
Statistical Sampling of Microarchitecture
Simulation

ROLAND E. WUNDERLICH, THOMAS F. WENISCH,
BABAK FALSAFI, and JAMES C. HOE

Computer Architecture Laboratory at Carnegie Mellon

Current software-based microarchitecture simulators are many orders of magnitude slower than

the hardware they simulate. Hence, most microarchitecture design studies draw their conclusions

from drastically truncated benchmark simulations that are often inaccurate and misleading. This

article presents the Sampling Microarchitecture Simulation (SMARTS) framework as an approach

to enable fast and accurate performance measurements of full-length benchmarks. SMARTS acceler-

ates simulation by selectively measuring in detail only an appropriate benchmark subset. SMARTS

prescribes a statistically sound procedure for configuring a systematic sampling simulation run to

achieve a desired quantifiable confidence in estimates.

Analysis of the SPEC CPU2000 benchmark suite shows that CPI and energy per instruction

(EPI) can be estimated to within ±3% with 99.7% confidence by measuring fewer than 50 million

instructions per benchmark. In practice, inaccuracy in microarchitectural state initialization intro-

duces an additional uncertainty which we empirically bound to ∼2% for the tested benchmarks. Our

implementation of SMARTS achieves an actual average error of only 0.64% on CPI and 0.59% on EPI

for the tested benchmarks, running with average speedups of 35 and 60 over detailed simulation

of 8-way and 16-way out-of-order processors, respectively.

Categories and Subject Descriptors: C.4 [Performance of Systems]—Measurement techniques,
Modeling techniques; C.1.1 [Processor Architectures]: Single Data Stream Architectures; B.8.2

[Performance and Reliability]: Performance Analysis and Design Aids

General Terms: Measurement, Performance, Design

Additional Key Words and Phrases: Microarchitecture simulation, simulation sampling, statistical

sampling, cold-start bias, SPEC CPU2000 simulation

1. INTRODUCTION

Computer architects have long relied on software simulation to study the func-
tionality and performance of proposed hardware designs. Despite phenomenal

This research was funded in part by grants IBM and Intel corporations, an NSF CAREER award,

and an NSF Intrumentation award,

Authors’ address: Department of Electrical and Computer Engineering, Carnegie Mellon Uni-

versity, 5000 Forbes Ave., Pittsburgh, PA 15213-3890; email: {rolandw,twenisch,babak,jhoe}@
ece.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1049-3301/06/0700-0197 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006, Pages 197–224.

198 • R. E. Wunderlich et al.

improvement in processor performance over the last decades, the dispropor-
tionate growth in hardware complexity that needs to be modeled has steadily
eroded simulation speed. Today, the fastest cycle-accurate modern micropro-
cessor performance simulators are more than five orders of magnitude slower
than the hardware they mode requiring thousands of executed instructions
per simulated instruction. More detailed simulators and register-transfer-level
simulators are easily six or more orders of magnitude slower than the proposed
hardware. One minute of execution in real time can correspond to days, if not
weeks, of simulation time.

1.1 Current Approaches

To mitigate prohibitively slow simulation speeds, researchers often use abbrevi-
ated instruction execution streams of benchmarks as representative workloads
in design studies. More than half of the papers in top-tier computer archi-
tecture conferences in 2002 presented performance claims extrapolated from
abbreviated runs.1 Researchers predominantly skip an initial section, ranging
from 250 million to 2 billion instructions in length, and then measure a single
section of 100 million to 1 billion instructions. Unfortunately, several studies
[Lauterbach 1994; Conte et al. 1996; Lafage and Seznec 2000; Sherwood et al.
2002] have concluded that results based only on a single abbreviated execu-
tion stream are inaccurate or misleading because they fail to capture global
variations in program behavior and performance.

Another common approach to curtail simulation time is to use fewer or
smaller input sets (i.e., the test or train sets rather than all of the reference
sets in SPEC2K). Recent papers, however, have also shown benchmark behav-
ior varies significantly across test, train, and reference inputs for a number of
SPEC2K benchmarks [Hsu et al. 2002; Sherwood et al. 2002].

To obtain performance results based on complete benchmarks and input sets,
many proposals have advocated statistical [Laha et al. 1988; Lauterbach 1994;
Conte et al. 1996; Haskins and Skadron 2001] or profile-driven [Lafage and
Seznec 2000; Hamerly et al. 2005] simulation sampling. Simulation sampling
measures only chosen sections (called sampling units) from a benchmark’s full
execution stream. The sections in between sampling units are fast-forwarded
using functional simulation that only maintains programmer-visible architec-
tural state. We faced two key challenges to simulation sampling: (1) choos-
ing an appropriate subset with the minimum number of instructions to meet
a given error bound, and (2) reconstructing an accurate microarchitectural
state (e.g., branch predictor and cache hierarchy contents) for unbiased sam-
ple measurement following an extended period of functional fast-forwarding.
In addition to the SMARTS framework presented here, our most recent work
[Wenisch et al. 2006] also investigates the replacement of fast-forwarding
with live-points, which are small, accurate, fast loading, and reusable
checkpoints.

1There were 64 papers presented at ISCA 2002, MICRO 2002, and HPCA 2003 that included

simulation results; 38 used a single sampling unit, 20 used reduced input sets or microbenchmarks,

and 6 used other approaches.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 199

Current proposals for simulation sampling suffer from several key shortcom-
ings. On the efficiency front, most proposals sample several orders of magnitude
more instructions than are statistically necessary for their stated error [Laha
et al. 1988; Lauterbach 1994; Lafage and Seznec 2000; Haskins and Skadron
2001; Hamerly et al. 2005]. This inefficiency is often rooted in their exces-
sively large sampling units, either to amortize the overhead of reconstructing
microarchitectural state or to capture coarse-grain performance variations by
brute force. On the accuracy front, most proposals either do not offer tight er-
ror bounds on their performance estimations [Laha et al. 1988; Lauterbach
1994; Lafage and Seznec 2000; Hamerly et al. 2005] or require unrealistic as-
sumptions about the microarchitecture (e.g., perfect branch prediction or cache
hierarchies) [Conte et al. 1996].

1.2 The SMARTS Approach

We propose the Sampling Microarchitecture Simulation (SMARTS) framework
which applies statistical sampling theory to address the aforementioned is-
sues in simulation sampling. Unlike prior approaches to simulation sampling,
SMARTS prescribes an exact and constructive procedure for selecting a minimal
subset from a benchmark’s instruction execution stream to achieve a desired
confidence interval. SMARTS uses a measure of variability (coefficient of varia-
tion) to determine the optimal sample that captures a program’s inherent varia-
tion. An optimal sample generally consists of a large number of small sampling
units. Unbiased measurement of sampling units as small as 1000 instructions is
possible by applying careful functional warming—maintaining large microar-
chitectural state such as branch predictors and the cache hierarchy—during
fast-forwarding between sampling units.

We evaluate SMARTS in the context of a wide-issue out-of-order super-
scalar simulator called SMARTSim which is based on SimpleScalar 3.0 [Burger
and Austin 1997]. We employed SMARTSim to estimate the CPI and energy
per instruction (EPI) for 41 out of 45 SPEC2K benchmark/input combina-
tions on two microarchitecture configurations. We make the following primary
contributions.

—Optimal sampling. SMARTSim achieves an actual average error of only 0.64%
on CPI and 0.59% on EPI by simulating fewer than 50 million instructions
in detail for each of the 41 SPEC2K benchmarks. This represents an exceed-
ingly small fraction of the complete benchmark streams which are 174 billion
instructions on average (Alpha ISA).

—Simulation speedup. On a 2GHz Pentium 4, SMARTSim can achieve average
speeds of 35 and 60 times faster relative to sim-outorder for 8-way and
16-way superscalar processor models, respectively. SMARTSim achieves simu-
lation speeds of over 9 MIPS.

—Future impact. SMARTS sampling simulation rate is, for all practical purposes,
decoupled from the speed of the detailed simulator. This result has funda-
mental bearings on future simulator designs. First, designers should focus
less on elaborate performance shortcuts in detailed simulators and more
on increasing the detailed simulator’s overall design flexibility and accuracy.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

200 • R. E. Wunderlich et al.

Second, designers should focus on developing techniques which speed up fast-
forwarding and functional warming (e.g., direct execution [Reinhardt et al.
1993; Chen 2004], simulator synthesis [Burtscher and Ganusov 2004], and
checkpointing [Van Biesbrouck et al. 2005; Wenisch et al. 2006]), as these
ultimately determine the sampling simulation rate.

Article Outline. This article extends the SMARTS paper from ISCA 2003 with
complete results, an expanded related work section, and updated conclusions.
The rest of this article is organized as follows. Section 2 presents background on
statistical sampling. Section 3 presents the SMARTS framework, while Section 4
presents an implementation of SMARTS in the context of a microarchitecture
simulation infrastructure. Section 5 evaluates the effectiveness of the SMARTS

framework at accelerating microarchitecture simulation. Finally, Section 6 cov-
ers related work in detail, and we conclude in Section 7.

2. STATISTICAL SAMPLING

The field of inferential statistics offers well-defined procedures to quantify and
ensure the quality of sample-derived estimates. This section provides basic
background on statistical sampling. We describe procedures for selecting a sam-
ple for mean estimation, and the mathematics for calculating the confidence in
an estimate.

Statistical sampling attempts to estimate a given cumulative property of
a population by measuring only a sample, a subset of the population [Jain
2001]. By examining an appropriately selected sample, one can infer the
nature of the property over the whole population in terms of total, mean, and
proportion. The theory of sampling is concerned with choosing a minimal but
representative sample to achieve a quantifiable accuracy and precision in the
estimate. The theory does not presume a normally-distributed population.
Our goal is to apply this theory to: (1) identify a minimal but representative
sample from the population for microarchitecture simulation, and (2) establish
a confidence level for the error on sample estimates.

Table I summarizes the standard statistical sampling terminology and vari-
ables relevant to this article. Simple random sampling selects a sample of n
elements (also known as sampling units) at random from a population of N
elements. Measurements are taken on the selected sampling units, and, for a
sufficiently large sample size (i.e., n > 30), the sampled results can be meaning-
fully extrapolated to provide an estimate for the whole population. In particular,
the true population mean X̄ of a property χ is estimated by the sample mean
x̄. The coefficient of variation is the standard deviation of χ , normalized by X̄ ,
Vx = σx/X̄ . The likelihood that x̄ is a good estimate of X̄ improves with sample
size and decreases with Vx . SMARTS leverages the relationship between n, Vx ,
and desired confidence to minimize the required sample size for a benchmark.

Formally, the confidence in a mean estimate is jointly quantified by two
interdependent terms: confidence level (1 – α) and confidence interval ±ε · X̄ .
The interpretation of confidence level and interval is that, over a large number
of random sampling trials, a (1 – α) fraction of the trials should produce x̄ that

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 201

Table I. Statistical Sampling Terminology and Variables

is within ±ε · X̄ of X̄ .2 Figure 1 graphically illustrates obtaining an estimate
of X̄ with a sample and an interpretation of the confidence interval. The
confidence interval achieved by a sample is ±([(z · Vx)

/√
n] · X̄), where z is

the 100[1 − (α/2)] percentile of the standard normal distribution. (We assume
N � n � 1 to simplify the expressions in this article.) For a sample with a
given Vx and size n, one can choose a desired confidence level and solve for the
achieved confidence interval.

To design a sampling simulation to meet a certain confidence, one begins by
determining an appropriate n based on the required confidence and Vx , using
the same equations previously presented. (Note that the population size does
not impact the determination of n.) The true coefficient of variation of a popu-
lation is rarely available in practice unless the entire population is examined.
Instead, V̂ x of a sufficiently large initial sample is commonly used in place of
Vx in computing the confidence of that sample. If the initial sample does not
achieve the desired confidence, the required size of a subsequent sample can be
computed using V̂ x , where n ≥ ((z · V̂ x)/ε)2. In practice, the required sample
size can typically be found after one test sample.

2A less rigorous but acceptable interpretation is that, for a given sample, there is a (1 – α) probability

that x̄ is within ±ε · X̄ of X̄ .

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

202 • R. E. Wunderlich et al.

Fig. 1. The confidence interval for uniform sampling error. The confidence interval represents the

probability of a sample’s estimate being within a specified range of the actual population’s property

value.

An approximation of random sampling of practical interest in microarchitec-
ture simulation is systematic sampling due to its ease of implementation. This
approach selects sampling units from an ordered population at a fixed sampling
interval k such that n = N/k. Systematic sampling is most effective if the pop-
ulation exhibits low homogeneity. In other words, the measured property χ

should not vary cyclically over the population sequence at the same periodicity
as k or its higher harmonics. Homogeneity in a population is quantified by the
intraclass correlation coefficient δx ; when the magnitude of δx is negligible, the
confidence calculations for systematic sampling are the same as described for
random sampling. We verified experimentally that, in our sampling results,
the population exhibits negligible homogeneity on the order of −1 × 10−6. This
observation agrees with our intuition that realistic benchmarks do not have
sufficiently regular cyclic behavior at the periodicity relevant to simulation
sampling (tens of millions of instructions).

Measurement error is another source of inaccuracy for both random and sys-
tematic sampling. Random errors lead to an increase in V̂ x and are accounted
for by a correspondingly lowered confidence in the estimate. On the other hand,
systematic errors, for example, due to incorrect cache hierarchy state prior to
the start of a sampling unit [Laha et al. 1988], introduce a bias in the esti-
mate. The bias B(x̄) is the average difference between X̄ and x̄ over all possible
sampling trials of a given configuration. For systematic sampling, there are
exactly k possible systematic sample phases, and hence, B(x̄) = ∑

x̄/k − X̄ .
If bias is known, it can be accounted for by subtracting it from the estimate
without affecting confidence. If the bias can only be bounded, then it introduces
a proportional amount of uncertainty in the estimate beyond the confidence
interval.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 203

Table II. Variables Introduced or Redefined

in the SMARTS Framework

U sampling unit size (instructions)

W detailed warming (instructions)

N benchmark length (instructions) / U

3. THE SMARTS FRAMEWORK

This section presents a framework for Sampling Microarchitecture Simulation
(SMARTS). SMARTS applies statistical sampling to accelerate simulation-based
performance measurements. Our presentation of SMARTS is primarily devel-
oped around estimating average CPI, but we provide results in Section 5.2 for
estimating both CPI and energy. The SMARTS framework is generally applicable
to other performance metrics such as pipeline resource utilization or average
memory latency.

3.1 Technique Overview

Measuring the CPI of a benchmark’s full instruction stream on a detailed mi-
croarchitecture simulator is a time-consuming proposition. SMARTS estimates
the CPI in significantly less time by simulating and measuring only a tiny frac-
tion of the stream on the detailed microarchitecture simulator. SMARTS assumes
an execution-driven simulator that supports detailed simulation and functional
simulation (i.e., fast-forwarding). In the detailed mode, all relevant microarchi-
tecture details are accounted for. Only programmer-visible architectural state
(e.g., architectural registers and memory) is updated in the functional mode.
SMARTS uses the two simulation modes to sample CPI systematically at a fixed
interval—detailed simulation of the sampled instructions and functional sim-
ulation of the remaining instructions.

SMARTS uses systematic sampling rather than random sampling because sys-
tematic sampling is more straightforward to implement in execution-driven
simulators. In SMARTS, a sampling unit is defined as U consecutive instructions
in a benchmark’s dynamic instruction stream such that the population size N
is the length of the stream divided by U . (See Table II). The exact number of
instructions per sampling unit may vary slightly to align sampling units on
clock cycle boundaries. For systematic sampling at an interval k, beginning at
offset j , SMARTS repeatedly alternates between a functional simulation period
of U (k – 1) instructions and a detailed simulation/measurement period of U
instructions. A primary reason we base the population on instructions rather
than clock cycles is that one cannot meaningfully count the number of detailed
cycles elapsed during functional simulation.

Evaluating benchmarks in SMARTS provides an estimated average CPI based
on the n · U sampled instructions. Equally important, the results include the
measured coefficient of variation V̂ CPI that allows us to calculate the confi-
dence of the CPI estimate and, if necessary, determine a new sample size to
meet a specific degree of confidence. Section 5 describes how to set SMARTS sam-
pling parameters and prescribes an exact procedure to generate an accurate
performance estimate by measuring only a minimal subset of a benchmark’s
instruction stream.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

204 • R. E. Wunderlich et al.

Fig. 2. Systematic sampling as performed in SMARTS. Two modes of simulation are used: func-

tional simulation, and detailed simulation. The need to determine warmup requirements for large

structures, such as caches, is eliminated by performing continuous functional warming.

A key challenge in SMARTS is how to compute the correct microarchitectural
state prior to detailed measurement of each sampling unit. Between sampling
units, functional simulation computes all architectural state updates of the pro-
gram but leaves microarchitectural state (e.g., cache hierarchy, branch predic-
tors and target buffers, or pipeline state) unchanged. Stale microarchitectural
state introduces a large bias in the measurement of individual sampling units
and, consequently, the final estimate. We have observed stale state-induced bias
as high as 50% for sampling units of 10,000 instructions.

The stale state effect can be ameliorated by introducing a warming period
where W instructions are simulated in detail to refresh the microarchitectural
state just prior to the measurement of a sampling unit [Laha et al. 1988]. We
refer to this solution as detailed warming. Figure 2 graphically illustrates how
SMARTS alternates between functional simulation of [U (k − 1) − W] instruc-
tions, detailed simulation of W warming instructions (without measurement),
and detailed simulation and measurement of U instructions. Increasing W can
gradually reduce the bias below an acceptable threshold.

Unfortunately, detailed warming has two major shortcomings: (1) detailed
warming can be expensive because it increases the amount of detailed sim-
ulation, and (2) in general, the appropriate value of W is difficult to derive
analytically because some microarchitectural state has extremely long history.
We will return to this discussion in Section 4.3 where we measure the effect of
W on bias in a reference implementation of SMARTS.

Between detailed simulation periods, select microarchitectural state could
instead be maintained by functional simulation with only a small overhead.
We refer to this warming approach as functional warming. The cache hierar-
chies and branch predictors are prime candidates for functional warming. By
continuously warming microarchitectural state with very long history, we can
analytically bound W for the remaining state to a manageably small value.

A caveat to the functional warming approach is that it may not always be able
to accurately reproduce the correct microarchitectural state if correct warming
requires exact knowledge of detailed execution. Moreover, timing-dependant
behavior (e.g., operating system scheduling activity) require timer approxima-
tion. If functional warming simulates instructions in order, it also may not

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 205

accurately reflect the artifacts of out-of-order and speculative event ordering.
Cain et al. [2002] have suggested that out-of-order and speculative ordering has
minimal impact on CPI and other performance metrics. In Section 4.5, we cor-
roborate these results and present our own analysis of the residual biases after
functional warming. We believe functional warming is the most cost effective
approach to achieve accurate CPI estimation with simulation sampling.

3.2 Benchmarks

In this study, we demonstrate the effectiveness of SMARTS by attempting to es-
timate the CPI and EPI of the SPEC CPU2000 (SPEC2K) integer and floating-
point benchmarks as measured on the SimpleScalar 3.0 sim-outorder simula-
tor [Burger and Austin 1997] with the Wattch 1.02 power estimation extensions
[Brooks et al. 2000]. For improved realism, we modified the memory subsys-
tem to include a store buffer and miss status holding registers (MSHR) and
model interconnect bottlenecks in the memory hierarchy. Our study includes
the cross product of two microarchitecture configurations and all 26 SPEC2K
benchmarks as presented in Table III. We evaluate all reference inputs except
vpr-place and three perlbmk inputs, as these inputs fail to simulate correctly
in sim-outorder. Overall, 41 benchmark/input set combinations are included
in this study. To provide a reference data set for this study, we collect cycle-
by-cycle traces of instruction commits in sim-outorder for the entire length of
each benchmark. Simulating these SPEC2K benchmarks resulted in more than
7 trillion simulated instructions per machine configuration.

The baseline microarchitecture configuration in this study is an 8-way super-
scalar model that represents a processor in the current technology generation.
A 16-way superscalar configuration also is included to reflect an aggressive fu-
ture design point. This configuration has a wider datapath, larger out-of-order
window, and larger caches to test the effects of an enlarged state set. The details
of the 8-way and 16-way configurations are summarized in Table IV.

3.3 Speedup Opportunity

The required sample size to estimate CPI at a given confidence is directly pro-
portional to the square of the population’s coefficient of variation, n ∝ V 2

CPI. A
benchmark with a small VCPI implies a greater opportunity for accelerated sim-
ulation because fewer instructions from the benchmark need to be simulated
and measured in detail. To assess the potential speedup of SMARTS, we study
VCPI of all benchmarks in our test suite. A benchmark’s instruction stream can
be divided into a population using different values of U . Figure 3 plots VCPI of
all benchmarks on the 8-way configuration as a function of U in the range of 10
to 1 billion instructions. VCPI decreases with increasing U because short-term
CPI variations within a window of U instructions are hidden by averaging
over the sampling unit. The VCPI curves for all benchmarks share the same
general shape with a steep negative slope for U less than 1000, leveling off
thereafter.

The shapes of the VCPI curves argue against sampling approaches that use
large sample unit sizes because for U greater than 1000, VCPI (and hence n)

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

206 • R. E. Wunderlich et al.

Table III. Simulated SPEC CPU2000 Benchmarks (Alpha ISA binaries)

Benchmark Input Instructions (bil.) 8-way IPC 16-way IPC 8-way EPI (nJ/Inst.)

ammp 326.5 1.04 1.60 42.7

applu 223.9 1.17 1.75 42.1

apsi 347.9 1.58 2.40 35.9

art-1 startx 110 41.8 0.39 0.66 88.0

art-2 startx 470 45.0 0.39 0.66 87.6

bzip2-1 source 108.9 1.48 1.77 39.5

bzip2-2 graphic 143.6 1.56 1.95 37.2

bzip2-3 program 124.9 1.70 2.08 36.9

crafty 191.9 2.34 2.94 34.6

eon-1 kajiya 101.3 2.50 3.11 36.5

eon-2 cook 80.6 3.01 4.81 31.8

eon-3 rushmeier 57.9 2.85 4.11 33.2

equake 131.5 0.79 1.23 50.3

facerec 211.0 1.86 3.31 33.2

fma3d 268.4 1.53 2.57 38.0

galgel 409.4 0.96 1.77 45.2

gap 269.0 1.48 1.74 39.5

gcc-1 166 46.9 1.45 1.41 40.7

gcc-2 200 108.6 1.60 1.82 39.6

gcc-3 expr 12.1 1.63 1.73 40.1

gcc-4 integrate 13.2 1.64 1.62 38.9

gcc-5 scilab 62.0 1.64 1.80 40.2

gzip-1 source 84.4 1.76 1.91 37.2

gzip-2 log 39.5 1.81 1.94 35.9

gzip-3 graphic 103.7 2.26 2.54 35.7

gzip-4 random 82.2 2.22 2.48 36.0

gzip-5 program 168.9 1.81 2.00 36.1

lucas 142.4 0.11 0.11 207.1

mcf 61.9 0.10 0.14 245.2

mesa 281.7 2.92 4.44 29.6

mgrid 419.2 1.75 2.91 36.3

parser 546.7 1.32 1.58 41.4

perlbmk makerand 2.1 2.01 2.27 36.4

sixtrack 470.9 2.50 5.79 31.1

swim 225.8 1.03 1.51 42.8

twolf 346.5 0.76 0.83 52.7

vortex-1 lendian1 119.0 2.13 3.38 31.4

vortex-2 lendian2 138.7 2.35 3.89 30.7

vortex-3 lendian3 133.0 2.12 3.36 31.5

vpr route 84.1 0.56 0.64 63.8

wupwise 349.6 2.37 4.26 30.4

mean 173.8

does not decrease rapidly enough to compensate for the increased sample unit
size. For instance, although very few sampling units are required in the ex-
treme case of U = 1 × 109, the total number of sampled instructions n · U
is much greater than when U is less than 1000. Figure 3 further makes the
case that single-sampling-unit approaches, the most commonly employed ap-
proaches, cannot ensure accurate estimates since the coefficients of variation of
many benchmarks are nonnegligible even for sampling units of over one billion
instructions.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 207

Table IV. Simulated Microarchitecture Configurations

Parameter 8-way (baseline) 16-way

RUU/LSQ 128/64 256/128

Memory system 32KB 2-way L1I/D 2 ports 64KB 2-way L1I/D 4 ports

8 MSHR, 1M 4-way L2 16 MSHR, 2M 8-way L2

16-entry store buffer 32-entry store buffer

ITLB/DTLB 4-way 128 entries/ 4-way 128 entries/

4-way 256 entries 4-way 256 entries

200 cycle miss 200 cycle miss

L1/L2/mem. latency 1/12/100 cycles 2/16/100 cycles

Functional units 4 I-ALU, 2 I-MUL/DIV 16 I-ALU, 8 I-MUL/DIV

2 FP-ALU, 1 FP-MUL/DIV 8 FP-ALU, 4 FP-MUL/DIV

Branch predictor Combined 2K tables Combined 8K tables

7 cycle mispred. 10 cycle mispred.

1 prediction/cycle 2 predictions/cycle

Fig. 3. Coefficient of variation of CPI of SPEC2K benchmarks. Increasing the sampling unit size

above 1000 instructions yields little reduction in VCPI, and correspondingly small decreases in the

required sample size. Therefore, simulation time usually increases for U > 1000 instructions.

For U = 10, Figure 4 reports the values of n · U for all benchmarks, assum-
ing several commonly used confidence targets. Even for a stringent confidence
requirement of ±1% error with 99.7% confidence, the worst-case benchmark on
the 8-way configuration in our study requires no more than 0.1% of its instruc-
tion stream to be measured. The number of instructions required to achieve
a particular level of confidence does not vary significantly across benchmarks
because, for the most part, the benchmarks have similar values of VCPI. The
exceedingly low detailed simulation requirement suggests that the simulation
rate of SMARTS is insensitive to the speed of the detailed microarchitecture sim-
ulation. Rather, the rate depends on the speed of the functional simulation
performed for the great majority of the instruction stream between sampling
units. This optimistic assessment of speedup opportunity does not factor in the
detailed simulation cost for microarchitectural state warming. We next present
an analytical performance model for SMARTS to take into account the cost of
detailed and functional warming.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

208 • R. E. Wunderlich et al.

Fig. 4. Minimum sampled instructions. The minimum number of instructions that must be mea-

sured to achieve commonly used confidence intervals, assuming no warming is needed for mea-

surement, is an exceedingly small fraction of the SPEC2K benchmarks.

3.4 Simulation Speedup Model

We develop a SMARTS performance model to consider the trade-off presented by
functional warming. Let SF ≡ 1.0 represent the simulation rate of functional
simulation, and SD represent the simulation rate of detailed simulation
relative to SF . (Therefore, 1/SD is the slowdown of detailed simulation with
respect to functional simulation.) The simulation rate of SMARTS, using only
detailed and no functional warming, is given by SF ([N − n(U + W)]/N)+
SD[(n(U + W))/N]. This expression is a weighted average of SF and SD over
the fraction of the instruction stream simulated functionally versus in detail.
Figure 5 plots the SMARTS simulation rates for W between 0 and 10 million
instructions for gcc-1, with SD = 1/60 (corresponding to today’s fastest detailed
simulators) and SD = 1/600 (projected simulation rate of future processor
cores). The right-hand side vertical axis estimates the corresponding runtimes
on a 2 GHz Pentium 4.

The plot shows that SMARTS simulation speed decreases from SF to SD as W
is increased; furthermore, the anticipated future SD results in an earlier and
sharper decrease. Therefore, unless W can be bounded to a reasonably small
value, full benchmark measurement by simulation sampling would remain pro-
hibitively slow.

The simulation rate of SMARTS with functional warming can be derived from
the expression for detailed warming by substituting SFW (the functional warm-
ing simulation rate) for SF . Functional warming allows us to bound W to less
than a few thousand instructions, sufficiently few such that detailed warm-
ing does not affect the simulation rate. This implies that the simulation rate
of SMARTS with functional warming stays close to the simulation rate of SFW

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 209

Fig. 5. Modeled SMARTS simulation rate. The two SD plots show the simulation rate without func-

tional warming. The SFW plot shows the simulation rate when using functional warming to bound

W . The plots show that when W > approximately 100,000 instructions, functional warming is

faster than fast-forwarding because W can be bounded when using functional warming.

and is relatively insensitive to the performance of the detailed simulator. In
other words, the SMARTS framework enables researchers to apply otherwise
prohibitively slow detailed simulators to study complete benchmarks, provided
efficient functional warming is possible. In the next section, we will present our
implementation of SMARTS where SFW ≈ 0.55.

4. SMARTS IN PRACTICE

To study and demonstrate the effectiveness of the SMARTS framework, we de-
veloped SMARTSim, a concrete implementation of a sampling microarchitecture
simulator. In this section, we describe the implementation of SMARTSim and re-
visit the issues of microarchitectural state generation in greater detail. In par-
ticular, we explain the effect of detailed warming on the choice of sampling unit
size and analyze the effectiveness of detailed warming and functional warming
in generating accurate microarchitectural state for sample measurements.

4.1 SMARTSim

SMARTSim is built on our enhanced sim-outorder as described in Section 3.2.
Sim-outorder supports a functional simulation mode, similar to the operation
of sim-fast in SimpleScalar, that runs approximately 60 times faster than de-
tailed simulation. However, sim-outorder only supports functional simulation
prior to starting detailed simulation. SMARTSim allows repeated transitions back
and forth between functional and detailed simulation modes.

SMARTSim accepts sim-outorder command line arguments and configuration
files. In addition, SMARTSim accepts the systematic sampling parameters U , k,
W , and j (described in Section 3.1). SMARTSim also supports two fast-forwarding
options: functional simulation only, and functional simulation with warming
(i.e., functional warming). For functional warming, SMARTSim performs in-order
functional instruction execution and maintains the state of L1/L2 I/D caches,
TLBs, and branch predictors in a fashion similar to sim-cache and sim-bpred of

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

210 • R. E. Wunderlich et al.

Fig. 6. Optimal sampling unit size (U). The top chart shows that the optimal U increases with

detailed warming per measurement (W). The bottom chart illustrates that U = 1000 is a reasonable

choice across benchmarks (extremes and the median are plotted) and W .

SimpleScalar. In SMARTSim, functional warming operations introduce an over-
head of approximately 75% over functional simulation alone.

4.2 Optimal Sampling Unit Size

SMARTSim allows the user to specify the sampling unit size U . In the analy-
sis in Section 3.3, we have shown that smaller unit sizes reduce the number of
instructions simulated in detail if the cost of detailed warming is ignored. How-
ever, because detailed warming adds an overhead of W instructions of detailed
simulation per sampling unit, the optimal value for U increases with increased
W to amortize the overhead of detailed warming. To illustrate the effect of W
on the choice of U , Figure 6 (top) plots the fraction of instructions simulated in
detail (i.e., n(W + U)/N) for various values of U and W . The data points are
based on SMARTSim execution of gcc-1 on the 8-way configuration, with n chosen
for 99.7% confidence interval of ±3% in the CPI estimate. In the idealized case
where W = 0, the minimum U leads to the fewest detail-simulated instruc-
tions. For nonideal W , however, the optimal value of U lies in the range of 100
to 10,000 instructions. Figure 6 (bottom) locates the optimal values of U for

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 211

Table V. Detailed Warming Requirements without Functional Warming (8-way) (The warming

requirements of SPEC2K vary widely and unpredictably. Functional warming removes the

need to predict warming requirements for new benchmarks.)

W to Achieve

<1.5% Bias Benchmarks

W ≤ 50 × 103 applu, apsi, art-1, art-2, eon-1, eon-2, equake, fma3d, gzip-1, gzip-2, gzip-3,

gzip-4, lucas, mesa, sixtrack, twolf

W ≤ 250 × 103 crafty, eon-3, gap, gcc-1, gcc-3, gcc-4, mcf, swim, vortex-3, vpr

W ≤ 500 × 103 ammp, bzip2-1, bzip2-2, galgel, gcc-2, gcc-5, gzip-5, vortex-1, vortex-2

W ≤ 500 × 103 bzip2-3, facerec, mgrid, parser, perlbmk, wupwise

three other benchmarks, gcc-3, bzip2-1, and mesa. Each benchmark is plotted
for two values of W (1000 and 100,000) that are approximately the magnitudes
needed for sampling with and without functional warming as discussed in the
following two sections. The optimal choice of U is not fixed across benchmarks.
However, in all cases, including other SPEC2K benchmarks not shown, fixing
U to 1000 leads to a sufficiently small fraction of detail-simulated instructions
such that choosing the optimal U gains at most tens of minutes in SMARTSim
runtime. Therefore, we suggest using U = 1000 in all cases.

4.3 Effectiveness of Detailed Warming

Microarchitectural state can always be warmed to an arbitrary degree of accu-
racy given sufficient detailed warming. Unfortunately, the required amount of
detailed warming to obtain a given degree of accuracy cannot be determined
analytically. The required amount is a function of both the benchmark behavior
and the microarchitectural mechanisms involved. As a rule of thumb, we expect
the amount of detailed warming to scale with the size of the microarchitectural
state; however, there are counterexamples.

To better understand the requirements of detailed warming (unaided by
functional warming), we experimentally determine the minimum acceptable
value of W for the benchmarks with the 8-way configuration such that the bias
due to residual microarchitectural state error is just below ±1.5%. (We choose
U = 1000 and n sufficient for a 99.7% confidence interval of ±3%.) In systematic
sampling, the true bias is the average error over all k possible systematic sam-
ples. Exact determination of bias is prohibitively expensive since k is typically
on the order of 10,000 in this study. Therefore, we approximate the procedure
by averaging the errors of 5 evenly distributed systematic sampling runs (i.e.,
j = {0, k/5, 2k/5, 3k/5, 4k/5}). Table V categorizes the studied benchmarks
according to their required values of W .

Without functional warming, the required W varies widely across bench-
marks and inputs. Many benchmarks are insensitive to the accuracy of microar-
chitectural state, requiring less than 50,000 instructions of detailed warming
per measurement period. For some benchmarks, however, even W = 500,000
results in unacceptable bias as high as 25% for mgrid.

With the exception of the benchmarks requiring more than 500,000 instruc-
tions of detailed warming, detailed warming does not significantly impact the
simulation rate of SMARTSim. Even 500,000 instructions warmed per sampling

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

212 • R. E. Wunderlich et al.

unit is a small fraction of the full benchmark. Nevertheless, Table V does high-
light a key shortcoming of the detailed warming only approach: the unpre-
dictability of W . Our empirical determination of W is impractical because it
requires a priori knowledge of the true unbiased CPI derived from prohibitively
time-consuming detailed simulation of complete benchmarks.

4.4 Bounding Detailed Warming

Functional warming helps redress the unpredictability of W in detailed warm-
ing. Functional warming of problematic microarchitectural state allows us to
bound W safely for the remaining state by analyzing the details of the microar-
chitecture model. For example, to estimate CPI, W needs to be chosen such that
an instruction’s latency cannot be influenced by unwarmed microarchitectural
state. This requires W to exceed the maximum instruction stream distance that
latency-influencing state can propagate.

An instruction can only affect the latency of another instruction if there is
some history of the former still present at the time the latter is fetched. Out-
side of long-term architectural (register, memory, etc.) and microarchitectural
state (cache, TLB, branch predictor, etc.) maintained by functional warming,
the effects of an instruction are bounded by the instruction’s lifetime in the
microprocessor. With the exception of store instructions, when an instruction
commits, its associated short-term state is freed. A committed store instruction
that misses in the cache might stall a later store instruction by causing the
store buffer to overflow. Hence, a worst-case bound on W is the product of store-
buffer depth, memory latency in cycles, and the maximum IPC. For our 8-way
configuration, this upper bound is 12,800 (16 × 100 × 8) instructions. In prac-
tice, this worst-case behavior does not occur; all the 8-way results presented in
this article were achieved with only 2000 instructions of detailed warming and
16-way results with 4000.

4.5 Effectiveness of Functional Warming

Even with both functional and detailed warming, some inaccuracies in mi-
croarchitectural state remain and contribute to errors in the estimates as bias.
Table VI reports the residual bias in the CPI estimated by SMARTSim when
functional warming is employed in conjunction with detailed warming of the
aforementioned values of W . Benchmarks are presented in sorted order by the
worst bias. All benchmarks have bias under ±2.0%, and only 6 benchmarks
in each configuration exceed ±1.0%. The bias is predominantly due to wrong
path and out-of-order effects in caches and the branch predictor. This set of
results corroborates our conclusion that functional warming with bounded W
is effective in reducing microarchitectural state warming bias.

5. USING SMARTS

This section outlines an exact procedure for estimating a target metric using
statistical simulation sampling. We evaluate the effectiveness of this proce-
dure by estimating the CPI and energy per instruction (EPI) of SPEC2K using
SMARTSim.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 213

T
a

b
le

V
I.

C
P

I
B

ia
s

A
ch

ie
v
e
d

w
it

h
F

u
n

ct
io

n
a

l
W

a
rm

in
g

a
n

d
M

in
im

a
l

D
e
ta

il
e
d

W
a

rm
in

g
(D

e
ta

il
e
d

w
a

rm
in

g
o
f

o
n

ly
a

fe
w

th
o
u

sa
n

d

in
st

ru
ct

io
n

s
is

su
ffi

ci
e
n

t
to

re
d

u
ce

b
ia

s
to

a
cc

e
p

ta
b

le
le

v
e
ls

fo
r

a
ll

S
P

E
C

2
K

b
e
n

ch
m

a
rk

s.
)

8
-w

a
y

1
6

-w
a
y

W
=

2
k

C
P

I
B

ia
s

E
P

I
B

ia
s

8
-w

a
y

C
P

I
B

ia
s

E
P

I
B

ia
s

W
=

4
k

C
P

I
B

ia
s

1
6

-w
a
y

C
P

I
B

ia
s

v
p

r
−1

.5
6

%
0

.5
2

%
v
o
rt

e
x
-1

−0
.2

9
%

0
.8

0
%

m
cf

1
.8

8
%

g
zi

p
-1

−0
.2

5
%

g
a

lg
e
l

1
.3

7
%

0
.0

4
%

g
cc

-4
−0

.2
9

%
−0

.0
9

%
g
cc

-2
−1

.6
0

%
g
a

lg
e
l

−0
.2

5
%

g
cc

-2
−1

.0
7

%
0

.6
3

%
m

g
ri

d
0

.2
8

%
0

.0
9

%
v
o
rt

e
x
-3

1
.1

8
%

g
cc

-4
0

.2
4

%

b
zi

p
2

-2
−1

.0
4

%
0

.9
4

%
b

zi
p

2
-1

−0
.2

5
%

0
.5

5
%

e
o
n

-2
−1

.1
1

%
b

zi
p

2
-2

−0
.1

9
%

p
a

rs
e
r

1
.0

1
%

0
.5

6
%

g
zi

p
-3

−0
.2

5
%

0
.0

5
%

g
cc

-5
−1

.1
0

%
m

g
ri

d
−0

.1
7

%

g
zi

p
-5

0
.9

4
%

2
.3

1
%

a
m

m
p

0
.1

8
%

−2
.4

2
%

si
x
tr

a
ck

−0
.9

3
%

a
rt

-1
−0

.1
5

%

fa
ce

re
c

0
.8

6
%

0
.9

6
%

si
x
tr

a
ck

0
.1

7
%

−0
.2

7
%

w
u

p
w

is
e

0
.8

5
%

g
zi

p
-2

0
.1

4
%

g
cc

-5
−0

.8
1

%
0

.0
4

%
w

u
p

w
is

e
−0

.1
7

%
−0

.0
5

%
b

zi
p

2
-1

0
.7

8
%

g
zi

p
-5

−0
.1

2
%

v
o
rt

e
x
-3

−0
.5

5
%

0
.6

3
%

e
q

u
a

k
e

0
.1

3
%

1
.4

6
%

a
p

p
lu

0
.6

5
%

v
o
rt

e
x
-2

−0
.1

2
%

g
cc

-1
−0

.5
3

%
−1

.0
3

%
a

p
p

lu
−0

.1
2

%
−0

.0
4

%
m

e
sa

−0
.5

8
%

lu
ca

s
0

.0
9

%

b
zi

p
2

-3
−0

.5
1

%
0

.3
6

%
g
zi

p
-4

−0
.1

1
%

0
.0

9
%

e
o
n

-1
−0

.5
6

%
a

rt
-2

0
.0

7
%

p
e
rl

b
m

k
−0

.4
0

%
−0

.0
9

%
e
o
n

-2
−0

.1
0

%
−0

.1
0

%
v
o
rt

e
x
-1

−0
.5

4
%

a
p

si
−0

.0
7

%

sw
im

0
.3

8
%

0
.1

9
%

tw
o
lf

0
.0

9
%

0
.0

0
%

a
m

m
p

−0
.5

3
%

p
a

rs
e
r

0
.0

6
%

g
zi

p
-1

0
.3

8
%

1
.4

3
%

g
zi

p
-2

−0
.0

9
%

0
.2

3
%

sw
im

0
.4

4
%

g
zi

p
-3

−0
.0

5
%

m
cf

0
.3

6
%

1
.1

4
%

m
e
sa

−0
.0

7
%

0
.1

1
%

v
p

r
0

.3
8

%
tw

o
lf

0
.0

4
%

e
o
n

-1
−0

.3
6

%
−0

.1
4

%
g
a

p
0

.0
7

%
2

.4
9

%
g
cc

-3
−0

.3
6

%
b

zi
p

2
-3

−0
.0

4
%

fm
a

3
d

−0
.3

5
%

−0
.2

2
%

g
cc

-3
−0

.0
5

%
0

.0
0

%
cr

a
ft

y
0

.3
2

%
e
o
n

-3
0

.0
4

%

cr
a

ft
y

−0
.3

5
%

−0
.1

4
%

e
o
n

-3
−0

.0
4

%
−0

.1
5

%
p

e
rl

b
m

k
−0

.3
0

%
fa

ce
re

c
0

.0
3

%

a
rt

-2
0

.3
1

%
0

.1
3

%
lu

ca
s

0
.0

3
%

0
.1

3
%

fm
a

3
d

0
.2

8
%

e
q

u
a

k
e

0
.0

2
%

a
rt

-1
−0

.3
0

%
−0

.4
0

%
v
o
rt

e
x
-2

0
.0

2
%

1
.0

9
%

g
a

p
0

.2
8

%
g
zi

p
-4

0
.0

0
%

a
p

si
0

.2
9

%
−0

.4
2

%
g
cc

-1
0

.2
5

%

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

214 • R. E. Wunderlich et al.

5.1 SMARTS Procedure

One iteration of a SMARTS measurement run requires the user to supply three
sampling simulation parameters: W , U , and n. First, W is selected to exceed
the bounded history of the microarchitectural state as described in Section 4.4.
We recommend utilizing functional warming (see Section 4.5) whenever pos-
sible as it greatly simplifies the determination of W . Our 8-way results were
achieved with W = 2000 instructions, and 16-way results with W = 4000. Sec-
ond, we suggest setting U = 1000. We have shown in Section 4.2 that U = 1000
is appropriate for all SPEC2K benchmarks. Lastly, we elaborate on how to de-
termine n, and correspondingly k, to meet a desired confidence in the following
paragraphs.

In general, the correct value for n must be determined in a two-step process.
First, a sampling measurement is made using a generic initial value ninit that
is a compromise between simulation rate and the likelihood of meeting the
confidence requirement on the first try. If the choice of ninit is shown to be
insufficient after one sampling simulation, a second step is required where
ntuned for a second sample is calculated from the V̂ x of the initial run.

A priori, the minimum value of n to achieve a given confidence is unknown for
an arbitrary benchmark and simulated microarchitecture. Given a fixed confi-
dence target, n must be adjusted according to the coefficient of variation VCPI

of the population. Based on our analysis of VCPI of SPEC2K benchmarks (in
Section 3.3), we conjecture that the values of VCPI tend to cluster around 1.0 for
most benchmarks and simulated microarchitectures when U = 1000. Hence,
from ninit = (z/ε)2, we infer that ninit = 10,000 is likely to yield 99.7% confidence
interval of ±3%. Given N = 9,420,910 for the smallest of our SPEC2K bench-
marks, ninit = 10,000 still represents a very small fraction of detail-simulated
instructions and hence has minimal impact on simulation turnaround time.

One run of SMARTS measurement with k = N/ninit produces an initial estimate
of average CPI and V̂CPI of the sample. Because the confidence of an estimate
is jointly quantified by the two interdependent terms confidence level (1 – α)
and confidence interval ±ε · X̄ , one can either set a desired confidence level
and calculate the obtained confidence interval for a given sample or vice versa.
For a set confidence level (1 – α), the confidence interval is ±(z · Vx · x̄)/(

√
n)

where z is the 100[1 – (α / 2)] percentile of the standard normal distribution.
Commonly used confidence levels are 95% and 99.7% (i.e., 3σ or virtually cer-
tain). Corresponding values of z are 1.97 and 3, respectively. If the confidence
level and interval yielded by the initial sample are unacceptable, the ntuned to
achieve a desired confidence on the next sample is ((z · V̂ x)/ε)2. If the initial con-
fidence is overly below target, we suggest slightly overestimating ntuned for the
subsequent run. In any case, the actual confidence achieved by the subsequent
sample must be checked using the subsequent sample’s new V̂CPI.

This treatment of confidence considers only the error introduced by statis-
tical sampling. In practice, the true error margin in an estimate must also
account for any bias in the measurements. Recall from Section 2 that if the
bias is known, it can be accounted for by subtracting it from the estimate, with-
out affecting confidence. If the bias can only be bounded, then it introduces

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 215

Fig. 7. SMARTS CPI results with n = 10, 000. Unacceptably large confidence intervals (e.g., 8-way

ammp, vpr, and gcc-2) can be improved by simulating with ntuned .

a proportional amount of uncertainty in the estimate beyond the confidence
interval.

5.2 Evaluation of Performance and Accuracy

We applied the procedure outlined previously to SPEC2K benchmarks using
SMARTSim. Figure 7 reports results of CPI estimated using SMARTSim in one
run with ninit = 10,000. Benchmarks are shown in sorted order by worse con-
fidence intervals. For each benchmark, we show the actual achieved error and
the predicted confidence interval calculated from V̂ CPI for 99.7% confidence.
The confidence interval accounts for random error in the estimated CPI that
is introduced by systematic sampling. Notice that actual error resulting from
10,000 sampling units is generally much less than the predicted confidence
interval. A large part of this error can be attributed to the residual bias of im-
perfect microarchitectural state warming (functional warming with fixed W),
with only a very small component caused by statistical sampling.

For most of the benchmarks, ninit achieves a confidence interval within ±3%.
For benchmarks with confidence intervals greater than ±3%, simulation sam-
pling needs to be repeated using ntuned, calculated from the V̂CPI of the initial
sample. For example, rerunning simulations for the 8-way configuration with
ntuned of 66,531 (ammp), 23,321 (vpr), and 21,789 (gcc-2) achieve actual errors
of 1.1%, 0.1%, and –0.9%, respectively, with confidence intervals of 3.0%, 2.9%,
and 2.6%, respectively. To this confidence interval, we add an uncertainty due to
microarchitectural state warming bias which we empirically bound to below 2%.

Figure 8 presents the results of applying SMARTS to estimating energy per
instruction (EPI). As in CPI estimations, we find in most cases initial sam-
pling simulations using ninit = 10,000 achieves confidence intervals tighter than
±3%. Confidence intervals for EPI estimation tend to be tighter than CPI con-
fidence intervals because of less variability in EPI. Unfortunately, the smaller

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

216 • R. E. Wunderlich et al.

Fig. 8. SMARTS EPI results with n = 10, 000. VEPI tended to be lower than VCPI , leading to

narrower confidence intervals when sampling EPI.

Table VII. Estimated Runtimes for SMARTS Compared to Detailed and Functional Simulation

(8-way, 2.0 GHz Pentium 4)

Runtime (hrs.) Detailed Functional SMARTS Runtime (hrs.) Detailed Functional SMARTS

parser 541 9.2 15.8 bzip2-3 123 2.1 3.6

sixtrack 466 7.9 13.6 vortex-1 118 2.0 3.5

mgrid 414 7.0 12.1 bzip2-1 108 1.8 3.2

galgel 405 6.9 11.8 gcc-2 107 1.8 3.2

wupwise 346 5.9 10.1 gzip-3 103 1.7 3.0

apsi 344 5.8 10.1 eon-1 100 1.7 2.9

twolf 343 5.8 10.0 gzip-1 83 1.4 2.4

ammp 323 5.5 9.6 vpr 83 1.4 2.5

mesa 278 4.7 8.1 gzip-4 81 1.4 2.4

gap 266 4.5 7.8 eon-2 80 1.4 2.3

fma3d 265 4.5 7.8 gcc-5 61 1.0 1.8

swim 223 3.8 6.5 mcf 61 1.0 1.8

applu 221 3.8 6.5 eon-3 57 1.0 1.7

facerec 209 3.5 6.1 gcc-1 46 0.8 1.4

crafty 190 3.2 5.5 art-2 45 0.8 1.3

gzip-5 167 2.8 4.9 art-1 41 0.7 1.2

bzip2-2 142 2.4 4.2 gzip-2 39 0.7 1.2

lucas 141 2.4 4.1 gcc-4 13 0.2 0.4

vortex-2 137 2.3 4.0 gcc-3 12 0.2 0.4

vortex-3 132 2.2 3.9 perlbmk 2 0.1 0.1

equake 130 2.2 3.8 mean 171.8 2.9 5.0

predicted confidence intervals are overshadowed by the microarchitectural
state warming bias. With the exception of gap, equake, and gzip, the actual
errors are within the confidence interval. For these exceptions, we have deter-
mined experimentally that the error is almost entirely due to bias as shown in
Table VI.

Table VII compares simulation runtimes for functional (i.e.,sim-fast), de-
tailed (i.e., sim-outorder with detailed memory models), and SMARTSim simu-
lation on a 2GHz Pentium 4. SPEC2K benchmarks on the 8-way configuration
are shown in sorted, by length in instructions. As shown in Table VII, detailed
simulation takes on average 7.2 days and can take as long as 23 days. In con-
trast, SMARTSim takes on average 5.0 hours and, in the worst case, slightly less
than 16 hours. SMARTSim simulation speed is around 50% of functional-only
simulation for most microarchitecture configurations.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 217

Fig. 9. Comparison of SMARTS with SimPoint. SimPoint’s mean runtime per benchmark is 2.8 hours

compared to 5.0 hours for SMARTS.

5.3 Comparison to SimPoint

A recent proposal, SimPoint [Hamerly et al. 2005], also enables reduced simu-
lation turnaround time. SimPoint selects representative subsets of benchmark
traces via offline analysis of basic blocks. Using clustering algorithms, Sim-
Point selects and weights several large sampling units such that the frequency
of each static basic block across the weighted units matches that block’s fre-
quency in the full dynamic stream. A fundamental assumption of SimPoint is
that all dynamic instances of basic block sequences with similar profiles have
the same behavior, therefore a particular sequence can be measured once and
weighted appropriately to represent all remaining instances [Lau et al. 2005].

SimPoint has two key advantages: (1) due to large sampling units, SimPoint
obviates the need for functional warming and can be more quickly integrated
into a simulation infrastructure, and (2) SimPoint allows early termination of
simulation after all selected sections have been visited.

We implemented SimPoint with our SimpleScalar toolset and verified our
implementation against the published configuration and results in the first
SimPoint work [Sherwood et al. 2002]. This work recommended up to ten 100M-
instruction sampling units. SimPoint resulted in an average improvement of 1.8
in simulation speed over SMARTS for our 8-way configuration. An updated pro-
cedure and software release for SimPoint, version 3.0, now recommend approx-
imately thirty 10M-instruction sampling units and use an improved clustering
heuristic. The 10M-instruction sampling units and improved clustering results
in half the error on average and reduces the amount of detailed simulation by
roughly three times [Hamerly et al. 2005].

However, SimPoint has several shortcomings: (1) it may result in arbitrarily
high CPI error, (2) it does not offer quantifiable confidence in estimates, and
(3) it does not allow trading off confidence in results for speed which becomes a
limitation when using checkpoints instead of fast-forwarding (see Section 6.3).

Figure 9 presents a comparison of CPI error between SimPoint and SMARTS

for the benchmarks presented in Sherwood et al. [2002] running on our 8-way
configuration. The comparison shows that SimPoint has a higher average error
(3.7% vs. our 0.6%) and considerably higher worst case error (−14.3% for gcc-2).

Gcc-2 is an example where SimPoint produces an unacceptably high CPI
error when running on our 8-way configuration. However, simulation, using
the published microarchitecture configuration in Sherwood et al. [2002], only
results in a 1.6% error. In gcc-2, we observed that the program phases chosen

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

218 • R. E. Wunderlich et al.

by SimPoint to be measured with a single sampling unit exhibit large varia-
tions in their L2 miss rate. The large variations within each phase results from
too few sampling units being selected by SimPoint to measure all the differ-
ent behaviors of gcc-2. Different behaviors were clustered together, and only
one measurement was taken per phase to represent these diverse behaviors.
Therefore, in this case, the SimPoint estimate based on few large sampling
units yields a large error. In contrast, independent of benchmark and microar-
chitecture configuration, SMARTS uses the measured coefficient of variation to
help gauge both the required sample size and the confidence in the estimates.

5.4 Beyond SPEC CPU2000

While SPEC2K is the most widely used suite of general purpose CPU bench-
marks, there are many other benchmarks used in the computer architecture
community. In addition, the successor to SPEC2K is scheduled to be released
in 2006 and will contain applications with longer runtimes and larger memory
footprints. We expect new benchmarks to require minimal, if any, changes to
the SMARTS framework.

SMARTS has three parameters that should be revisited when measuring a new
benchmark, i.e., W , U , and n. The procedure for selecting these parameters is
presented in Section 5.1. The detailed warming interval length, W , is a func-
tion of the microarchitecture under study and may increase with more complex
architectures but will not vary with new benchmarks. Benchmarks longer than
SPEC2K do not cause an increase in sample size, n; only an increase in per-
formance variability (e.g., VCPI and VEPI) will require larger sample sizes. We
do not expect performance variability to increase markedly with new bench-
marks. Finally, the optimal value for the sampling unit size, U , is governed
mostly by the magnitude of W and the rate of change in performance variabil-
ity across potential sampling unit sizes (e.g., Figure 3). We expect that U = 1000
or U = 10,000 instructions will continue to be optimal or near optimal for most
other benchmarks.

6. RELATED WORK

This study investigated the optimal sampling parameters for microarchitec-
ture simulation. The SMARTS framework also prescribes an effective warming
strategy that supports many small measurements. The framework’s combina-
tion of sample design and practical implementation produce highly accurate
and reliable results for timing-accurate microarchitecture simulation. There is
a large volume of previous work on performance simulation sampling that we
extend with our tuning of sampling parameters and our design of an appro-
priate warming technique for a contemporary simulator and benchmark suite.
Note that simulation sampling is distinct from analytic modeling approaches
often referred to as statistical simulation [Eeckhout et al. 2003].

Today’s applications exhibit homogeneous execution phases that can last
for billions of instructions. It follows that statistical sampling will be effec-
tive when estimating the performance of such applications. However, there
are two broad challenges that prevent the easy application of sampling to

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 219

software-based microarchitecture simulators. These challenges are (1) the pre-
cise usage of sampling theory in measuring a representative/unbiased sample
to produce accurate estimates, and (2) overcoming the practical constraints im-
posed by software-based simulators such as eliminating cold-start bias with
warming, and fast-forwarding between measurements. In this section, we de-
scribe related work that have addressed these challenges in the past.

6.1 Eliminating Cold-Start Bias

Much of the early work in simulation sampling was performed in the context of
trace-based simulators [Smith 1982]. The inputs used by these simulators were
traces like memory access or branch direction data captured from real machines
or functional emulators. Only portions of a microarchitecture can be simulated
from such traces, and thus trace-based simulators were used in studies of stand-
alone components such as caches and branch predictors. Trace-based simula-
tors generally cannot be used to estimate runtime on modern CPUs. However,
these simulators can easily sample a recorded trace without the overhead of
fast-forwarding between measurements. The ability to quickly seek any part
of a trace leaves only a sample design and a warming strategy that eliminates
cold-start bias [Easton and Fagin 1978] from being devised.

Kessler et al. [1991] performed a comprehensive survey and comparison of
memory access trace-sampling techniques. One of the two evaluated sample
designs was set sampling, an approach specific to cache simulation. The second
sample design, time sampling, systematically sampled contiguous groups (a
sampling unit) of cache accesses [Laha et al. 1988]. Five warming techniques
were compared across several sampling unit sizes (sample size was fixed to 30
measurements): cold assumed an empty initial cache; half warmed an empty
cache for the first half of a sampling unit and measured performance for the
second half; prime measured only fully-warmed cache sets [Laha et al. 1988];
stitch preserved the cache state between sampling units [Agarwal et al. 1988];
and initmr used Wood et al.’s [1991] analytic model to estimate cold-start miss
rates. The resulting bias of these warming approaches was compared for 1,
4, and 16MB caches with sampling unit sizes of 0.1, 1, 10, and 100 million
instructions. The initmr warming approach was found to be the least biased on
average; it produced less than 10% bias in miss rate for two-thirds of the tested
cases.

Completing the warming phase before the start of measurement (like the
half technique) can decouple the amount of warming from the sample unit size.
Haskins and Skadron [2003] propose an analysis to probabilistically determine
the amount of warming required before a measurement to ensure a warmed
cache. An amount of warming is determined for each sampling unit based on
the distribution of memory reference reuse latencies (MRRL) of the instruction
stream prior to the sampling unit. Haskins and Skadron recommend the 99.9th
percentile of reuse latencies, in terms of instruction count, for warming. Exper-
imental results show very low bias in estimated IPC, however, the analysis of
MRRL was performed with large sampling units (1 million instructions) that
can amortize bias, and no direct comparison to initmr was done. MRRL requires

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

220 • R. E. Wunderlich et al.

a functional simulation of the entire benchmark before producing warming re-
quirements output.

Wenisch et al. [2006] investigated applying MRRL to the SMARTS framework
and found double the bias as functional warming, 1.1% on average as compared
to 0.6%. In addition, MRRL required tens of millions of instructions of warming
for each 1000 instruction sampling unit on average.

A more recent work in the same vein as MRRL is boundary line reuse latency
(BLRL) by Eeckhout et al. [2005] which considers only the reuse latencies that
cross the boundary line between the region before a sampling unit and the sam-
pling unit to compute warming requirements. BLRL achieves approximately
the same bias of MRRL with half the warming requirements.

6.2 Sampling Approaches

A rigorous approach to obtaining representative estimates when sampling was
performed by Conte et al. [1996]. In addition, their study used execution-driven
microarchitecture simulation as opposed to trace-based simulation. Conte’s
sample design addressed both sampling error from insufficient sample size,
and nonsampling bias due to unwarmed state at the start of measurements.
Sampling error was effectively brought to reasonable levels by taking about
1000 measurements of at least 2000 instructions each, while simulating SPEC
CPU95. SMARTS extends the sampling parameter search across a much larger
range of possible sample sizes and sampling unit sizes to determine the optimal
values for SPEC2K with a more complex and modern microarchitecture simu-
lator. The Conte study does not address cold-start bias for caches and assumes
a perfect memory hierarchy. However, Conte found that a two-level branch
predictor was effectively warmed by 7000 instructions of detailed simulation
before each measurement, a warming technique similar to Smart’s detailed
warming.

All the works cited in this related work section as well as SMARTS, use a
uniform sampling approach where measurements are taken randomly or sys-
tematically from the whole instruction stream. However, it is possible to reduce
the required amount of measurement if low variance phases can be identified
[Wunderlich et al. 2004]. Alternatively, practical constraints sometimes make
the simulation of 1000’s of measurements undesirable in comparison to fewer
carefully selected measurements. For example, it may be difficult to extract
1000’s of checkpoints collected by scanning architectural and microarchitec-
tural state from a physical processor. Instead, careful profiling may identify
performance-critical program phases, allowing only a few checkpoints corre-
sponding to the selected phases. The use of individual measurements of pro-
gram phases may also be appropriate when the goal is simply to simulate a
design on various types of dominant program behavior, and representative
benchmark performance is not required.

Two significant works in identifying program phases for representative
sampling are Iyengar et al. [1996] and Hamerly et al. [2005]. Iyengar et al.
[1996] developed a composite metric, the R-metric, to measure how represen-
tative trace-subsets are as compared to the whole instruction stream. The

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 221

R-metric compared the basic block occurrence frequencies between each subset
versus the whole program. Iyengar developed a graph-based selection algo-
rithm for subsets with optimal R-metric values. Hamerly et al. [2005] describe
a clustering-based algorithm to identify instruction stream regions that have
similar basic block occurrence frequencies. They selected measurement loca-
tions after identifying similar program regions by clustering basic block rela-
tive frequency vectors. Both of these approaches cannot achieve the high level
of accuracy and reliability of statistical sampling, but are advantageous when
collecting many measurements is infeasible.

Both Iyengar et al. [1996] and Hamerly et al. [2005] rely on a high cor-
relation of performance to repeated program instructions to achieve accurate
performance estimates. The program phases they identify are composed of pro-
gram regions with similar basic block occurrence frequencies. If these phases
do not contain homogeneous performance, then small samples will not produce
accurate estimates as seen in Section 5.3. However, it has been shown that,
in most cases, there is a strong correlation between BBV-identified phases and
performance [Lau et al. 2005].

6.3 Sampling with Checkpoints

Functional warming is the main performance bottleneck of simulation sampling
and requires hours of runtime, while the detailed simulation of the sample re-
quires only minutes. Existing simulators can avoid functional simulation by
jumping directly to particular instruction stream locations with architectural
state checkpoints. To replace functional warming, these checkpoints must ad-
ditionally provide microarchitectural model state that is accurate and reusable
across experiments, while meeting tight storage constraints.

In our latest work, we investigate a simulation-sampling framework that
replaces functional warming with live-points without sacrificing accuracy
[Wenisch et al. 2006]. A live-point stores the bare minimum of functionally-
warmed state for accurate simulation of a limited execution window, while plac-
ing minimal restrictions on microarchitectural configuration. Live-points can
be processed in random rather than program order, allowing simulation results
and their statistical confidence to be reported while simulations are in progress.
Our live-point implementation, TurboSMARTS, exactly matches the accuracy of
SMARTSim, while estimating the performance of an 8-way out-of-order super-
scalar processor running SPEC2K in 91 seconds per benchmark, on average,
using a 12GB live-point library.

Van Biesbrouck et al. [2005] apply a checkpointed warming approach simi-
lar to live-points to accelerate SimPoint measurement. They report that check-
point libraries for SimPoint-derived samples typically require less storage than
high-confidence (i.e., 99.7% confidence of ±3% error) uniform samples, whereas
uniform samples simulate fewer instructions in detail per benchmark (approx-
imately 30 million rather than approximately 300 million instructions) and
result in shorter simulation turnaround. Our experiments corroborate these
results. However, with uniform sampling, we can trade off confidence in results
to reduce turnaround time and live-point storage cost. Existing representative

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

222 • R. E. Wunderlich et al.

sampling techniques do not provide quantitative measures of confidence with
each result. Moreover, online result reporting [Wenisch et al. 2006] is not ap-
plicable to representative sampling.

7. CONCLUSION

To address the need for improved simulation accuracy and performance, we
propose the Sampling Microarchitecture Simulation (SMARTS) framework that
applies statistical sampling to microarchitecture simulation. Unlike prior ap-
proaches to simulation sampling, SMARTS prescribes an exact and constructive
procedure for sampling a minimal subset of a benchmark’s instruction execution
stream to estimate the performance of the complete benchmark with quantifi-
able confidence. The SMARTS procedure obviates the need for full-stream simu-
lation by basing the strategy for optimal simulation sampling on the outcomes
of fast sampling simulation runs.

We evaluated the SMARTS framework in the context of a wide-issue out-of-
order superscalar simulator running the SPEC2K benchmark suite under two
simulated processor configurations. SMARTSim, an implementation of SMARTS, is
created by modifying SimpleScalar’s sim-outorder to support systematic sam-
pling. The results of our evaluations demonstrated the following: (1) SMARTSim
achieves an actual average error of only 0.64% on CPI and 0.59% on EPI by sim-
ulating fewer than 50 million instructions in detail per benchmark; (2) by simu-
lating exceedingly small fractions of complete benchmarks, SMARTSim achieves
speedups of 35 and 60 times over full-stream simulation with sim-outorder for
the two configurations.

The outcomes of this study have two fundamental bearings on future simu-
lator designs. First, designers should not attempt to accelerate detailed simu-
lators at the cost of coding complexity or abstraction errors; instead designers
should focus on increasing the simulator’s flexibility and realism. For example,
the SMARTS measurement framework has been successfully integrated into the
Liberty Simulation Environment (LSE) by researchers at Princeton University
[Penry et al. 2005]. LSE is a computer architecture simulation infrastructure
which models microarchitecture at a structural rather than behavioral level of
abstraction. As such, LSE models match hardware closely, but simulation is an
order of magnitude slower than sim-outorder. Integration of SMARTS into LSE
made typical simulation times tractable. Our multiprocessor simulator, Flexus
[Hardavellas et al. 2004; Wenisch et al. 2006a], also employs the SMARTS mea-
surement framework. Flexus implements a detailed microarchitecture model
with sampling support to enable fast turnaround times on large server bench-
marks.

The second outcome of this study is that microarchitecture simulation au-
thors should focus on techniques to speed up fast-forwarding and functional
warming because these ultimately determine sampling simulation time.

REFERENCES

AGARWAL, A., HENNESSY, J., AND HOROWITZ, M. 1988. Cache performance of operating system and

multiprogramming workloads. ACM Trans. Comput. Syst. 6, 4, 393–431.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

Statistical Sampling of Microarchitecture Simulation • 223

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level

power analysis and optimizations. In Proceedings of the 27th Annual International Symposium
on Computer Architecture (June).

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. Tech. rep. 1342, (June)

Computer Sciences Department, University of Wisconsin–Madison, WI.

BURTSCHER, M. AND GANUSOV, I. 2004. Automatic synthesis of high-speed processor simulators.

In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture
(Dec).

CAIN, H. W ., LEPAK, K. M., SCHWARTZ, B. A., AND LIPASTI, M. H. 2002. Precise and accurate processor

simulation. In Workshop on Computer Architecture Evaluation Using Commercial Workloads,

HPCA (Feb.).

CHEN, S. 2004. Direct SMARTS: Accelerating microarchitectural simulation through direct execu-

tion. MS Thesis (June) Electrical and Computer Engineering, Carnegie Mellon University.

CONTE, T. M., HIRSCH, M. A., AND MENEZES, K. N. 1996. Reducing state loss for effective trace sam-

pling of superscalar processors. In Proceedings of the 14thInternational Conference on Computer
Design (Oct.).

EASTON, M. C. AND FAGIN, R. 1978. Cold-start vs. warm-start miss ratios. Comm. ACM 21, 10,

866–872.

EECKHOUT, L., NUSSBAUM, S., SMITH, J. E., AND BOSSCHERE, K. D. 2003. Statistical simulation: Adding

efficiency to the computer designer’s toolbox. IEEE Micro 23, 5, 26–38.

EECKHOUT, L., LUO, Y., DE BOSSCHERE, K., AND JOHN, L. K. 2005. BLRL: Accurate and efficient

warmup for sampled processor simulation. Comput. J. 48, 4, 451–459.

HARDAVELLAS, N., SOMOGYI, S., WENISCH, T. F., WUNDERLICH, R. E., CHEN, S., KIM, J., FALSAFI, B., HOE, J.

C., AND NOWATZYK, A. G. 2004. SimFlex: A fast, accurate, flexible full-system simulation frame-

work for performance evaluation of server architecture. ACM SIGMETRICS Performance Evaluation
Review (Mar.).

HAMERLY, G., PERELMAN, E., LAU, J., AND CALDER, B. 2005. SimPoint 3.0: Faster and more flexible

program analysis. J. Instruct. Level Parallel. (Sept.).

HASKINS, J. W. AND SKADRON, K. 2001. Minimal Subset Evaluation: Rapid warm-up for simu-

lated hardware state. In Proceedings of the 19th International Conference on Computer Design
(Sept.).

HASKINS, J. W. AND SKADRON, K. 2003. Memory Reference Reuse Latency: Accelerated warmup

for sampled microarchitecture simulation. In Proceedings of the International Symposium on the
Performance Analysis of Systems and Software (Mar.).

HSU, W. C., CHEN, H., AND YEW, P. C. 2002. On the predictability of program behavior using differ-

ent input data sets. In Workshop on Interaction between Compilers and Computer Architectures,

(Feb.).

IYENGAR, V. S., TREVILLYAN, L. H., AND BOSE, P. 1996. Representative traces for processor models

with infinite cache. In Proceedings of the 2nd IEEE Symposium on High-Performance Computer
Architecture (Feb.).

JAIN, R. K. 2001. The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York,

NY.

KESSLER, R. E., HILL, M. D., AND WOOD, D. A. 1991. A comparison of trace-sampling techniques

for multi-megabyte caches. IEEE Trans. Comput. 43, 6, 664–675.

LAFAGE, T. AND SEZNEC, A. 2000. Choosing representative slices of program execution for microar-

chitecture simulations: A preliminary application to the data stream. In IEEE Workshop on
Workload Characterization, ICCD (Sept.).

LAHA, S., PATEL, J. H., AND IYER, R. K. 1988. Accurate low-cost methods for performance evaluation

of cache memory systems. IEEE Trans. Comput. 37, 11, 1325–1336.

LAU, J., SAMPSON, J., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2005. The strong correlation be-

tween code signatures and performance. In Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software (Mar.).

LAUTERBACH, G. 1994. Accelerating architectural simulation by parallel execution of trace sam-

ples. In Proceedings of the 27th Hawaii International Conference on System Sciences (Jan). Vol.

1: Architecture, 205–210.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

224 • R. E. Wunderlich et al.

PENRY, D. A., VACHHARAJANI, M., AND AUGUST, D. I. 2005. Rapid development of flexible validated

processor models. In Proceedings of the Workshop on Modeling, Benchmarking, and Simulation,

ISCA (Nov.).

REINHARDT, S. K., HILL, M. D., LARUS, J. R., LEBECK, A. R., LEWIS, J. C., AND WOOD, D. A. 1993. The

Wisconsin Wind Tunnel: Virtual prototyping of parallel computers. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems (May).

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large

scale program behavior. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (Oct.).

SMITH, A. J. 1982. Cache memories. ACM Comput. Surv. 14, 3, 473–530.

VAN BIESBROUCK, M., EECKHOUT, L., AND CALDER, B. 2005. Efficient sampling startup for sampled

processor simulation. In Proceedings of the International Conference on High Performance Em-
bedded Architectures and Compilers (Nov.).

WENISCH, T. F., WUNDERLICH, R. E., FASAFI, B., AND HOE, J. C. 2006. Simulation sampling with

Live-points. In Proceedings of the International Symposium on Performance Analysis of Systems
and Software (Mar.).

WENISCH, T. F., WUNDERLICH, R. E., FERDMAN, M., AILAMAKI, A., FALSAFI, B., AND HOE, J. C. 2006a.

Statistical sampling of computer system simulation. IEEE Macro 26, 4 (July).

WOOD, D. A., HILL, M. D., AND KESSLER, R. E. 1991. A model for estimating trace-sample miss

ratios. In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems (May).

WUNDERLICH, R. E., WENISCH, T. F., FALSAFI, B., AND HOE, J. C. 2004. An evaluation of stratified

sampling of microarchitecture simulations. In Third Annual Workshop on Duplicating, Decon-
structing, and Debunking, ISCA (June).

Received December 2004; revised January 2006; accepted March 2006

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.

