained. For the remaining few struc-

tures, for which detailed warming requirements are large or cannot be
determined (e.g., caches and branch predictors), we store a represen-
tation of the structure in each live-point. The reusability of a live-
point library is limited by the flexibility of these representations.

There are two basic approaches to increasing live-point reusability.
First, we can collect state snapshots for multiple component configu-
rations in a single creation pass. The second, preferable approach is
to modify the saved representation such that a range of organizations
can be reconstructed when a live-point is loaded. However, we
cannot easily apply this adaptable approach to some structures, such
as modern branch predictors, and so we must store multiple warmed
configurations. Cache-like structures, including the TLB, can typi-
cally be stored using adaptable data structures.

Storing multiple configurations. The first approach is straight-
forward and effective if the number of configurations of interest is
relatively small. The major cost of live-point creation is the traversal
of the entire benchmark instruction stream. Warming additional
copies of a microarchitectural structure incurs a relatively small over-
head. If the slowdown is less than a factor of two, it is a net win to
collect state for both configurations in a single pass. We recommend
this approach for storing branch predictor state.

Storing adaptable warmed state. With cache-like structures, it is
possible to exploit the properties of cache replacement algorithms to
create a representation of cache state from which one can accurately
reconstruct a range of configurations [14]. Barr et al. propose a data
structure, called the Memory Timestamp Record (MTR), that records
the timestamp of the last access to each cache block during functional
warming [1]. The MTR allows a simulator to reconstruct a cache
hierarchy of arbitrary sizes and associativities assuming least-
recently-used replacement and a lower bound on cache block size.

Storing an MTR in each live-point enables reusability across nearly
arbitrary cache hierarchy organizations, but incurs a storage cost
proportional to the application’s memory footprint. However,
researchers can often place an upper bound on the maximum cache
size of interest. For a given maximum size and associativity, we can
instead store a timestamp-sorted list of the most recent accesses
mapping to each set, referred to as a Cache Set Record (CSR) by Barr
et al. [1]. A CSR requires the same storage as the tag array for the
selected maximum cache size, and allows reconstruction of all
smaller and/or less associative caches.

Our analysis of simulation sampling warming methods demonstrates
that checkpointed warming is both fast and accurate. The reusability
weakness of checkpointed warming can be mitigated through careful
planning of microarchitectural state representation. Thus, we choose
to use checkpointed warming to implement live-points.

5. LIVE-POINTS WITH LIVE-STATE
Current publicly-available computer architecture simulators already
provide a checkpoint creation and loading capability that allows the
simulator to move to a particular program trace location in constant
time [2,23]. These checkpoint implementations store only architec-
turally-visible system state (i.e., memory, architectural register and
peripheral device state). A straightforward approach to implement
checkpointed warming is to extend these existing checkpoints with
functionally-warmed microarchitectural state as described in
Section 4.3.
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Unfortunately, this straightforward approach is not practical because
conventional checkpoints require prohibitive storage, proportional to
the total memory footprint of an application (up to 200MB for
SPEC2K [13]). We measured an average SPEC2K memory footprint
of 105 MB. Thus, for SMARTS-like samples (~10,000 measurements),
conventional checkpoints for all of SPEC2K require 33 TB of storage
(7.2 TB with gzip compression). Sampling optimizations [9,28,36]
reduce this cost by an order of magnitude at best. With these check-
point sizes, simulations are I/O bound, and checkpointed warming
can provide little, if any, speedup over functional warming. It may be
possible to save space by storing only changes to memory between
checkpoints, but this approach introduces dependence among check-
points, precluding parallel simulation and other sampling optimiza-
tions (see Section 6). 

Reducing storage with live-state. We can drastically reduce check-
point storage cost for live-points by storing only the state that will be
accessed during the brief simulation window, an approach we call
live-state. Because the detailed windows are just a few thousand
instructions, only a tiny subset of state is accessed. Simulation state
that is never referenced during measurement or detailed warming can
be omitted from the checkpoint without affecting the simulation.

The live-state approach stores the minimal set of accessed state for
each live-point’s specified simulation window. Live-points can accu-
rately simulate only the instructions within this pre-selected window.
The restriction to a pre-selected window does not impact simulation
sampling because the window locations and measurement/detailed
warming periods are specified in advance by the sample design.

We can identify precisely which instructions will commit during the
selected window when we construct a live-point. Thus, it is straight-
forward to identify all the memory and microarchitectural state these
instructions will access—generally less than 32 KB per live-point
(uncompressed, including ASN.1 encoding overhead).

However, we cannot identify the state that is accessed on non-
committed speculative paths (wrong-path instructions). It is not
possible to identify a priori the set of wrong-path instructions that
will execute in all future simulations at live-point creation time. To
do so requires either fixing all simulation parameters (queue sizes
and latencies), or exploring all possible speculative paths to the depth
they might be followed (as bounded by, for example, ROB size). The
former eliminates checkpoint reusability, while the latter requires
analysis that grows exponentially with speculation depth.

Effects of wrong-path instructions. Although the effects of wrong-
path instructions on the commit instruction stream are generally
small [3], they cannot be ignored given our tight bias goals. Errors in
wrong-path modeling cause the schedule of wrong-path execution to
differ from a simulation where all state is available, which in turn
perturbs the execution schedule of the commit instruction stream.

We measure the bias introduced if we restrict live-state to contain
only state accessed by correct path instructions. With restricted live-
state, we omit all architectural state (memory values) and microarchi-
tectural state (cache tags and branch predictor entries) that are not
accessed in the simulation window during live-point creation, leaving
this state uninitialized (effectively random). A live-point with
restricted live-state contains the smallest possible subset of state that
can still simulate correct-path instructions (but will not accurately
simulate wrong-path). Although the average bias increase for CPI is
only 0.1%, the worst case is 3.3%. Figure 5 shows the bias results for
the benchmarks with the most error.

Wrong-path instructions interact with the commit stream through
resource contention and in the cache tag arrays. In the vast majority
of cases, we can use branch predictor outcomes to identify the
wrong-path instruction sequence, and cache tag arrays to identify
wrong-path load latency. This information is sufficient to identify
contention and cache tag array updates arising from speculative
execution, without the need for the values accessed by wrong-path
loads.

In our live-state approach, we include the microarchitectural state
necessary to reflect wrong-path effects (branch predictor, cache tag
arrays, TLBs), but omit memory values unless they are accessed on
the correct-path. By omitting the vast majority of memory values, the
live-state approach reduces storage requirements from over 100 MB
to 142 KB per live-point (uncompressed; assuming cache hierarchy
and branch predictor of our 8-way baseline). Under this approach,
unavailable memory values enter the microarchitecture (via a wrong-
path load) on average less frequently than once per detailed window.
We measured no appreciable increase, < 0.1% difference, in CPI bias
over full warming.

6. SAMPLING FRAMEWORK
One of the benefits of the live-point design is that each live-point is
independent of all other live-points, and can thus be processed in
isolation. As others have noted [10,19,21], window independence
allows a simulation to be parallelized across hosts (with parallelism
degree up to the sample size). However, we can also leverage live-
point independence to minimize the runtime of absolute and compar-
ative experiments, and provide results from simulations that are still
in progress. The following subsections present a sampling methodol-
ogy for absolute and comparative performance studies.

6.1 Absolute performance estimates
To report meaningful estimated results, a sampled simulation must
complete processing of an unbiased sample of the complete bench-
mark. With functional warming, where the measurements must be
processed in strict program order, the measured sample represents the
entire benchmark only after the entire simulation is complete.

With independent live-points, we are not forced to process detailed
windows in program order. We can exploit this property to rearrange
the live-point processing order so that we can report unbiased perfor-
mance estimates (with lower statistical confidence than final results)
at any time.
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A complete live-point library forms an unbiased random (or system-
atic) sample of a benchmark. If we select a random sub-sample from
the live-point library, we arrive at a smaller, but still unbiased,
random sample of the benchmark. Based on this principle, if we
shuffle a live-point library into random order, after each live-point is
simulated, the live-points processed thus far form an unbiased
random sample of the benchmark.

We exploit random-order live-point processing to allow a simulation
to report results at any time. As live-points are processed, we calcu-
late the confidence achieved in the sample observed thus far. As the
sample size grows, the confidence improves, and the estimated
results converge to their true values. As soon as we are satisfied with
the current confidence, we can terminate the simulation. We impose a
minimum sample size of 30 live-points to ensure that the central limit
theorem holds and our confidence calculations are valid [16].

Online monitoring of simulation results and their current confidence
has proven valuable during simulator development to get quick-and-
dirty performance estimates and detect simulator bugs. Even after
processing a small sample (100’s of live-points), confidence intervals
will be tight enough to identify gross performance bugs reliably.

To maximize simulation processing speed, we recommend shuffling
live-points on disk, prior to simulation. Live-points should be stored
in a single compressed file to maximize I/O performance (which is
the performance-limiting bottleneck in our environment).

6.2 Comparative performance estimates
When a live-point library is created, we set an upper bound on the
sample size that can be measured with that library (i.e., the number of
live-points in the library). The upper bound is typically based on the
sample size required to meet a desired statistical confidence for a
benchmark and baseline microarchitecture combination. Because the
required sample size will increase when a new microarchitecture has
higher target metric variability (e.g., CPI variance), a live-point
library sized for the baseline configuration may fall short of the
sample required for an experimental case.

In such comparative studies, researchers are often more interested in
the relative performance of two designs than absolute performance.
We can take advantage of this observation through a sampling proce-
dure called matched-pair comparison, first proposed for computer
architecture simulation sampling by Ekman and Stenström [9].
Matched-pair comparison exploits the phenomenon that the change
in performance from design x to design y tends to vary less than the
absolute performance of either design. As a result, the change in
performance can be assessed to a given confidence with a smaller
sample than absolute performance.

Under matched-pair comparison, we build a confidence interval
directly on the change in performance. Unlike an unpaired compari-
son of two different samples, in matched-pair comparison, we
measure the same sample (i.e., same live-points) in each of two
designs and compute the performance delta on each measurement
interval. In the common case, the design change has a similar effect
in all measurement intervals (e.g., a larger cache tends to improve
performance uniformly by a small increment). Thus, the variance of
the performance deltas, and required sample size, is small. The calcu-
lations and procedure for applying matched-pair comparison are
detailed fully in [9].

Ekman and Stenström report that matched-pair comparison typically
reduces sample size by an order of magnitude compared to absolute
performance estimates over a range of microarchitectural design
changes. We performed a similar set of sensitivity studies (e.g.,
varying latencies, queue sizes, functional unit mix, etc.). Our results
corroborate [9], indicating that matched-pair comparison reduces
sample size by a factor of 3.5 to 150. We note that matched-pair
comparison is particularly effective for detecting that a design change
has no appreciable impact (i.e., less than 3% CPI change). When a
design change has little effect, nearly all measurement intervals
behave identically under the base and experimental cases, resulting in
low CPI-delta variance.

Matched-pair comparison addresses the risk that a comparative
performance study will exhaust the available live-point library
without achieving the desired confidence. If we size a live-point
library such that it can achieve a particular confidence in an absolute
estimate of the base case, we will typically require only a fraction of
this library for comparative studies.

We can combine matched-pair comparison with random-order
processing to report results online for comparative studies. The
combined optimizations are particularly effective for rapidly search-
ing a design space to eliminate designs that do not differ significantly
from the base case. A 50-measurement sample can rapidly distin-
guish design changes with no impact from those that require further
simulation.

6.3 Experiment procedure
We now summarize our complete procedure for experimentation with
live-points. Figure 6 illustrates the steps in the procedure.

First, we must measure the target metric variance for the baseline
configuration to determine an appropriate live-point library size. We
can measure variance using prior simulation sampling approaches, or
estimate it from published results [37]. In our implementation, these
simulations require seven hours on average for SPEC2K.

Collect live-points

Measure baseline variance

Baseline experiment

Matched-pair experiments

Shuffle live-point library
Functional warming
Detailed warming

Live-point

Measurement

...

...

...

...

2.

1.

4.

5.

3.

Figure 6. Live-point experiment procedure. Matched-pair experiments produce estimates of performance deltas from the baseline.



Second, we must generate a live-point library. We choose the
maximum cache hierarchy and set of branch predictors of interest,
and run a full-warming simulation that outputs compressed live-
points. Live-point generation requires on average 8.5 hours per
benchmark.

Third, we shuffle these live-points into a random order and store
them in a single compressed stream. Optionally, the live-point library
can be split into multiple compressed streams for parallel processing.
Shuffling is compression-speed bound, and requires several minutes
per benchmark.

Fourth, we measure the baseline configuration with our live-point
library. We record metrics of interest (e.g., CPI) for each live-point.
This simulation can be parallelized and can employ the random-order
processing optimization. For our 8-way microarchitecture, this simu-
lation reaches 99.7% confidence of ±3% error in an average of 91
seconds per benchmark (without parallelization).

Finally, we can perform comparative studies relative to the baseline
microarchitecture using the live-point library. These simulations can
employ parallelization, random-order processing, and matched-pair
comparison optimizations. Furthermore, we can monitor simulation
results online, and terminate simulations at any time to report results
with reduced confidence. If we assess our 16-way microarchitecture
relative to our 8-way baseline, the simulation reaches target confi-
dence in an average of 2.4 minutes per benchmark, while an absolute
measurement of the 16-way microarchitecture requires 7.6 minutes
per benchmark.

7. RESULTS
In this section, we report results on the effectiveness of the live-state
approach in reducing storage cost and compare the performance of
live-points to other simulation sampling approaches.

7.1 Live-state results
The live-state approach is highly effective at reducing the storage
cost of live-points. Because the simulation window covered by each
live-point is short (a few thousand instructions), only ~16 KB of
memory state must be stored.

Live-state can also be used in conjunction with adaptive warming.
However, because the simulation window required for cache
warming is large (on average 4.1 million instructions per window),
the required memory state is much larger, on average 360 KB.

Figure 7 compares the uncompressed size of live-points (assumes
cache/branch predictor of the 8-way microarchitecture) and live-state
for adaptive warming using MRRL (AW-MRRL; microarchitecture
independent). We typically obtain 5:1 compression with gzip. 

The storage cost (and thus decompression/load time) of live-points
grows as the size of the stored microarchitectural structures
increases. With adaptive warming, no microarchitecture-specific
state is stored, and thus storage cost is fixed. As a result, there is a
break-even point where the storage cost of live-points and adaptive
warming become equal. Figure 8 (left) shows that this break-even
threshold occurs around a 4 MB maximum cache size. However, for
microarchitecture state larger than this threshold, live-points remain
an order of magnitude faster (Figure 8 right) because generating
cache state dynamically is much slower than loading it from disk.

7.2 Live-points performance
We use live-points to estimate the absolute CPI of our benchmark
suite to the same accuracy and confidence as previous simulation
sampling techniques as described in Section 3. Table 2 presents
measured run-time results for live-points. Runtime results were
collected with serial live-point processing and only a single simula-
tion running per system. We compare live-points to non-sampled
runs of the complete benchmark with SimpleScalar’s sim-
outorder, full warming using SMARTSim [37], and adaptive
warming using MRRL (AW-MRRL). We show the best, average, and
worst runtimes for the two microarchitectural configurations intro-
duced in Section 3.

Live-points eliminate the functional warming bottleneck in SMART-
Sim, reducing average simulation time for SPEC2K benchmarks
from 7 hours to just 1.5 minutes (8-way baseline microarchitecture).
Live-points are 50 times faster than AW-MRRL. Live-point simula-
tions often complete faster than native execution of benchmarks on
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Figure 7. Breakdown of a typical live-point (uncompressed).
For comparison, a conventional checkpoint is 105 MB on average.

1

10

100

1,000

1MB L2 2MB L2 4MB L2 8MB L2 16MB L2

1K BPred 2K BPred 4K BPred 8K BPred 16K BPred

Ty
pi

ca
l c

he
ck

po
in

t
pr

oc
es

si
ng

 ti
m

e 
(m

s)

AW-MRRL
Live-points

0

100

200

300

400

1MB L2 2MB L2 4MB L2 8MB L2 16MB L2

1K BPred 2K BPred 4K BPred 8K BPred 16K BPredTy
pi

ca
l c

he
ck

po
in

t s
iz

e 
(K

B
)

AW-MRRL

Live-points

Figure 8. Compressed checkpoint size and processing time. Live-points have a size advantage until large cache tag arrays are required. 
However, even for large caches, live-points are much faster than adaptive warming using MRRL because no functional warming is needed.

8-way



our host platform, which typically requires several minutes per
benchmark.

For both SMARTSim and sim-outorder, simulation time varies
linearly with benchmark length. Thus, we can expect simulation
times to grow with longer benchmarks. In contrast, runtime with live-
points and AW-MRRL depends on sample size, and thus CPI vari-
ability. We do not observe any relationship between CPI variability
and benchmark length; therefore, we do not expect live-points’ runt-
imes to increase for longer benchmarks.

Table 3 summarizes the characteristics of the warming approaches
evaluated in this paper. The table shows the live-point library sizes,
run times, and biases measured for each technique.

Live-points match the bias of SMARTSim. AW-MRRL with a reuse
distance threshold of 99.9% does not match this tight error. Adaptive
warming accuracy may improve with a higher reuse threshold, at the
cost of further slowdown relative to live-points. Sampling error can
be made arbitrarily small with all three warming approaches by
increasing sample size.

Table 3 also indicates the scaling behavior of live-point size and
processing time with respect to microarchitectural model and bench-
mark characteristics, and indicates what microarchitecture model
parameters must be fixed when live-points are created. A live-point
library restricts maximum cache and TLB sizes and must include
state for each branch predictor used in subsequent simulations.

However, other microarchitectural configuration parameters are not
fixed. Live-points are independent of one-another, enabling parallel
simulation and online results reporting.

8. RELATED WORK
Many previous studies of simulation methodology present techniques
orthogonal to our work. A variety of programming techniques can
accelerate simulators by up to an order of magnitude without affect-
ing simulation results [6,7,31]. However, simulation of complete
benchmarks remains expensive. Construction and evaluation of short
synthetic benchmarks with statistical properties similar to target
workloads, commonly referred to as statistical simulation [24,25],
can reduce simulation time to seconds. However, increasing the
applicability, robustness and accuracy of these techniques remains an
active research topic [8,17].

Ringenberg et al. [29] present intrinsic checkpointing, a checkpoint
implementation that loads architectural state by instrumenting the
simulated binary rather than through explicit simulator support.
Unlike live-points, intrinsic checkpointing does not address microar-
chitectural state.

Our work builds upon previous work on simulation sampling.
Uniform simulation sampling was first proposed in the context of
trace-based cache simulation [20]. Conte et al. proposed using
sampling theory to calculate confidence of performance estimates

Table 2. Runtimes of SPEC2K benchmarks. We include the fastest and slowest runtimes to show the variability of each technique.

8-way (1MB L2) 16-way (4MB L2)

Minimum Average Maximum Minimum Average Maximum

sim-outorder 2.2 h
perlbmk

13 h
gcc-2

5.5 d 15 d
mgrid

24 d
parser

3.8 h
perlbmk

22 h
gcc-2

9.6 d 27 d
mgrid

42 d
parser

SMARTSim 4.4 m
perlbmk

29 m
gcc-2

7.0 h 17 h
mgrid

25 h
parser

4.6 m
perlbmk

31 m
gcc-2

7.3 h 18 h
mgrid

26 h
parser

AW-MRRL 61 s
perlbmk

88 s
eon-2

1.5 h 7.1 h
ammp

9.5 h
parser

65 s
perlbmk

92 s
eon-2

1.6 h 7.5 h
ammp

9.9 h
parser

Live-points 1 s
swim

2 s
eon-2

91 s 5.0 m
vpr

12 m
ammp

13 s
swim

14 s
eon-2

7.6 m 25 m
vpr

1.3 h
ammp

Times are specified in days (d), hours (h), minutes (m), or seconds (s).

Table 3. Summary of simulation sampling warming methods.

Complete 
Simulation

(sim-outorder)

Full Warming
(SMARTS)

Adaptive 
Warming

(AW-MRRL)

Checkpointed 
Warming

(Live-points)

Average (worst) CPI bias None 0.6% (1.6%) 1.1% (5.4%)* 0.6% (1.6%)
Average benchmark runtime 5.5 days 7.0 hours 1.5 hours 91 seconds

Scaling behavior O( ) O(B) O(1) O(C)
Independent checkpoints N/A N/A No* Yes

SPEC2K checkpoint library size N/A N/A 30 GB 12 GB (1 MB L2)

Scaling behavior N/A N/A O(1) O(C)
Fixed microarchitecture parameters None None None Max cache, TLB,

branch predictors

B DS×

B = benchmark length, C = max cache size, DS = detailed simulation speed
*AW-MRRL can produce independent checkpoints, but bias increases to 1.9% average, 11% worst.



explicitly [5]. SMARTS [37] and similar recent work [22] minimize
total instructions simulated in detail, and form the basis for our
sampling methodology.

Other recent sampling proposals employ representative sampling
[19,28,32]. In representative sampling, program phases are identified
and a representative portion of each phase is measured. In contrast,
all population elements have equal probability of inclusion in the
sample under uniform sampling approaches.

The most prevalent representative sampling approach, SimPoint
[28,32], identifies phases based on microarchitecture-independent
analysis of the relative frequency of static basic blocks. Van Bies-
brouck et al. [34] apply a checkpointed warming approach similar to
live-points to accelerate SimPoint measurement. They report that
checkpoint libraries for SimPoint-derived samples typically require
less storage than high-confidence uniform samples (i.e., 99.7% confi-
dence of ±3% error), whereas uniform samples simulate fewer
instructions in detail per benchmark (~30 million rather than
~300 million instructions) and result in shorter simulation turn-
around. Our experiments corroborate these results from this concur-
rent work. However, with uniform sampling, we can reduce
turnaround time and live-point storage cost at the cost of reduced
confidence. Existing representative sampling techniques do not
provide quantitative measures of confidence with each result [36],
and provide only a single option for runtime, storage cost, and accu-
racy. Moreover, online result reporting (see Section 6.1) is not appli-
cable to representative sampling.

Live-points have been successfully integrated into the Liberty Simu-
lation Environment (LSE) by researchers at Princeton University
[27]. LSE is a computer architecture simulation infrastructure, which
models microarchitecture at a structural, rather than behavioral, level
of abstraction. As such, LSE models match hardware closely, but
simulation is an order of magnitude slower than sim-outorder.
Integration of live-points into LSE reduced typical simulation times
by up to 20x over SMARTS. Moreover, the online results reporting
possible with live-points reduced the typical implement-debug-test
cycle of model development to less than an hour, greatly accelerating
the model development process.

9. CONCLUSION
Live-points reduce microarchitecture simulation time to the limit
imposed by detailed simulation. We leverage state-of-the-art simula-
tion sampling techniques to simulate a minimum of instructions in
detail by using large sample sizes with small measurement intervals
of 1000 instructions each. Unlike previous simulation sampling
approaches, turnaround time with live-points is independent of
benchmark length, depending only on the target metric’s variance.
Therefore, live-points enable simulation of benchmarks far longer
than those used currently, with no increase in simulation time. The
live-state approach enables checkpointed warming with reasonable
storage requirements by storing only necessary functionally-warmed
state for several thousand instructions of accurate performance simu-
lation. A reusable live-point library for SPEC2K requires only
12 GB. By processing live-points in a random order, our sampling
framework allows simulations to report results while simulation is
still in progress.

The vast increase in simulation speed possible with live-points trans-
lates into a much higher experimental throughput. Parametric studies
that cover a wide range of microarchitectural options can now be

evaluated accurately on entire benchmark suites with reasonable
computational requirements. In addition, live-points enable interac-
tive performance estimates for individual benchmarks in minutes,
enabling quick evaluations of design decisions with immediate
performance feedback.
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