
Storage Management in the NVRAM Era

Steven Pelley
University of Michigan

spelley@umich.edu

Thomas F. Wenisch
University of Michigan

twenisch@umich.edu
Brian T. Gold

Oracle Corporation

brian.t.gold@gmail.com

Bill Bridge
Oracle Corporation

bill.bridge@oracle.com

ABSTRACT
Emerging nonvolatile memory technologies (NVRAM) of-
fer an alternative to disk that is persistent, provides read
latency similar to DRAM, and is byte-addressable. Such
NVRAMs could revolutionize online transaction processing
(OLTP), which today must employ sophisticated optimiza-
tions with substantial software overheads to overcome the
long latency and poor random access performance of disk.
Nevertheless, many candidate NVRAM technologies exhibit
their own limitations, such as greater-than-DRAM latency,
particularly for writes.

In this paper, we reconsider OLTP durability management
to optimize recovery performance and forward-processing
throughput for emerging NVRAMs. First, we demonstrate
that using NVRAM as a drop-in replacement for disk al-
lows near-instantaneous recovery, but software complexity
necessary for disk (i.e., Write Ahead Logging/ARIES) lim-
its transaction throughput. Next, we consider the possi-
bility of removing software-managed DRAM buffering. Fi-
nally, we measure the cost of ordering writes to NVRAM,
which is vital for correct recovery. We consider three re-
covery mechanisms: NVRAM Disk-Replacement, In-Place
Updates (transactions persist data in-place), and NVRAM
Group Commit (transactions commit/persist atomically in
batches). Whereas In-Place Updates offers the simplest de-
sign, it introduces persist synchronizations at every page
update. NVRAM Group Commit minimizes persist synchro-
nization, offering up to a 50% throughput improvement for
large synchronous persist latencies.

1. INTRODUCTION
For decades disk has been the primary technology for

durable storage. Although inexpensive and dense, disk pro-
vides high performance only for coarse-grained sequential
access and suffers enormous slowdowns for random reads and
writes. Flash-based solid-state disks greatly reduce coarse-
grain random access latency, but retain a block-grain in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 40th International Conference on Very Large Data Bases,
September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 2
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

0 20 40 60 80 100 120
Throughput (kTPS)

0

10

20

30

40

50

R
ec

ov
er

y
ti

m
e

(s
)

127k

35k

14k

6kARIES/WAL
(page writes/s)
No WAL/
write back

Figure 1: TPCB recovery latency vs throughput. In-
creasing page flush rate reduces recovery latency. Removing
WAL entirely improves throughput by 50%.

terface and still suffer from poor write performance; past
work suggests that effective data management strategies re-
main similar for rotating disk and Flash [20]. Recently,
Nonvolatile Random Access Memories (NVRAM), such as
phase change memory and spin-transfer torque RAM, have
emerged as viable storage alternatives [5]. Whereas the de-
tails of these technologies vary, they share the ability to
write persistently with low latency at fine granularity. How-
ever, many candidate technologies share limitations, such as
limited write endurance and high write latency [15].

These NVRAM technologies stand to revolutionize On-
line Transaction Processing (OLTP), where consistency and
durability are paramount, but applications demand high
throughput and low latency. Prior work has already demon-
strated the potential of these technologies to enhance file
systems [10] and persistent data structures [27], but has not
considered OLTP. Today, OLTP systems are designed from
the ground up to circumvent disk’s performance limitations.
For example, many popular database systems use Write-
Ahead Logging (WAL; e.g., ARIES [17]) to avoid expensive
random disk writes by instead writing to a sequential log.
Although effective at hiding write latency, WAL entails sub-
stantial software overheads.

NVRAM offers an opportunity to simultaneously improve
database forward-processing throughput and recovery la-
tency by rethinking mechanisms that were designed to ad-
dress the limitations of disk. Figure 1 demonstrates this
potential, displaying recovery time and transaction through-
put for the TPCB workload running on the Shore-MT stor-
age manager [13] for hypothetical NVRAM devices (see Sec-
tion 4 for a description of our methodology).

The ARIES/WAL points (black circles) in the Figure show
forward-processing throughput (horizontal axis) and recov-
ery time (vertical axis) as a function of device write through-
put (annotated alongside each point). As database through-
put can greatly outpace existing storage devices (our con-
figuration requires 6,000 page writes/s to bound recovery;
measured disk and flash devices provide only 190 and 2,500
page writes/s, respectively) we model recovery performance
under faster NVRAM using a RAM disk for log and heap
while limiting the page flush rate. As intuition would sug-
gest, greater write bandwidth enables more aggressive flush-
ing, minimizing the number of dirtied pages in the buffer
cache at the time of failure, reducing recovery time. With
enough write bandwidth (in this case, 127,000 flushes/s, or
0.97 GB/s random writes for 8KB pages) the database re-
covers near-instantly, but forward-processing performance
remains compute bound. Achieving such throughput today
requires large, expensive disk arrays or enterprise flash stor-
age devices; future NVRAM devices might enable similar
performance on commodity systems.

NVRAM opens up even more exciting opportunities for
recovery management if we consider re-architecting database
software. Figure 1 shows this additional potential with a
design point (red triangle) that removes WAL and asyn-
chronous page flushing—optimizations primarily designed to
hide disk latency. Throughput improves due to three effects:
(1) threads previously occupied by page and log flushers be-
come available to serve additional transactions, (2) asyn-
chronous page flushing, which interferes with transactions
as both flusher and transaction threads latch frequently ac-
cessed pages, is removed, and (3) transactions no longer in-
sert WAL log entries, reducing the transaction code path. In
aggregate these simplifications amount to a 50% throughput
increase over ARIES’s best possible NVRAM performance.
The key take-away is that database optimizations long used
for disk only hinder performance with faster devices. In this
paper, we investigate how to redesign durable storage and
recovery management for OLTP to take advantage of the
low latency and byte-addressability of NVRAM.

NVRAMs, however, are not without their limitations. Se-
veral candidate NVRAM technologies exhibit larger read
latency and significantly larger write latency compared to
DRAM. Additionally, whereas DRAM writes benefit from
caching and typically are not on applications’ critical paths,
NVRAM writes must become persistent in a constrained or-
der to ensure correct recovery. We consider an NVRAM
access model where correct ordering of persistent writes is
enforced via persist barriers, which stall until preceding NV-
RAM writes are complete; such persist barriers can intro-
duce substantial delays when NVRAM writes are slow. Giv-
en the possible NVRAM technologies and their disparate
performance characteristics, we propose a range of new NV-
RAM-specific database designs, evaluating their sensitivity
to NVRAM characteristics. We contribute:

• a methodology for analyzing NVRAM read and write

performance on existing hardware platforms, utilizing
memory trace analysis, code annotation, and precise
timing models.

• an analysis of NVRAM read latency’s effect on data-
base throughput, quantifying the impact of caching.

• a comparison of ARIES, as NVRAM Disk-Replace-
ment, against In-Place Updates, wherein the data heap
updates synchronously as in in-memory databases.

• a new recovery mechanism, NVRAM Group Commit,
providing fast recovery and high throughput even in
the presence of high-latency persist barriers.

We draw several conclusions. First, even though NVRAM
read latency may be slower than DRAM, for the likely la-
tency range, even a small amount of buffer cache (10s of
pages) is sufficient to hide the higher latency. Second, when
average persist barrier latency is low (below 1µs), In-Place
Updates performs substantially better than NVRAM Disk-
Replacement, by as much as 50% greater throughput in the
best case. Finally, when average persist barrier latency in-
creases beyond 1µs, NVRAM Group Commit retains much
of the throughput advantage of In-Place Updates, continuing
to outperform NVRAM Disk-Replacement, while providing
a user-controllable latency trade-off.

Our paper is organized as follows. Section 2 provides an
overview of NVRAM technologies and ARIES recovery man-
agement. Section 3 describes the possible design space of
OLTP software leveraging NVRAM. In Section 4 we describe
our experimental methodology. Sections 5 and 6 evaluate
the performance of OLTP on NVRAM considering read and
write performance concerns, respectively. We discuss related
work in Section 7. Finally, in Section 8 we conclude.

2. BACKGROUND
This section provides an overview of anticipated NVRAM

technologies and database recovery mechanisms.

2.1 Nonvolatile Memories
Nonvolatile memories will soon be commonplace. Tech-

nology trends suggest that DRAM and flash memory may
cease to scale, requiring new dense memory technologies [15].

Memory technology characteristics. Numerous tech-
nologies offer durable byte-addressable access. Examples in-
clude phase change memory (PCM), where a chalcogenide
glass is heated to produce varying electrical conductivities,
and spin-transfer torque memory (STT-RAM), a magnetic
memory that stores state in electron spin [5]. Storage ca-
pacity increases by storing more than two states per cell in
Multi-level Cells (MLC) (e.g., four distinct resistivity levels
provide storage of 2 bits per cell).

While it remains unclear which of these technologies will
eventually dominate, many share common characteristics.
In particular, NVRAMs will likely provide somewhat higher
access latency relative to DRAM. Furthermore, several tech-
nologies are expected to have asymmetric read-write laten-
cies, where writing to the device may take several microsec-
onds [22]. Write latency worsens with MLC, where slow,
iterative writes are necessary to reliably write to a cell.

Resistive NVRAM technologies suffer from limited write
endurance; cells may be written reliably a limited number

of times. While write endurance is an important considera-
tion, proposed hardware mechanisms (e.g., Start-Gap [21])
are effective in distributing writes across cells, mitigating
write endurance concerns. We do not evaluate NVRAM
endurance-related concerns in this paper.

NVRAM storage architectures. Future database sys-
tems may incorporate NVRAM in a variety of ways. At
one extreme, NVRAM can be deployed as a disk or flash
SSD replacement. While safe, cost-effective, and backwards
compatible, the traditional disk interface imposes overheads.
Prior work demonstrates that file system and disk controller
latencies dominate NVRAM access times [6]. Furthermore,
block access negates advantages of byte addressability.

Recent research proposes alternative device interfaces for
NVRAM. Caulfield et al. propose Moneta and Moneta Di-
rect, a PCIe attached PCM device [7]. Unlike disk, Mon-
eta Direct bypasses expensive system software and disk con-
troller hardware to minimize access latency while still pro-
viding traditional file system semantics. However, Moneta
retains a block interface. Condit et al. suggest that NVRAM
connect directly to the memory bus, with additional hard-
ware and software mechanisms providing file system access
and consistency [10]. We adopt the same atomic eight-byte
persistent write, enabling small, safe writes even in the face
of failure. While exposing NVRAM as a byte-addressable
memory raises interesting questions regarding access pro-
tection and memory allocation, we assume the operating
system and hardware provide the necessary functionality.
NVRAM will eventually connect via a memory interface,
but it is unclear how NVRAM storage will evolve or what
its exact performance characteristics will be.

Instead of focusing on device interface, we investigate the
costs of providing durable consistency. We consider two
aspects of the storage architecture: enforcing the order in
which data persistently writes to the device, and notifying
the user that their data are durable (e.g., to commit a trans-
action), which we collectively call persist barriers (similar
to epoch barriers in [10]). We introduce the term persist,
meaning “make persistent,” to distinguish NVRAM device
writes from volatile DRAM writes. Disk access achieves con-
sistency through per-write acknowledgements—the user en-
forces the order of persists by receiving an acknowledgement
or blocking before subsequent writes issue. With NVRAM,
we expect such synchronization to incur latencies up to sev-
eral microseconds. Accessing several memory chips in par-
allel will enable high access bandwidth (Flash SSD devices
currently provide up to 1.5 GB/s), suggesting that persist
order constraints will be the predominant performance bot-
tleneck for many applications. Ordering writes in hardware
presents opportunities for improved performance, but with
some remaining cost, particularly to flush data when trans-
actions commit. We do not consider a specific persist barrier
implementation. Rather, in this paper we investigate how
persist barrier stall latency affects optimal database design
and throughput. Next, we describe recovery mechanisms.

2.2 Database Recovery
Transactions execute with various guarantees on isolation

and durability. While relaxing these constraints often im-
proves transaction performance, we focus on providing at
least read committed isolation with synchronous durable
commit. Atomic and durable transactions commit or abort
seemingly instantaneously, despite failures—no transaction

may be observed in a partially executed state, or may be
observed at all if that transaction eventually aborts. While
concurrency control plays a large role in ensuring these guar-
antees, separate mechanisms provide recovery to maintain
data integrity and consistency to withstand failures. We de-
scribe ARIES [17], a popular Write Ahead Logging (WAL)
system that provides atomic durable transactions.

ARIES. ARIES uses a two-level store (disk and volatile
buffer cache) alongside a centralized log. Transactions’ wri-
tes coalesce in the buffer cache while persisting to the log,
transforming random accesses into sequential accesses. Whe-
reas such logging is a necessary optimization when using
disk, it is also a proven technique for providing durable con-
sistency. The log contains both redo and undo entries for
each update. Redo logs record actions performed on heap
pages so that they can be replayed if data has not yet per-
sisted in-place. Undo logs provide roll back operations nec-
essary to remove aborted and uncommitted transaction up-
dates during recovery. Recovery begins at the latest check-
point, taken periodically and marked in the log. The redo
log replays to its end, reproducing the state at failure in
the buffer cache. Afterwards, incomplete transactions are
removed using the appropriate undo log entries. Undo log
entries contain a transaction number and refer to the previ-
ous entry generated from the same transaction.

While a centralized log orders all database updates, the
software additionally enforces that the log persists before
the heap page for every operation. Transactions commit
by generating a commit log entry, which must necessarily
persist after the transaction’s other log entries. This process
guarantees that no transaction commits, or page persists,
without a durable history of its modifications in the log.

Though complex, ARIES improves database performance
with disks. First, log writes appear as sequential accesses
to disk, maximizing device throughput. Additionally, aside
from reads resulting from buffer cache misses, each transac-
tion depends on device access only at commit to flush log
entries. All disk writes to the heap may be done at a later
time, off of transactions’ critical paths. In this way ARIES
is designed from the ground up to minimize the effect of
large disk access latencies.

ARIES, and more generally, WAL, provides a number of
features aside from failure recovery. The log contains a com-
plete redo-history of the database, and in conjunction with
database snapshots allows arbitrary point-in-time recovery
of the database. Further, logs support profiling and debug-
ging for database applications. Finally, database replication
and hot-standby commonly rely on communicating logs as
a means to keep two instances of the same database consis-
tent. Although we recognize their importance, we believe
it is worth evaluating the performance cost WAL incurs for
these features and consider removing WAL entirely.

Whereas disk relies on ARIES and related WAL schemes
to improve performance while ensuring correctness, we ex-
pect NVRAM to provide sufficiently fast access that central-
ized logging is no longer useful for performance, and presents
only unnecessary overheads. Specifically, the log maintains
a total order of updates across all transactions, requiring fre-
quent synchronization to serialize log entries. While multi-
threaded logging can be made scalable [14], large overheads
remain. In this paper, we focus on providing atomic durable
transactions, as in ARIES, without the associated overheads
and complexity of centralized logging.

NVRAM Disk-Replacement In-Place Updates NVRAM Group Commit

Software buffer Traditional WAL/ARIES Updates both buffer and NVRAM Buffer limits batch size

Hardware buffer Impractical Slow uncached NVRAM reads Requires hardware support

Replicate to DRAM Provides fast reads and removes buffer management, but requires large DRAM capacity

Table 1: NVRAM design space. Database designs include recovery mechanisms (top) and cache configurations (left).

3. NVRAM DATABASE DESIGN
Near-future NVRAM devices will undoubtedly be faster

than both disk and flash. However, compared to DRAM
many NVRAM technologies impose slower reads and signif-
icantly slower persistent writes. We must consider both in
redesigning OLTP for NVRAM.

3.1 NVRAM Reads
While the exact read performance of future NVRAM tech-

nologies is uncertain, many technologies and devices increase
read latency relative to DRAM. Current databases and com-
puter systems are not equipped to deal with this read la-
tency. Disk-backed databases incur sufficiently large read
penalties (on the order of milli-seconds) to justify software-
managed DRAM caches and buffer management. On the
other hand, main-memory databases rely only on the DRAM
memory system, including on-chip data caches. Increased
memory latency and wide-spread data accesses may require
hardware or software-controlled DRAM caches even when
using byte addressable NVRAM.

We consider three configurations of cache management;
these alternatives form the three rows of Table 1 (we con-
sider the recovery management strategies, forming the three
columns, and the resulting design space in subsequent sub-
sections). The first option, Software Buffer, relies on soft-
ware to manage a DRAM buffer cache, as in conventional
disk-backed databases. Second, we may omit the cache
or rely solely on a Hardware Buffer, as in main-memory
databases. Hardware caches are fast (e.g., on-chip SRAM)
and remove complexity from the software, but provide lim-
ited capacity. Third, we might replicate to DRAM all data
stored in NVRAM—writes update both DRAM and NV-
RAM (for recovery), but reads retrieve data exclusively from
DRAM. Replicating data ensures fast reads by avoiding NV-
RAM read latencies (except for recovery) and simplifies buf-
fer management, but requires large DRAM capacity.

We investigate how NVRAM read latency will drive stor-
age management design. Our experiments explore the first
design option—a software-controlled cache—and vary cache
capacity and NVRAM access latency to determine the effect
of caching on transaction throughput.

3.2 NVRAM Writes
Persistent writes, unlike reads, do not benefit from cach-

ing; writes persist through to the device for recovery cor-
rectness. Additionally, NVRAM updates must be carefully
ordered to ensure consistent recovery. We assume that or-
dering is enforced through a mechanism we call a persist bar-
rier, which guarantees that writes before the barrier persist
before any dependant operations after the barrier persist.

Persist barriers may be implemented in several ways. The
easiest, but worst performing, is to delay at persist barriers
until all pending NVRAM writes successfully persist. More
complicated mechanisms improve performance by allowing

p e r s i s t w a l (l o g b u f f e r , nvram log)
f o r entry in l o g b u f f e r :

nvram log . f o r c e l a s t l s n i n v a l i d (entry)
nvram log . i n s e r t body (entry) # no l s n

p e r s i s t b a r r i e r ()
nvram log . updat e l sn s ()
p e r s i s t b a r r i e r ()

p e r s i s t p a g e (page v , page nv , page log)
page log . copy from (page nv)
p e r s i s t b a r r i e r ()
page log . mark val id ()
p e r s i s t b a r r i e r ()
page nv . copy from (page v)
p e r s i s t b a r r i e r ()
page log . mark inva l id ()
p e r s i s t b a r r i e r ()

Figure 2: Durable atomic updates. persist wal()

appends to the ARIES log using two persist barriers.
persist page() persists pages with four persist barriers.

threads to continue executing beyond the persist barrier and
only delaying thread execution when persist conflicts arise
(i.e., a thread reads or overwrites shared data from another
thread that has not yet persisted). BPFS provides an ex-
ample implementation of this mechanism [10]. Regardless
of how they are implemented, persist barriers can introduce
expensive synchronous delays on transaction threads; as we
show, the optimal recovery mechanism depends on how ex-
pensive, on average, persist barriers become. To better un-
derstand how persist barriers are used and how frequently
they occur, we outline operations to atomically update per-
sistent data using persist barriers, and use these operations
to implement three recovery mechanisms for NVRAM.

Atomic durable updates. Figure 2 shows two op-
erations to atomically update NVRAM data. The first,
persist wal(), persists log entries into an ARIES log. Sho-
re-MT log entries are post-pended with their Log Serial
Number (LSN – log entry file offset). Log entries are con-
sidered valid only if the tail LSN matches the location of
the entry. We persist log entries atomically by first persist-
ing an entry without its tail LSN and only later persisting
the LSN, ordered by a persist barrier. Additionally, we re-
duce the number of persist barriers by persisting entries in
batches, writing several log entries at once (without LSNs),
followed by all their LSNs, separated by a single persist bar-
rier. Log operations introduce two persist barriers—one to
ensure that log entries persist before their LSNs, and one to
enforce that LSNs persist before the thread continues exe-
cuting.

The second operation, persist page(), atomically per-
sists page data using a persistent undo page log. First, the

page’s original data is copied to the page log. The page log
is marked valid and the dirty version of the page is copied to
NVRAM (updated in-place while locks are held). Finally,
the log is marked invalid. Four persist barriers ensure that
each persist completes before the next, enforcing consistency
at all points in execution. Recovery checks the valid flags
of all page logs, copying valid logs back in-place. The log
is always valid while the page persists in-place, protecting
against partial NVRAM writes. Together, persist wal()

and persist page() provide the tools necessary to build our
recovery mechanisms. We discuss these mechanisms next,
describing their implementation and performance.

NVRAM Disk-Replacement. NVRAM database sys-
tems will likely continue to rely on ARIES/WAL at first, us-
ing NVRAM as NVRAM Disk-Replacement. WAL provides
recovery for disk by keeping an ordered log of all updates, as
described in Section 2.2. While retaining disk’s software in-
terface, NVRAM block accesses copy data between volatile
and nonvolatile address spaces. NVRAM Disk-Replacement
in Shore-MT persists the log and pages with persist wal()

and persist page(), respectively. Persists occur on log and
page flusher threads, and transaction threads do not de-
lay (except when waiting for commit log entries to persist).
NVRAM Disk-Replacement provides low recovery latency
by aggressively flushing pages, minimizing recovery replay.
While requiring the least engineering effort, NVRAM Disk-
Replacement contains large software overheads to maintain
a centralized log and asynchronously flush pages. We can
leverage NVRAM’s low latency to reduce these overheads.

In-Place Updates. Fast, byte-addressable NVRAM al-
lows data to persist in-place, enforcing persist order immedi-
ately in a design we call In-Place Updates. In-Place Updates
allows us to remove the centralized log by providing redo and
undo log functionality elsewhere. We remove redo logs by
keeping the database’s durable state up-to-date. In ARIES
terms, the database maintains its replayed state—there is
no need to replay a redo log after failure. Undo logs need
not be ordered across transactions (transactions are free to
roll back in any order), so we distribute ARIES undo logs by
transaction. Such private logs are simpler and impose fewer
overheads than centralized logs. Transaction undo logs re-
main durable so that in-flight transactions can be rolled back
after failure. Page updates (1) latch the page, (2) insert
an undo entry into the transaction-private undo log using
persist wal(), (3) update the page using persist page()

(without an intermediate volatile page), and (4) release the
page latch. This protocol ensures all updates to a page, and
updates within a transaction, persist in-order, and that no
transaction reads data from a page until it is durable.

Persisting data in-place removes expensive redo logging
and asynchronous page flushing, but introduces persist bar-
riers on transactions’ critical paths. For sufficiently short
persist barrier delays In-Place Updates outperforms NV-
RAM Disk-Replacement. However, we expect transaction
performance to suffer as persist barrier delay increases. We
next introduce NVRAM Group Commit, a recovery mecha-
nism designed to minimize the frequency of persist barriers
while still removing WAL.

NVRAM Group Commit. The two previous recov-
ery mechanisms provide high throughput under certain cir-
cumstances, but contain flaws. NVRAM Disk-Replacement
is insensitive to large persist barrier delays. However, it
assumes IO delays are the dominant performance bottle-

neck and trades off software overhead to minimize IO. In-
Place Updates, on the other hand, excels when persist bar-
riers delays are short. As persist barrier latency increases
performance suffers, and NVRAM Disk-Replacement even-
tually performs better. We provide a third option, cou-
pling NVRAM Disk-Replacement’s persist barrier latency-
insensitivity with In-Place Updates’s low software overhead:
NVRAM Group Commit.

NVRAM Group Commit operates by executing transac-
tions in batches, whereby all transactions in the batch com-
mit or (on failure) all transactions abort. Transactions qui-
esce between batches—at the start of a new batch transac-
tions stall until the previous batch commits. Each transac-
tion maintains a private ARIES-style undo log, supporting
abort and roll-back as in In-Place Updates, but transaction
logs are no longer persistent. As batches persist atomically,
transactions no longer roll back selectively during recovery
(rather, aborted transactions roll back before any data per-
sists), obviating the need for persistent ARIES undo logs.
Instead, recovery relies on a database-wide undo log and
staging buffer to provide durable atomic batches.

NVRAM Group Commit leverages byte-addressability to
reduce persist barrier frequency by ordering persists at batch
rather than transaction or page granularity. Batch commit
resembles persist page(), used across the entire database,
once per batch. Because undo logging is managed at the
batch level, transactions’ updates may not persist in-place
to NVRAM until all transactions in the batch complete.
Rather, transactions write to a volatile staging buffer, track-
ing dirtied cache lines in a concurrent bit field. Once the
batch ends and all transactions complete, the pre-batch ver-
sion of dirtied data is copied to the database-wide persistent
undo log, only after which data is copied from the stag-
ing buffer in-place to NVRAM. Finally, the database-wide
undo log is invalidated, transactions commit, and transac-
tions from the next batch begin executing. On failure the
log is copied back, aborting and rolling back all transactions
from the in-flight batch. The key observation is that NV-
RAM Group Commit persists entire batches of transactions
using four persist barriers, far fewer than required with In-
Place Updates. Note, however, that it enables recovery only
to batch boundaries, rather than transaction boundaries.

We briefly outline two implementation challenges: long
transactions and limited staging buffers. Long transactions
force other transactions in the batch to defer committing un-
til the long transaction completes. Limited staging buffers,
not large enough to hold the entire data set, may fill while
transactions are still executing. We solve both problems by
resorting to persistent ARIES-style undo logs, as in In-Pl-
ace Updates. Long transactions persist their ARIES undo
log (previously volatile), allowing the remainder of the batch
to persist and commit. The long transaction joins the next
batch, committing when that batch commits. At recov-
ery the most recent batch rolls back, and the long trans-
action’s ARIES undo log is applied, removing updates that
persisted with previous batches. Similarly, if the staging
buffer fills, the current batch ends immediately and all out-
standing transactions persist their ARIES undo logs. The
batch persists, treating in-flight transactions as long trans-
actions, reassigning them to the next batch. This mecha-
nism requires additional persistent data structures to allow
transaction and batch logs to invalidate atomically.

NVRAM Group Commit requires fewer persist barriers

than In-Place Updates and avoids NVRAM Disk-Replace-
ment’s logging. Batches require four persist barriers regard-
less of batch length. Persist barrier delays are amortized
over additional transactions by increasing batch length, im-
proving throughput. Batch length must be large enough to
dominate time spent quiescing transactions between batches.
However, increasing batch length defers commit for all trans-
actions in the batch, increasing transaction latency.

3.3 Design Space
We describe the space of possible designs given our choices

regarding NVRAM read and write performance. Our discus-
sion ignores possible uses of hard disk to provide additional
capacity. Each design works alongside magnetic disk with
additional buffer management and the constraint that pages
persist to disk before being evicted from NVRAM. Many
modern OLTP applications’ working sets are small, fitting
entirely in main-memory.

Table 1 lists the possible combinations of caching archi-
tectures and recovery mechanisms. The left column presents
NVRAM Disk-Replacement, which we see as the obvious and
most incremental use for NVRAM. Of note is the center-
left cell, NVRAM Disk-Replacement without the use of a
volatile buffer. WAL, by its design, allows pages to write
back asynchronously from volatile storage. Removing the
volatile cache requires transactions to persist data in-place,
but do so only after associated log entries persist, retain-
ing the software overheads of NVRAM Disk-Replacement as
well as the frequent synchronization in In-Place Updates.
We find this design impractical.

The middle-column recovery mechanism, In-Place Updat-
es, represents the most intuitive use of NVRAM in database
systems, as noted in several prior works. Agrawal and Ja-
gadish explore several algorithms for atomic durable trans-
actions with an NVRAM main-memory [2]. They describe
the operation and correctness of each mechanism and pro-
vide an analytic cost model to compare them. Their work
represents the middle column, middle row of Table 1 (In-
Place Updates with no volatile buffer). Akyürek and Salem
present a hybrid DRAM and NVRAM buffer cache design
alongside strategies for managing cache allocation [23]. Such
Partial Memory Buffers resemble the middle-top cell of our
design space table (In-Place Updates with a software-managed
DRAM buffer), although their design considers NVRAM as
part of a hybrid buffer, not the primary persistent store.
Neither of these works considers alternative approaches (such
as NVRAM Group Commit), to account for large persist bar-
rier latency and associated delays. Additionally, we extend
prior work by providing a more precise performance evalua-
tion and more detailed consideration of NVRAM character-
istics.

The right column presents NVRAM Group Commit. Each
of our three recovery mechanisms may replicate all data be-
tween NVRAM and DRAM to ensure fast read accesses,
manage a smaller DRAM buffer cache, or omit the cache
altogether. In Section 5 we consider the importance of NV-
RAM caching to transaction throughput. Then, in Section 6
we assume a DRAM-replicated heap to isolate read perfor-
mance from persist performance in evaluating each recovery
mechanisms’s ability to maximize transaction throughput.
The next section describes our evaluation methodology.

Operating System Ubuntu 12.04
CPU Intel Xeon E5645

2.40 GHz
CPU cores 6 (12 with HyperThreading)
Memory 32 GB

Table 2: Experimental system configuration.

4. METHODOLOGY
This section details our methodology for benchmarking

transaction processing and modeling NVRAM performance.
Our experiments use the Shore-MT storage manager [13],
including the high performance, scalable WAL implementa-
tion provided by Aether [14]. While Aether provides a dis-
tributed log suitable for multi-socket servers, the distributed
log exists as a fork of the main Shore-MT project. Instead,
we limit experiments to a single CPU socket to provide a
fair comparison between WAL and other recovery schemes,
enforced using the Linux taskset utility. Our experiments
place both the Shore-MT log and volume files on an in-
memory tmpfs, and provide sufficiently large buffer caches
such that all pages hit in the cache after warmup. The intent
is to allow the database to perform data accesses at DRAM
speed and introduce additional delays to model NVRAM
performance. Table 2 shows our system configuration.

Modeling NVRAM delays. Since NVRAM devices are
not yet available, we must provide a timing model that mim-
ics their expected performance characteristics. We model
NVRAM read and write delays by instrumenting Shore-MT
with precisely controlled assembly-code delay loops to model
additional NVRAM latency and bandwidth constraints at
20ns precision. Hence, Shore-MT runs in real time as if its
buffer cache resided in NVRAM with the desired read and
write characteristics.

We introduce NVRAM read and write delays separately.
Accurately modeling per-access increases in read latency is
challenging, as reads are frequent and the expected latency
increases on NVRAM are small. It is infeasible to use soft-
ware instrumentation to model such latency increases at the
granularity of individual reads; hardware support, substan-
tial time dilation, or alternative evaluation techniques (e.g.,
simulation) would be required, all of which compromise ac-
curacy and our ability to run experiments at full scale. In-
stead, we use offline analysis with PIN [16] to determine (1)
the reuse statistics of buffer cache pages, and (2) the average
number of cache lines accessed each time a page is latched.
Together, these offline statistics allow us to calculate an av-
erage number of cache line accesses per page latch event in
Shore-MT while considering the effects of page caching. We
then introduce a delay at each latch based on the measured
average number of misses and an assumed per-read latency
increase based on the NVRAM technology.

We model NVRAM persist delays by annotating Shore-
MT to track buffer cache writes at cache line granularity—
64 bytes—using efficient “dirty” bitmaps. Depending on
the recovery mechanism, we introduce delays corresponding
to persist barriers and to model NVRAM write bandwidth
contention. Tracking buffer cache writes introduces less than
a 3% overhead to the highest throughput experiments.

We create NVRAM delays using the x86 RDTSCP in-
struction, which returns a CPU-frequency-invariant, mono-
tonically increasing time-stamp that increments each clock
tick. RDTSCP is a synchronous instruction—it does not

allow other instructions to reorder with it. Our RDTSCP
loop delays threads in increments of 20ns (latency per loop
iteration and RDTSCP) with an accuracy of 2ns.

In addition to NVRAM latency, we model shared NV-
RAM write bandwidth. Using RDTSCP as a clock source,
we maintain a shared next available variable, representing
the next clock tick in which the NVRAM device is available
to be written. Each NVRAM persist advances next available
to account for the latency of its persist operation. Reserva-
tions take the maximum of next available and the current
RDTSCP and add the reservation duration. The new value
is atomically swapped into next available via a Compare-
And-Swap (CAS). If the CAS fails (due to a race with a
persist operation on another thread), the process repeats
until it succeeds. Upon success, the thread delays until the
end of its reservation. The main limitation of this approach
is that it cannot model reservations shorter than the delay
required to perform a CAS to a contended shared variable.
This technique models reservations above 85ns accurately,
which is sufficient for our experiments.

We choose on-line timing modeling via software instru-
mentation in lieu of architectural simulations to allow our
experiments to execute at full scale and in real time. While
modeling aspects of NVRAM systems such as cache perfor-
mance and more precise persist barrier delays require de-
tailed hardware simulation, we believe NVRAM device and
memory system design are not sufficiently established to
consider this level of detail. Instead, we investigate more
general trends to determine if and when NVRAM read and
write performance warrant storage management redesign.

Recovery performance. Figure 1 displays recovery la-
tency vs transaction throughput for the TPCB workload,
varying page flush rate. We control page flush rate by main-
taining a constant number of dirty pages in the buffer cache,
always flushing the page with the oldest volatile update.
Experiments run TPCB for one minute (sufficient to reach
steady state behavior) and then kill the Shore-MT process.
Before starting recovery we drop the file system cache. Re-
ported recovery time includes only the recovery portion of
the Shore-MT process; we do not include system startup
time nor non-recovery Shore-MT startup time.

Workloads We use three workloads and transactions in
our evaluation: TPCC, TPCB, and TATP. TPCC models
order management for a company providing a product or
service [26]. TPCB contains one transaction class and mod-
els a bank executing transactions across branches, tellers,
customers, and accounts [25]. TATP includes seven trans-
actions to model a Home Location Registry used by mobile
carriers [1]. Table 3 shows our workload configuration. We
scale workloads to fit in a 12GB buffer cache. Persist per-
formance experiments use a single write-heavy transaction
from each workload while read performance experiments use
each workload’s full mix. All experiments report through-
put as thousands of Transactions Per Second (kTPS). Ex-
periments perform “power runs” – each thread generates
and executes transactions continuously without think time
– and run an optimal number of threads per configuration
(between 10 and 12).

5. NVRAM READ PERFORMANCE
We first evaluate database performance with respect to

NVRAM reads. Many candidate NVRAM technologies ex-
hibit greater read latency than DRAM, possibly requiring

Workload Scale factor Size Write transaction

TPCC 70 9GB New order
TPCB 1000 11GB
TATP 600 10GB Update location

Table 3: Workloads and transactions.

additional hardware or software caching. We wish to deter-
mine, for a given NVRAM read latency, how much caching
is necessary to prevent slowdown, and whether it is feasi-
ble to provide this capacity in a hardware-controlled cache
(otherwise we must resort to software caches).

5.1 NVRAM Caching Performance
Traces. Our NVRAM read-performance model combines

memory access trace analysis with our timing model to mea-
sure transaction throughput directly in Shore-MT. Traces
consist of memory accesses to the buffer cache, collected
running Shore-MT with PIN for a single transaction thread
for two minutes. We assume concurrent threads exhibit sim-
ilar access patterns. In addition, we record all latch events
(acquire and release) and latch page information (i.e., table
id, table type – index, heap, or other). We analyze traces
at cache line (64 bytes) and page (8KB) granularity.

These traces provide insight into how Shore-MT accesses
persistent data, summarized in Table 4. Index accesses rep-
resent the great majority of cache line accesses, averaging
85% of accesses to NVRAM across workloads. Any caching
efforts should focus primarily on index pages and cache lines.
We also note that indices access a greater number of cache
lines per page access than other page types (average 11.48 vs
4.85 for heap pages and 4.77 for other page types), suggest-
ing that uncached index page accesses have the potential to
introduce greater delays.

Throughput. We create a timing model in Shore-MT
from our memory traces. Given traces, we perform cache
analysis at page granularity, treating latches as page accesses
and assuming a fully associative cache with a least-recently-
used replacement policy (LRU). Cache analysis produces an
average page miss rate to each table. We conservatively as-
sume that every cache line access within an uncached page
introduces an NVRAM stall—we neglect optimizations such
as out-of-order execution and simultaneous multi-threading
that might hide some NVRAM access stalls. Our model as-
sumes the test platform incurs a 50ns DRAM fetch latency,
and adds additional latency to mimic NVRAM (for exam-
ple, a 200ns NVRAM access adds 150ns delay per cache
line). We combine average page miss rate and average miss
penalty (from lines/latch in table 4) to compute the average
delay incurred per latch event. This delay is inserted at each
page latch acquire in Shore-MT, using In-Place Updates, to
produce a corresponding throughput.

Figure 3 shows throughput achieved for the three work-
loads while varying the number of pages cached (horizontal
axis) and NVRAM miss latency (various lines). The ver-
tical axis displays throughput normalized to DRAM-miss-
latency’s throughput (no additional delay inserted). With-
out caching, throughput suffers as NVRAM miss latency
increases, shown at the extreme left of each graph. A 100ns
miss latency consistently achieves at least 90% of potential
throughput. However, an 800ns miss latency averages only
50% of the potential throughput, clearly requiring caching.
TPCB and TPCC see a 10-20% throughput improvement

TATP TPCB TPCC Average
% lines lines/latch % lines lines/latch % lines lines/latch % lines lines/latch

Heap 7.26% 4.19 15.47% 4.25 15.27% 6.10 12.66% 4.85
Index 92.45% 11.82 81.18% 11.17 81.54% 11.44 85.06% 11.48
Other 0.29% 3.00 3.36% 3.00 3.19% 8.31 2.28% 4.77
Total 11.24 9.83 10.52 10.48

Table 4: NVRAM access characteristics. “% lines” indicates the percentage breakdown of cache line accesses.
“lines/latch” reports the average number of cache line accesses per page latch. Indices represent the majority of accesses.

100 101 102 103 104 105

Pages cached

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Miss latency (ns):
100
200
400
800

(a) TATP

100 101 102 103 104 105

Pages cached

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(b) TPCB

100 101 102 103 104 105

Pages cached

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(c) TPCC

Figure 3: Throughput vs NVRAM read latency. 100ns miss latency suffers up to a 10% slowdown over DRAM. Higher
miss latencies introduce large slowdowns, requiring caching. Fortunately, even small caches effectively accelerate reads.

for a cache size of just 20 pages. As cache capacity further
increases, each workload’s throughput improves to varying
degrees. A cache capacity of 100,000 (or 819MB at 8KB
pages) allows NVRAMs with 800ns miss latencies to achieve
at least 80% of the potential throughput. While too large
for on-chip caches, such a buffer might be possible as a
hardware-managed DRAM cache [22].

5.2 Analysis
We have shown that modest cache sizes effectively hide

NVRAM read stalls for our workloads, and further analyze
caching behavior to reason about OLTP performance more
generally. Figure 4 shows the page miss rate per page type
(index, heap, or other) as page cache capacity increases.
Each graph begins at 1.0 at the left – all page accesses miss
for a single-page cache. As cache capacity increases, work-
loads see their miss rates start to decrease between cache ca-
pacity of five and 20 pages. TATP experiences a decrease in
misses primarily in index pages, whereas TPCB and TPCC
see a decrease across all page types.

While cache behavior is specific to each workload, our
results represent trends applicable to many databases and
workloads, specifically, index accesses and append-heavy ta-
bles. First, all workloads see a decrease in index page misses
as soon as B+Tree roots (accessed on every traversal) suc-
cessfully cache. The hierarchical nature of B+Tree indices
allows high levels of the tree to cache effectively for even a
small cache capacity. Additionally, TPCB and TPCC con-
tain history tables to which data are primarily appended.
Transactions append to the same page as previous trans-
actions, allowing such tables to cache effectively. Similarly,
extent map pages used for allocating new pages and locating
pages to append into are frequently accessed and likely to
cache. The remaining tables’ pages are accessed randomly
and only cache as capacity approaches the size of each table.

In the case of TPCB and TPCC, each transaction touches
a random tuple of successively larger tables (Branch, Teller,
and Account for TPCB; Warehouse, District, Customer, etc.
for TPCC). Our analysis suggests that various page types,
notably index and append-heavy pages, cache effectively, ac-
celerating throughput for high-latency NVRAM misses with
small cache capacities.

Main-memory databases. While we use Shore-MT (a
disk-based storage manager) as a research platform, we be-
lieve main-memory database optimizations (e.g., [11, 4, 19])
apply to byte-addressable NVRAM. Main-memory databas-
es assume heap data resides solely in byte-addressable mem-
ory, improving throughput relative to traditional disk-back-
ed storage by removing expensive indirection (i.e., using
memory pointers instead of buffer translation tables), re-
ducing overheads associated with concurrency control and
latches, and optimizing data layout for caches and main-
memory, among other optimizations. While such optimiza-
tions will increase transaction throughput, removing non-
NVRAM overheads will amplify the importance of read-miss
latency (an equal increase in NVRAM read-miss latency will
yield a relatively greater drop in performance). At the same
time, data layout optimizations will reduce the number of
cache lines and memory rows accessed per action (e.g., per
latch), minimizing NVRAM read overheads. Investigating
main-memory database optimizations for NVRAM remains
future work.

Bandwidth. Finally, we briefly address NVRAM read
bandwidth. For a worst-case analysis, we assume no caching.
Given the average number of cache line accesses per page
latch, the average number of page latches per transaction,
and transaction throughput (taken from Section 6), we com-
pute worst-case NVRAM read bandwidth for each workload,
shown in Table 5 Our workloads require at most 1.168 GB/s
(TPCC). Since this is lower than expected NVRAM band-

100 101 102 103 104 105

Page cache capacity

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ge
m

is
s

ra
te

Page type
Other
Index
Heap

(a) TATP

100 101 102 103 104 105

Page cache capacity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ge

m
is

s
ra

te

(b) TPCB

100 101 102 103 104 105

Page cache capacity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ge

m
is

s
ra

te

(c) TPCC

Figure 4: Page caching. B+Tree pages and append-heavy heap pages cache effectively.

Workload Bandwidth (GB/s)

TATP 0.977
TPCB 1.044
TPCC 1.168

Table 5: Required NVRAM read bandwidth. Work-
loads require up to 1.2 GB/s read bandwith.

width and caching reduces the required bandwidth further,
we conclude that NVRAM read bandwidth for persistent
data on OLTP is not a concern.

5.3 Summary
NVRAM presents a new storage technology for which

modern database systems have not been optimized. In-
creased memory read latencies require new consideration for
database caching systems. We show that persistent data for
OLTP can be cached effectively, even with limited cache
capacity. We expect future NVRAM software to leverage
hardware caches, omitting software buffer caches. Next, we
turn to write performance for storage management on NV-
RAM devices.

6. NVRAM PERSIST SYNCHRONIZATION
Whereas NVRAM reads benefit from caching, persists

must always access the device. We are particularly inter-
ested in the cost of ordering persists via persist barriers.
Several factors increase persist barrier latency, including or-
dering persists across distributed/NUMA memory architec-
tures, long latency interconnects (e.g., PCIe-attached stor-
age), and slow NVRAM MLC cell persists. We consider the
effect of persist barrier latency on transaction processing
throughput to determine if and when new NVRAM tech-
nologies warrant redesigning recovery management.

Refer to Sections 3 and 4 for a more thorough description
of our recovery mechanisms and experimental setup. All
experiments throttle persist bandwidth to 1.5GB/s, which
we believe to be conservative (already possible with PCIe-
attached Flash). Ideally, NVRAM will provide low latency
access, enabling In-Place Updates. However, we expect In-
Place Updates’s performance will suffer at large persist bar-
rier latencies, requiring either NVRAM Disk-Replacement or
NVRAM Group Commit to regain throughput.

6.1 Persist Barrier Latency
Figure 5 shows throughput for write-heavy transactions as

persist barrier latency increases from 0µs to 5µs, the range
we believe encompasses realistic latencies for possible im-
plementations of persist barriers and storage architectures.
A persist barrier latency of 0µs (left edge) corresponds to
no barrier/DRAM latency. For such devices (e.g., battery-
backed DRAM), In-Place Updates far out-paces NVRAM
Disk-Replacement, providing up to a 50% throughput im-
provement. The speedup stems from a combination of re-
moving WAL overheads, removing contention between page
flushers and transaction threads, and freeing up (a few)
threads from log and page flushers to run additional trans-
actions. In-Place Updates also outperforms NVRAM Group
Commit, providing an average 10% throughput improve-
ment across workloads.

As persist barrier latency increases, each recovery mech-
anism reacts differently. In-Place Updates, as expected,
loses throughput. NVRAM Disk-Replacement and NVRAM
Group Commit, on the other hand, are both insensitive to
persist barrier latency; their throughputs see only a small
decrease as persist barrier latency increases. TATP sees the
largest throughput decrease for NVRAM Disk-Replacement
(14% from 0µs to 5µs). The decrease stems from NVRAM
Disk-Replacement’s synchronous commits, requiring the log
flusher thread to complete flushing before transactions com-
mit. During this time, transaction threads sit idle. While
both NVRAM Disk-Replacement and NVRAM Group Com-
mit retain high throughput, there is a large gap between the
two, with NVRAM Group Commit providing up to a 50%
performance improvement over NVRAM Disk-Replacement.
This difference, however, is workload dependent, with WAL
imposing a greater bottleneck to TATP than to TPCB or
TPCC.

Of particular interest are persist barrier latencies where
lines intersect—the break-even points for determining the
optimal recovery mechanism. Whereas all workloads prefer
In-Place Updates for a 0µs persist barrier latency, NVRAM
Group Commit provides better throughput above 1µs persist
barrier latency. When only considering In-Place Updates
and NVRAM Disk-Replacement the decision is less clear.
Over our range of persist barrier latencies TATP always
prefers In-Place Updates to NVRAM Disk-Replacement (the
break-even latency is well above 5µs). TPCB and TPCC
see the two mechanisms intersect near 3.5µs and 2.5µs, re-

0 1 2 3 4 5
Persist barrier latency (us)

0

50

100

150

200

250
T

hr
ou

gh
pu

t
(k

T
P

S)

Recovery mechanism:
In-place updates
NVRAM disk
Group commit

(a) TATP – Update Location

0 1 2 3 4 5
Persist barrier latency (us)

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(k
T

P
S)

(b) TPCB

0 1 2 3 4 5
Persist barrier latency (us)

0

2

4

6

8

T
hr

ou
gh

pu
t

(k
T

P
S)

(c) TPCC – New Order

Figure 5: Throughput vs persist barrier latency. In-Place Updates performs best for zero-cost persist barriers, but
throughput suffers as persist barrier latency increases. NVRAM Disk-Replacement and NVRAM Group Commit are both
insensitive to increasing persist barrier latency, with NVRAM Group Commit offering higher throughput.

Workload Full mix Single transaction

TATP 25 12
TPCB 3.2 3.2
TPCC 3.6 2.4

Table 6: Break-even persist latency Persist barrier la-
tency (µs) where NVRAM Disk-Replacement and In-Place
Updates achieve equal throughput. Latencies reported for
full transaction mixes and single write-heavy transaction per
workload.

spectively, above which NVRAM Disk-Replacement provides
higher throughput. TATP, unlike the other two workloads,
only updates a single page per transaction. Other overheads
tend to dominate transaction time, resulting in a relatively
shallow In-Place Updates curve.

The previous results show throughput only for a single
transaction from each workload. Table 6 shows break-even
persist barrier latency between NVRAM Disk-Replacement
and In-Place Updates for these transactions and full transac-
tion mixes. Full transaction mixes contain read-only trans-
actions, reducing log insert and persist barrier frequency
(read-only transactions require no recovery). NVRAM Disk-
Replacement sees improved throughput at 0 µs and In-Place
Updates’s throughput degrades less quickly as persist barrier
latency increases. As a result, the break-even persist bar-
rier latency between these two designs increases for the full
transaction mix relative to a single write-heavy transaction
and the opportunity to improve throughput by optimizing
recovery management diminishes—improved recovery man-
agement does not affect read-only transactions and actions.

Our results suggest different conclusions across storage ar-
chitectures. NVRAM connected via the main memory bus
will provide low latency persist barriers (less than 1µs) and
prefer In-Place Updates. Other storage architectures, such
as distributed storage, require greater delays to synchronize
persists. For such devices, NVRAM Group Commit offers
an alternative to NVRAM Disk-Replacement that removes
software overheads inherent in WAL while providing recov-
ery. However, NVRAM Group Commit increases transaction
latency, which we consider next.

6.2 Transaction Latency
NVRAM Group Commit improves transaction through-

put by placing transactions into batches and committing
all transactions in a batch atomically. Doing so minimizes
and limits the number of inserted persist barriers. However,
deferring transaction commit increases transaction latency,
especially for the earliest transactions in each batch. To
achieve reasonable throughput, batches must be significantly
longer than average transaction latency (such that batch ex-
ecution time dominates batch quiesce and persist time). The
batch period acts as a knob for database administrators to
trade off transaction latency and throughput. We use this
knob to measure the relationship between throughput and
high-percentile transaction latency.

Figure 6 shows throughput, normalized to In-Place Up-
dates at 0µs persist barrier latency. Our results consider
a 3µs persist barrier latency, where NVRAM Group Com-
mit provides a throughput improvement over other recovery
mechanisms. The different NVRAM Group Commit points
represent different batch periods, and we report the mea-
sured 95th percentile transaction latency for all recovery
mechanisms. We measure transaction latency from the time
a transaction begins to the time its batch ends (Shore-MT
does not model any pre-transaction queuing time).

The results illustrate that NVRAM Group Commit is ca-
pable of providing equivalent throughput to the other re-
covery mechanisms with reasonable latency increases (no
more than 5×). Further, high-percentile transaction laten-
cies fall well below the latency expectations of modern appli-
cations. TPCC, the highest latency workload, approaches
optimal throughput with a 95th percentile transaction la-
tency of 15ms—similar to latencies incurred by disk-backed
databases. For latency sensitive workloads, the batch period
can be selected to precisely control latency, and In-Place Up-
dates and NVRAM Disk-Replacement remain alternatives.

6.3 Summary
Persist barriers used to enforce persist order pose a new

obstacle to providing recoverable storage management with
NVRAM. We show that, for memory bus-attached NVRAM
devices, ensuring recovery using In-Place Updates is a vi-
able strategy that provides high throughput and removes the
overheads of WAL. For interconnects and NVRAM technolo-

0.0 0.2 0.4 0.6 0.8 1.0 1.2
95th percentile transaction latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
th

ro
ug

hp
ut

Recovery mechanism:
In-place updates
NVRAM disk
Group commit

(a) TATP – Update Location

0 1 2 3 4 5 6
95th percentile transaction latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(b) TPCB

0 5 10 15 20
95th percentile transaction latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(c) TPCC – New Order

Figure 6: 95th percentile transaction latency. Graphs normalized to In-Place Updates 0µs persist latency. Experiments
use 3µs persist latency. NVRAM Group Commit avoids high latency persist barriers by defering transaction commit.

gies that incur larger persist barrier delays, NVRAM Group
Commit offers an alternative that yields high throughput
and reasonable transaction latency. NVRAM Group Com-
mit’s batch period allows precise control over transaction
latency for latency-critical applications.

7. RELATED WORK
To the best of our knowledge, our work is the first to

investigate NVRAM write latency and its effect on durable
storage and recovery in OLTP. A large body of related work
considers applications of NVRAM and reliable memories.

Ng and Chen place a database buffer cache in battery-
backed DRAM, treating it as reliable memory [18]. However,
the mechanisms they investigate are insufficient to provide
ACID properties under any-point failure or protect against
many types of failure (e.g., power loss).

Further work considers NVRAM in the context of file
systems. Baker et al. use NVRAM as a file cache to op-
timize disk I/O and reduce network traffic in distributed
file systems, yet continue to assume that disk provides the
bulk of persisted storage [3]. More recently, Condit et al.
demonstrate the hardware and software design necessary to
implement a file system entirely in NVRAM as the Byte-
Addressable Persistent File System (BPFS) [10]. While we
assume similar hardware, we additionally consider a range
of NVRAM performance and focus instead on databases.

Other work develops programming paradigms and sys-
tem organizations for NVRAM. Coburn et al. propose NV-
Heaps to manage NVRAM within the operating system, pro-
vide safety guarantees while accessing persistent stores, and
atomically update data using copy-on-write [9]. Volos et al.
similarly provide durable memory transactions using Soft-
ware Transactional Memory (STM) and physical redo log-
ging per transaction [28]. While these works provide useful
frameworks for NVRAM, they do not investigate the effect
of NVRAM persist latency on performance, nor do they con-
sider OLTP, where durability is tightly coupled with concur-
rency and transaction management.

Recently, researchers have begun to focus specifically on
databases as a useful application for NVRAM. Chen et al.
reconsider database algorithms and data structures to ad-
dress NVRAM’s write latency, endurance, and write energy
concerns, generally aiming to reduce the number of modi-
fied NVRAM bits [8]. However, their work does not consider
durable consistency for transaction processing. Venkatara-

man et al. demonstrate a multi-versioned log-free B-Tree
for use with NVRAM [27]. Indices are updated in place,
similarly to our In-Place Updates, without requiring any
logging (physical or otherwise) and while providing snap
shot reads. Our work considers durability management at a
higher level, user transactions, and consistency throughout
the entire database. Finally, Fang et al. develop a new WAL
infrastructure for NVRAM that leverages byte addressable
and persistent access [12]. Fang aims to improve transaction
throughput but retains centralized logging. We distinguish
ourselves by investigating how NVRAM write performance
guides database design.

Prior work (e.g., H-Store [24]) has suggested highly avail-
able systems as an outright replacement for durability. We
argue that computers and storage systems will always fail,
and durability remains a requirement for many applications.

8. CONCLUSION
New NVRAM technologies offer an alternative to disk

that provides high performance while maintaining durable
transaction semantics, yet existing database software is not
optimized for such storage devices. In this paper, we con-
sider redesigning OLTP software to optimize for NVRAM
read and persist characteristics. We find that even small
caches effectively reduce NVRAM read stalls. We also con-
sider database performance in the presence of persist bar-
rier delays. Treating NVRAM as a drop-in replacement for
disk, NVRAM Disk-Replacement retains centralized logging
overheads. In-Place Updates reduces these overheads, but
for large persist barrier latencies suffers from excessive syn-
chronization stalls. We propose a new recovery mechanism,
NVRAM Group Commit, to minimize these stalls while still
removing centralized logging. While NVRAM Group Com-
mit increases high-percentile transaction latency, latency is
controllable and within modern application constraints.

9. REFERENCES
[1] Telecom Application Transaction Processing

Benchmark. http://tatpbenchmark.sourceforge.net.

[2] R. Agrawal and H. V. Jagadish. Recovery algorithms
for database machines with nonvolatile main memory.
In Proceedings of the Sixth International Workshop on
Database Machines, pages 269–285, 1989.

[3] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and
M. Seltzer. Non-volatile memory for fast, reliable file

systems. In Proc. of the 5th International Conf. on
Architectural Support for Programming Languages and
Operating Systems, pages 10–22, 1992.

[4] C. Ballard, D. Behman, A. Huumonen, K. Laiho,
J. Lindstrom, M. Milek, M. Roche, J. Seery,
K. Vakkila, J. Watters, and A. Wolski. IBM solidDB:
Delivering data with extreme speed. 2011.

[5] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy. Overview of
candidate device technologies for storage-class
memory. IBM J. of Research and Development,
52:449–464, 2008.

[6] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation,
non-volatile memories. In Proc. of the 43rd
International Symp. on Microarchitecture, pages
385–395, 2010.

[7] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. In Proc. of the 17th
International Conf. on Architectural Support for
Programming Languages and Operating Systems,
pages 387–400, 2012.

[8] S. Chen, P. B. Gibbons, and S. Nath. Rethinking
database algorithms for phase change memory. In
Proc. of the 5th Bienniel Conf. on Innovative Data
Systems Research, pages 21–31, 2011.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-Heaps:
making persistent objects fast and safe with
next-generation, non-volatile memories. In Proc. of the
16th International Conf. on Architectural Support for
Programming Languages and Operating Systems,
pages 105–118, 2011.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In Proc. of the
22nd Symp. on Operating Systems Principles, pages
133–146, 2009.

[11] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL server’s memory-optimized OLTP
engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
pages 1243–1254, 2013.

[12] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang.
High performance database logging using storage class
memory. In Proc. of the 27th International Conf. on
Data Engineering, pages 1221–1231, 2011.

[13] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In Proc. of the 12th
International Conf. on Extending Database
Technology, pages 24–35, 2009.

[14] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Aether: a scalable approach to
logging. Proc. VLDB Endow., pages 681–692, Sept.
2010.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.

Architecting phase change memory as a scalable
DRAM alternative. In Proceedings of the 36th annual
international symposium on Computer architecture,
pages 2–13, 2009.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation,
pages 190–200, 2005.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst., pages 94–162, Mar. 1992.

[18] W. T. Ng and P. M. Chen. Integrating reliable
memory in databases. In Proc. of the International
Conf. on Very Large Data Bases, pages 76–85, 1997.

[19] Oracle America. Extreme performance using Oracle
TimesTen in-memory database, an Oracle technical
white paper. July 2009.

[20] S. Pelley, T. F. Wenisch, and K. LeFevre. Do query
optimizers need to be SSD-aware? In Workshop on
Accelerating Data Management Systems using Modern
Processor and Storage Architectures, 2011.

[21] M. K. Qureshi, J. Karidis, M. Franceschini,
V. Srinivasan, L. Lastras, and B. Abali. Enhancing
lifetime and security of PCM-based main memory
with start-gap wear leveling. In Proc. of the 42nd
International Symp. on Microarchitecture, pages
14–23, 2009.

[22] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. In Proc. of the 36th
International Symp. on Computer Architecture, pages
24–33, 2009.

[23] K. Salem and S. Akyürek. Management of partially
safe buffers. IEEE Trans. Comput., pages 394–407,
Mar. 1995.

[24] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In Proc. of the 33rd International Conf. on
Very Large Data Bases, pages 1150–1160, 2007.

[25] Transaction Processing Performance Council (TPC).
TPC-B Benchmark. http://www.tpc.org/tpcb/.

[26] Transaction Processing Performance Council (TPC).
TPC-C Benchmark. http://www.tpc.org/tpcc/.

[27] S. Venkataraman, N. Tolia, P. Ranganathan, and
R. H. Campbell. Consistent and durable data
structures for non-volatile byte-addressable memory.
In Proc. of the 9th Usenix Conference on File and
Storage Technologies, pages 61–75, 2011.

[28] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In Proc. of the 16th
International Conf. on Architectural Support for
Programming Languages and Operating Systems,
pages 91–104, 2011.

