380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

Using Field-Repairable Control Logic to Correct
Design Errors in Microprocessors

Ilya Wagner, Student Member, IEEE, Valeria Bertacco, Member, IEEE, and Todd Austin, Member, IEEE

Abstract—Functional correctness is a vital attribute of any
hardware design. Unfortunately, due to extremely complex archi-
tectures, widespread components, such as microprocessors, are of-
ten released with latent bugs. The inability of modern verification
tools to handle the fast growth of design complexity exacerbates
the problem even further. In this paper, we propose a novel
hardware-patching mechanism, called the field-repairable control
logic (FRCL), that is designed for in-the-field correction of errors
in the design’s control logic—the most common type of defects, as
our analysis demonstrates. Our solution introduces an additional
component in the processor’s hardware, a state matcher, that can
be programmed to identify erroneous configurations using signals
in the critical control state of the processor. Once a flawed configu-
ration is “matched,” the processor switches into a degraded mode,
a mode of operation which excludes most features of the system
and is simple enough to be formally verified, yet still capable to
execute the full instruction-set architecture at one instruction at a
time. Once the program segment exposing the design flaw has been
executed in a degraded mode, we can switch the processor back to
its full-performance mode. In this paper, we analyze a range of
approaches to selecting signals comprising the processor’s critical
control state and evaluate their effectiveness in representing a
variety of design errors. We also introduce a new metric (average
specificity per signal) that encodes the bug-detection capability
and amount of control state of a particular critical signal set.
We demonstrate that the FRCL can support the detection and
correction of multiple design errors with a performance impact of
less than 5% as long as the incidence of the flawed configurations
is below 1% of dynamic instructions. In addition, the area impact
of our solution is less than 2% for the two microprocessor designs
that we investigated in our experiments.

Index Terms—Hardware patching, processor verification.

I. INTRODUCTION

ND-USERS of microprocessor-based products rely on the
hardware system to function correctly all the time for
every task. To meet this expectation, microprocessor design
houses perform extensive validation of their designs before
production and release to the marketplace. The success of this
process is crucial to the survival of the company as the financial
impact of microprocessor bugs can be devastating (e.g., the
infamous Pentium FDIV bug resulted in a $475-million cost
to Intel to replace the defective parts).
Designers address correctness concerns through verifica-
tion, which is the process of extensively validating all the

Manuscript received March 7, 2007; revised May 23, 2007. This paper was
recommended by Associate Editor W. Kunz.

The authors are with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
iwagner @umich.edu).

Digital Object Identifier 10.1109/TCAD.2007.907239

functionalities of a design throughout the development cycle.
Simulation-based techniques are central to this process: They
exercise a design with relevant test sequences in an attempt
to expose latent bugs. This approach is used extensively in
the industry, yet it suffers from a number of drawbacks. First,
a simulation-based verification is a nonexhaustive process:
The density of states in modern microprocessors is too large
to allow for the entire state space to be fully exercised.
For example, the simple out-of-order processor core that we
use as our experimental platform throughout this paper has
128 input signals, 31 64-b registers, and additional control
states for a total of 219441 distinct configurations, each with
up to 2'28 outgoing edges connecting to other configurations.
In contrast, the verification of the Pentium 4, which utilized
a simulation pool of 6000 workstations, was only able to test
237 states prior to tape-out [12]. It is obvious from this disparity
that verification engineers must be extremely selective in the set
of configurations that they choose to validate before tape-out.

Formal verification techniques have grown to address the
nonexhaustive nature of simulation-based methods. Formal
methods (such as theorem provers and model checkers) enable
an engineer to reason about the correctness of a hardware com-
ponent, regardless of the programs and storage state impressed
upon the design. In the best scenario, it is possible to prove
that a design will not exhibit a certain failure property or that
it will never produce a result that differs from a known-correct
reference model. The primary drawback of formal techniques,
however, is that they do not scale to the complexity of mod-
ern designs, constraining their use to only a few components
within the overall design. For example, the verification of the
Pentium 4 heavily utilized formal verification tools, but their
use was limited to proving properties of the floating-point units,
the instruction decoders, and the dynamic scheduler [13].

Unfortunately, the situation seems to be deteriorating in the
presence of seemingly unending design complexity scaling, in
contrast with a much slower growth of the capabilities of veri-
fication tools, leading to what is referred to as the “verification
gap” [11]. In the end, processor designs are released not fully
tested and, hence, with latent bugs, as we show in Section II-A.
In addition, without better verification solutions or techniques
to shield the system from design errors, we can only expect
future designs to be more and more flawed.

A. Contributions of This Paper

In this paper, we introduce a reliable, low-cost, and extremely
expressive control-logic-patching mechanism for microproces-
sor pipelines, which enables the correction of a wide range of

0278-0070/$25.00 © 2008 IEEE

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS 381

control-logic-related design bugs in parts deployed in the field
after manufacturing. In our framework, when an escaped bug is
found in the field, the support team investigates it and generates
a pattern describing the control state of the processor which
causes the bug to manifest itself. The pattern is then sent to
the end customers as a patch and is loaded into the on-die
state matcher at startup. The matcher constantly monitors the
state of the processor and compares it to the stored patterns to
identify when the pipeline has entered a state associated with
a bug. Once the matcher has determined that the processor is
in a flawed control state, the processor’s pipeline is flushed and
forced into a degraded mode of operation.

In the degraded mode, the processor starts the execution
from the first uncommitted instruction and allows only one
operation to traverse the pipeline at a time. Therefore, much of
the control logic that handles interactions between operations
can be turned off, which enables a complete formal verification
of the degraded mode at the design time. In other words, we
can guarantee that instructions running in this mode complete
properly and, thus, can ensure forward progress, even in the
presence of design errors by simply forcing the pipeline to
run in the degraded mode. After the error is bypassed in the
degraded mode, the processor returns to a high-performance
mode until the matcher finds another flawed control state. In
designing the state matcher, we have put special care into creat-
ing a system that can detect multiple design errors with minimal
false-positive triggering. In addition, for cases when the number
of patterns of design errors exceeds the capacity of a given
matcher, we developed a novel pattern-compression algorithm
that compacts the erroneous state patterns while minimizing
the number of false positives introduced by this process. Our
solution makes strides past the capabilities of instruction and
microcode patching because it can effectively address errors
that relate to a single instruction or combination of instructions,
and even errors that are not associated with specific instructions,
for instance a nonmaskable interrupt (NMI).

A preliminary version of this paper was published in [27]. In
this paper, we substantially extend our analysis of the proposed
approach, including a detailed performance evaluation of a
range of solutions with matchers observing distinct sets of
control signals. In addition, we investigate a metric to compare
different solutions based on their effectiveness in recognizing a
variety of design errors and the number of monitored signals.
We also present a novel algorithm to automatically select
control signals that operates directly on a register-transfer-level
(RTL) design description. Finally, this paper presents a novel
pattern-compression algorithm and a detailed explanation of
how the degraded mode is formally verified.

The remainder of this paper is organized as follows.
Section II makes the case for new technology which allows
to repair control-logic faults in a design after shipment and
deployment by examining the type of bugs that escape verifi-
cation. Section III details the flow of operation of the proposed
approach, whereas Section IV presents the general framework
in which a repairable logic can be used. Section V details
the experimental setup and evaluates the performance of the
matching mechanisms, including the accuracy and performance
impacts. Finally, Section VI concludes this paper.

Memory system
control
7 (19%)

Processor
control logic
19 (52%)

Electrical faults
6 (16%)

Microcode
2 (5%)

Functional units
3 (8%)

Fig. 1. Classification of escaped bugs found in x86 [1], [4], [5], [7], [9], [10],
[22], StrongARM-SA1100 [3], and PowerPC 750GX [8] processors. The chart
shows occurrences and incidence of each particular type of bug.

II. ESCAPED BUGS AND IN-FIELD REPAIR
A. Escaped Errors in Commercial Processors

Despite the impressive efforts of processor design houses to
build correct designs, bugs do escape the verification process.
In this section, we examine the reported escaped errors of
a number of commercial processors. We classify these bugs
and show that a large fraction of them are related to the
control portion of the design. The summary of the bugs re-
ported in x86 [1], [4], [5], [7], [9], [10], [22], StrongARM-
SA1100 [3], and PowerPC 750GX [8] processors is shown
in Fig. 1. Errors are classified into one of the following
categories.

Processor’s control logic: These bugs are the result of in-
correct decisions made at the occurrence of important execu-
tion events and also of bad interactions between simultaneous
events. An example of this type of escape could be found in
the Opteron processor, where a reverse REP MOVS instruction
may cause the following instruction to be skipped [10]. Our
solution addresses precisely these types of bugs.

Functional units: These are design errors in units which can
cause the production of an incorrect result. In this category, we
included bugs in components, such as branch predictors and
translation lookaside buffers. An (infamous) example of this
type of bug is the Pentium FDIV bug, where a lookup table
that is used to implement a divider Sweeney, Robertson, and
Tocher algorithm contained incorrect entries [1].

Memory system control: These are bugs that occur in the
on-chip memory system, including caches, memory interface,
etc. An example of this type of bug is an error in the Pentium III
processor, where certain interactions of instruction fetch unit
and data cache unit could hang the system [9].

Microcode: These are (software) bugs in the implementation
of the microcode for a particular instruction. An example can
be found in the 386 processor, where the microcode incorrectly
checked the minimum size of the task state segment, which
must be 103 B, but due to a flaw, segments of 101 and 102 B
were also incorrectly allowed [22].

Electrical faults: These are design errors occurring when
certain logic paths do not meet timing under exceptional
conditions. Consequently, if a processor runs well below its
specified maximum frequency, these faults will often not occur.
An example is the load register signed byte instruction of
the StrongARM SA-1100 which does not meet timing when
reading from the prefetch buffer [3].

382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

As the aforementioned analysis demonstrates, control-logic
escapes dominate the errata reports for these processors. The
high frequency of such escapes can be explained by the com-
plexity of the control-logic blocks that handle the interactions
between multiple instructions and the inability of formal tech-
niques to handle complex interactions between multiple logic
blocks in a design. Correctness of the datapath, on the other
hand, can frequently be proven formally. In our framework,
we utilize this capability to prove the datapath’s correctness
when no control-logic interactions are present in the system.
Related studies on sources of the design errors corroborate our
findings, an example being the work of Van Campenhout ef al.
[15], reporting that many design flaws are the result of incor-
rect interactions between major components or an unforeseen
combination of rare events.

B. Related In-Field Repair Solutions

Given the high incidence of the escaped design errors and
also their associated risk of causing a very negative impact on
the survival of a company, over the past few years, proces-
sor manufacturers have started to explore solutions that could
correct a design error in the field. To date, we are aware of
two techniques in this domain, which have been deployed
commercially.

Instruction Patching: Software patching can sometimes cor-
rect the execution of an instruction which has an erroneous
implementation [25]. In this approach, the program code is in-
spected, and if a broken instruction is encountered, it is replaced
with an alternative implementation, typically through a function
call to a correct emulation of the instruction. Consequently,
each occurrence of the instruction will be emulated.

This technique was used as the initial workaround for
the Pentium FDIV bug using software recompilation. Linux-
and Windows-based compilers were updated to generate code
which would run a preliminary test to determine if the un-
derlying processor suffered from the FDIV bug. If the test
indicated so, a divide emulation routine would be called to
avoid the use of a hardware divider [25]. A similar technique
was used to port Windows NT to Alpha processors [14]: A bug
in the underflow exception mechanism forced Alpha software
developers to make the operating system step in and handle the
offending instructions in the software. A specific advantage of
this approach was that it could operate in a completely trans-
parent fashion to the user (besides the requirement of installing
an operating system patch). Performance wise, however, this
approach is not very promising. For example, the FDIV fix [2]
in the Microsoft Visual C++ compiler incurs 100% worst-case
performance overhead on a flawed processor. Moreover, on a
correctly working chip, it still causes up to 10% overhead.

Microcode Patching: Intel and AMD processors reportedly
have the ability to update their microcode after deployment in
the field [16], [21], [23]." During system startup, microcode

'In fact, neither company will disclose the details (or even the existence) of
microcode-patching infrastructure due to concerns that they could be exploited
by virus writers. However, evidence of the infrastructure is well hinted to by
the patent literature.

patches are loaded into a small on-chip buffer, which over-
rides the existing microcode in on-chip ROMs. A microcode
patch can change the semantics of any instruction, which is
similar to the instruction patching. An added advantage of the
microcode patching is that no changes are necessary to the
existing software since patching occurs during the instruction’s
decode stage. The concept of patchable microcode is not new,
as many early computers such as the Xerox Alto and DEC LSI-
11 supported writable microstores, thus allowing engineers to
update the implementation of individual instructions [18].

While these techniques have proven their positive impact
in commercial solutions, they have a limited value because
of their high performance impact and due to their inability to
cope with complex control bugs. For example, in the case of
the Pentium FDIV bug, all divide instructions had to be tested
for susceptibility to the bug and replaced with an emulated
routine if needed, which resulted in significant slowdowns. In
addition, many control bugs are not associated with a particular
instruction, and thus, they could not be fixed with any of these
techniques. For example, on the 486 processor, if a non-NMI
occurred in the same cycle as a global segment violation,
the violation would not be detected [1]. Short of emulating
every instruction, this bug could not be fixed with instruction
patches.

A related work by Sarangi et al. [24], which appeared after
the initial publication of our solution in [27], suggests a similar
mechanism for hardware patching. An error in this work is
identified by its fingerprint: a set of conditions and a time
interval during which these conditions are satisfied when the
error occurs. Similar to our work, this mechanism relies on
internal signals being observed by the programmable error-
checking module. However, the matcher in [24] is distributed
and contains multiple modules that detect the occurrence of
various events and identify if they correspond to an error.
The work also proposes several recovery mechanisms, includ-
ing dynamic microcode editing, checkpointing, and hypervisor
support. Unfortunately, it is unclear how much performance
overhead these techniques would have since they require either
the complex hardware for microcode editing and checkpointing
or the inclusion of trapping to software hypervisor. Another
technique for recovery mentioned in [24] is similar to our work
and requires flushing the pipeline and replaying the instruction
stream. However, unlike field-repairable control logic, the re-
play is not done in a reliable mode; hence, it does not guarantee
that the bug will be bypassed. Finally, the patching technique
in [24] potentially incurs a higher area overhead due to the
distributed nature of the detection blocks but may allow for
better recovery from bugs exposed by long-event sequences.

III. FLOW OF OPERATION

This section presents the usage flow and the process to
correct escaped bugs for a design incorporating the FRCL
technology. We also show the structure of the state-matcher
circuit and present a pattern-compression algorithm for cases
when the number of patterns exceeds the size of the matcher.
Finally, we analyze an example of an actual bug that is repaired
using our approach.

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS 383

Customer Design House
Design and
Processor w/o patch Verification
Tapeout
& release

Escaped bug found
T———

Error

'S 1. Bug report sent to
support team

—

2. Analysis & bug
pattern development

<,@4 3. Patch Released
Processor w/ patch

Fig. 2. FRCL usage flow: After a component is shipped to the end customer
and a new bug is found, a report detailing the bug is sent to the support team.
The error is analyzed, and patterns representing the control states associated
with the bug are issued as a patch. On every startup, the processor loads the
patterns into the state matcher, and if a bug is encountered, it is bypassed
through the reliable degraded mode.

The FRCL is designed to handle flaws in processor control
circuitry for components already deployed in the field. The flow
of operation that we envision for this approach is shown in
Fig. 2. When an escaped error is detected by the end customer,
a report containing the error description, such as the sequence
of executed operations and the values in the status registers, is
sent to the design house. Engineers on the product support team
investigate the issue, identify the root cause of the error and
which products are affected by it, and decide on a mechanism
to correct the bug. As previously mentioned, the instruction and
microcode patchings are valid approaches; however, they can
have a very high performance overhead or can be too costly.
We propose that the engineers use instead our solution—the
FRCL. By knowing the cause of the bug and which signals
are monitored by the matcher in the defective processors, the
engineers can create patterns that describe the flawed control-
state. The patterns then can be compressed by the algorithm
presented in Section III-C and can be sent to the customers as
a patch. The patches in the end system are loaded into the state
matcher at startup. Every time the patched error is encountered
at runtime, a recovery via a degraded mode, which is detailed
in Section III-D, is initiated, effectively fixing the bug.

A. Pattern Generation

The pattern to address a design error can be created from
the state transition graph (STG) of a device. The correct STG
consists of all the legal states of operation, where each state
is a specific configuration of internal signals that are crucial
to the proper operation of the device. In addition, these states
are connected by all the legal transitions between them. Within
this framework, an error may occur because of an additional
erroneous transition from a legal state to an illegal state, which
should not be part of the STG, or when an invalid transition
connects two legal states, or by the lack of a transition that
should exist between states (Fig. 3). In our solution, we add
a hardware support that uses patterns to detect both the illegal
states and the legal states which are sources of illegal transi-
tions. A pattern is a bit vector representing the configuration

of the internal signals, which is associated with an erroneous
behavior of the processor. Note that, in this framework, a single
bug can be mapped to multiple patterns if it is caused, for
example, by multiple illegal states. To cope with this prob-
lem, we incorporated a range of features into our technology,
including a novel pattern-compression algorithm presented in
Section III-C. In a real-world scenario, after receiving a bug
report, a product support team would analyze the issue, try
to reproduce the error, and understand what caused it. Tools
such as trace minimizers can be very helpful for this analysis
since they can significantly shorten a trace that leads to a bug,
which helps immensely in the debugging process. Moreover,
some of these tools, for example Butramin [20], investigate
alternative simulation scenarios that reach the same bug. This
allows the support team to pinpoint multiple processor control
states associated with the bug and to identify how these states
map to the critical signals observed by the matcher in the
design. Afterward, the configurations of the critical control
signals are compactly encoded and issued as a patch to the
end customer. The process is repeated when new bugs or new
scenarios exposing the known bugs are discovered.

B. Matching Flawed Configurations

As mentioned before, the design errors and patterns de-
scribing the bugs in our framework are defined through the
configurations of control signals of the processor and through
the transitions between these configurations. At runtime, these
signals are continuously observed by a state matcher and are
compared to preloaded patterns describing the bugs. Therefore,
only the bugs that manifest themselves on these critical signals
can be detected by the matcher. Ideally, all of the design’s
control signals could be used for this purpose; however, com-
plexity and stringent timing constraints of modern chips prevent
such extensive monitoring, allowing only a small portion of the
actual control state to be routed to the matcher. In Section IV-C,
we present techniques to intelligently select these critical state
bits among the prohibitively large control state of a processor.

The state matcher can be thought of as a fully associative
cache, with the width of the tag being equal to the width
of the critical control-state vector, which, in our experiments,
was just several tens of bits long. The tag in this case is the
pattern describing an erroneous configuration; thus, if such
a tag exists in the cache, then a hit occurs and a potential
bug is recognized. In order to improve the performance of the
matcher, we structured it to allow the use of don’t care bits in
the patterns to be matched. The don’t care bits help make a
compact representation of multiple individual configurations of
the critical control state, which differ in just a few bits. By using
our state matcher, designers issuing a patch can specify a bug
pattern through a vector of Os, 1s, and don’t care bits (z): Os
and 1s represent the fixed value bits, whereas x’s can match any
value in the corresponding control signal. Note, however, that
the control state observed by the matcher at runtime contains
only the fixed bit values 0 and 1. Fig. 8 shows several examples
of bug patterns loaded into a four-entry matcher.

We also anticipate that a single patch may consist of mul-
tiple bug patterns since a single bug may be associated with

384

-

Fig. 3.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

—®

A 7
4. @"’

(s
5
3. @"’

Error representation in the STG framework. (1) Correct STG of the device (Sz is an unreachable illegal state). (2) Erroneous STG due to a transition

to an illegal state Sz. (3) Erroneous STG due to an illegal transition between legal states S3 and Sa2. (4) Erroneous STG due to the absence of a legal transition

S1 — Ss.

[DON'T CARE BITS |

STATE VECTOR

XED BITS| MATCHER ENTRY 0
MATCHER ENTRY 1
MATCHER ENTRY 2

MATCHER ENTRY 3

MATCH

Fig. 4. State matcher. The critical control-state vector is first compared against
the fixed bits in a bug pattern. Then, the don’t care bits in the pattern are
overlaid, and the result is reduced to a single match bit. The matcher contains
multiple independent entries to allow for multiple simultaneous comparisons.

several patterns, as aforementioned, or the design may contain
multiple unrelated bugs. To handle this situation, we developed
a matcher with multiple independent entries, as shown in Fig. 4.
On startup, each of the matcher’s entries is loaded with an indi-
vidual pattern containing fixed bits and don’t cares. At runtime,
the matcher simultaneously compares the actual critical control
bit values to all of the valid entries and asserts a signal if at least
one match occurs. The number of entries in the matcher is set
at design time and is one of the engineering tradeoffs. A larger
matcher can be loaded with more patterns; however, it has a
larger area on the die and longer propagation delay. A smaller
matcher, on the other hand, might not be able to load all of the
patterns, and compression would be needed.

C. Pattern-Compression Algorithm

The pattern-compression algorithm that we developed was
inspired by the two-level logic minimization techniques de-
scribed in [17]. Our algorithm compresses a number k of
patterns into a state matcher with r entries, where k > r. This
process, however, often overapproximates the bug pattern and
introduces false positives, i.e., error-free configurations that will
be misclassified as buggy and will incur some performance
impact. Nevertheless, this compression is necessary to fit the
patching patterns into an available matcher of smaller size.

To map k patterns into an r-entry matcher, the algorithm
first builds a proximity graph. The graph is a clique with &
vertices, once for each of the k patterns, and weighted edges
connecting the vertices. The weights on the edges are assigned
using a variant of the Hamming distance metric. Specifically,
we use an additive metric whereby the corresponding bits
are compared one to one, and each 0—1 pair contributes 1 to
the weight, whereas each 1—x or 0—x pair contributes 0.5
to the weight. Matching pairs (0-0, 1-1, and x—z) do not
contribute to the weight. As an example, consider the two

100001 100001

D=2.5 /

111xx0

Fig. 5. Pattern-compression example: Four bug patterns are compressed to
fit into a two-entry matcher. A complete graph of the initial four patterns is
computed and is labeled with a variant of distance. The first compression step
combines the two closest (in terms of distance) patterns 101xz1 and 1001z1.
The resultant pattern 10zzx1 has fixed bits in every position where original
patterns were identical and have don’t care bits (z) in all other positions. In
the second step, pattern 100001 is eliminated, since it is a subset of the pattern
10zxx1, as the —1 label indicates.

patterns 101z 1 and 100121 shown in Fig. 5. The two leftmost
and two rightmost bits of the patterns are identical; thus, they
contribute 0 to the weight. Bits 3 of the patterns, on the other
hand, form a 0—1 pair, contributing 1 to the weight, whereas
bits 4 form an z—1 pair, making the total weight on the edge
between these patterns 1.5. The reasoning behind this weighing
structure is fairly straightforward: If we were to compact the
two patterns connected by an edge, we would have to replace
every discording pair (0—1, z—0, and x—1) with an z, basically
creating the minimum common pattern that contains both of
the initial ones. Matching pairs, however, would retain the
values they had in the original patterns. For example, for the
two aforementioned patterns 101zx1 and 1001z1, the common
pattern is 10zzx1 since we have two discording pairs in the
third and fourth bit positions. With this algorithm, each 0—1 pair
contributes the same degree of approximation in the resulting
entry generated. However, pairs such as 1—z or 0—z will
only have an approximating impact on one of the patterns (the
one with the O or 1), leaving the other unaffected; hence, the
corresponding weight is halved.

An exception to the above metric is a case when one pattern
is a subset of another pattern. This is possible because we allow
patterns to have don’t care bits that essentially represent both
0 and 1 values. In our framework, we set the distance between
such proximity graph vertices to —1, guaranteeing that these
vertices will be chosen for compression and the more specific
pattern will be eliminated from the graph.

Once the proximity graph is built, the two patterns connected
by the minimum-weight edge are merged together. If r < k,
the compression is completed; otherwise, the graph is updated

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS 385

PATTERNCOMPRESS (){
for each (pattern i)
for each (pattern j != 1) {
if (contains (i, j))
weight (i, j) = -1
else
weight (i, j) =
compute distance (i, j) }

N O Ul W

8 while (num patterns > matcher lines) {

9 (i, j) = edge _with minimum weight
10 pattern i1 = merge(pattern i, pattern j)
11 delete pattern j
12 update graph
13 num_patterns -- }}

Fig. 6. Pattern-compression algorithm. A proximity graph is initially gener-
ated and labeled in lines 2—7. The two closest patterns are merged, and the graph
is updated in lines 9-12. The cycle is repeated until the patterns can fit into the
fixed size matcher.

using the compressed pattern just generated, instead of the two
original ones, and the process is repeated until we are left with
a number of patterns that fit in the matcher.

An example of a compression is shown in Fig. 5. Here, for
simplicity, we assume that the matcher can only contain two
entries and that, initially, there are four bug patterns. After the
proximity graph is initially built and the edges are labeled, the
algorithm selects the edge with the smallest distance (D = 1.5)
and merges patterns 101zx1 and 100121 connected by it. As
was shown before, the resulting pattern is 10zxx1. When the
graph is updated after the first step, it has three vertices and is
still too large for the matcher. Note, however, that the pattern
that was added (10zzz1) completely overlaps pattern 100001;
thus, the edge between them is labeled with distance —1. When
the algorithm searches for the edge with the smallest weight for
the second step, this edge is selected and the vertex 100001 is
eliminated. Compression then terminates since the resulting set
of patterns can fit into the two-entry matcher.

Fig. 6 shows a pseudocode for the pattern-compression al-
gorithm. Lines 2-7 generate the initial proximity graph by
computing the weights of all the edges either by detecting that
vertex ¢ contains vertex j (contains function) or by com-
puting the distance using the algorithm described previously
(compute_distance function). Lines 9-11 select the pair to
merge, remove one pattern from the set, and update the graph.
The procedure is repeated until we reach the desired number
of patterns. Function merge in line 10 generates a pattern that
is the minimum overapproximation of the two input patterns.
The function must first check for containment, in which case it
returns the former one. If there is no containment between the
two patterns, their approximation is computed by generating
an z bit for each nonmatching bit pair. It is worth noting that
the performance of the algorithm described could be optimized
in several ways, for instance by eliminating all edges with
D = —1 in the graph at once.

As mentioned before, the compression algorithm generates
a set of patterns that overapproximates the number of erro-
neous configurations. The resulting pattern will still be ca-
pable of flagging all the erroneous configurations; however,
it will also flag additional correct configurations that have

been included by the merging function (false positives). The
impact on the overall system will not be one of correctness,
but one of performance, particularly if the occurrence of the
additional critical control configurations is frequent during a
typical execution. We measure the amount of approximation in
the matcher’s detection ability as its specificity. The specificity
is the probability that a state matcher will not flag a correct
control-state configuration as erroneous. Specificity can also
be thought of as 1 — false_positive_rate. Hence, when there is
no approximation, the matcher has an ideal specificity of 1;
increasing overapproximation produces decreasing specificity
values. It is important to note that, by virtue of our design and
the pattern-compression algorithm, our system never produces
a false negative, i.e., it never fails to identify any of the bug
states observable through the selected critical control signals.

D. Processor Recovery

At this point, the set of patterns generated and compressed is
issued to the end customers as a patch. We envision this step as
being similar to current microcode-patching flow, where a patch
for the processor is included into the basic input—output system
(BIOS) updates. Updates are distributed by operating system
or hardware vendors and are saved in nonvolatile memory on
the motherboard. At startup, when BIOS firmware executes, the
patches are loaded into the processor by a special loader. FRCL
can use an almost-identical mechanism, and we expect FRCL
patches to be approximately of the same size of a microcode
update (~2 kB or less). After the patch is loaded at startup
into the matcher, the processor starts running. While none of
the configurations recorded in the matcher is detected, the
activity proceeds normally (we call this mode of operation high-
performance). However, when a buggy state is detected, the
pipeline is flushed, and the processor is switched to a reliable
degraded mode of execution. Fig. 7 shows an example of the
execution flow when a bug pattern is matched in an FRCL-
equipped processor. In the example, we consider a simple
in-order single-issue pipeline, and we further assume that the
interaction between a particular pair of instructions INST2
and INST3 triggers a control bug which has been detected
and encoded in a pattern already uploaded in the matcher.
The figure shows that, when the pattern is detected by the
matcher [Fig. 7(a)], the pipeline is flushed [Fig. 7(b)], and
the processor is switched to the degraded mode. This mode is
formally verified at the design time; hence, we can rely on it
to correctly complete the next instruction [Fig. 7(c)]. Finally,
the high-performance mode of operation is restored [Fig. 7(d)].
Note that, in a design that was not equipped with the FRCL
technology, a problem such as the one just described would
probably have required rewriting the compiler software or the
microcode related to the instructions to circumvent the bug
configuration. Note that it is sufficient to complete only one
instruction before reengaging a normal operation since, in the
event that the pipeline steps again into an error state, it will,
once again, enter the degraded mode to complete the following
instruction. On the other hand, a designer may choose to run in
a degraded mode for several instructions to guarantee bypassing
the bug entirely in a single recovery.

386

RECOVERY
CONTROLLER

STATE
MATCH MATCHER
(a) Bug detected

ID/EX
stage

RECOVERY
CONTROLLER

STATE
MATCH MATCHER

(c) Run in degraded mode

Fig. 7.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

RECOVERY
CONTROLLER

STATE
MATCH MATCHER

(b) Flush to known state

RECOVERY ¢ STATE
'H CONTROLLER MATCH MATCHER

(d) Restart in normal mode

FRCL in operation. (a) Matcher detects a state associated with a bug described in a preloaded pattern. (b) Pipeline is flushed to a known state.

(c) Processor runs in the degraded mode, allowing only one instruction in the pipeline at a time. Degraded mode is formally verified, guaranteeing forward
progress and correctness. (d) After offending instructions are bypassed, the processor resumes normal-mode operation.

It should also be noted that, unlike some implementations
of the microcode update mechanism, which allow for buggy
patches to be loaded [6], our technique cannot introduce
new flaws into the processor since our patches only spec-
ify when a processor switches to the degraded mode. In the
worst case, the processor runs in a degraded mode all the
time, with notable performance impacts, but provides correct
functionality.

E. Example

We now show the use of FRCL through an example similar
to the Intel Celeron bug listed in [1], which we adapt, for
simplicity reasons, to a five-stage pipeline. In this example,
the processor has a flow that does not always enforce a nec-
essary stall between two successive memory accesses. A stall
is required since all memory operations are performed in two
cycles: During the first one, the address is placed on the bus,
and the data from or to the memory follow during the second
cycle. If a memory operation is followed by a nonmemory
instruction, they are allowed to proceed back to back since
the second operation does not require memory access while
advancing through the MEM stage of the pipeline.

In the example, the program that is being run contains a store
and a load back to back, which triggers the bug described. The
matching logic in this case contains four entries that describe
all possible combinations of having two memory instructions
in the ID and EX stages of the pipeline. For instance, the first
entry matches valid instructions in the ID and EX stages of
the pipeline, which are both memory reads. The second entry
matches a store in EX, followed by a load in ID, which is
triggered during the program execution (Fig. 8). The pipeline
is flushed, then the recovery controller restarts the execution at
the instruction preceding the store, i.e., the first uncommitted
instruction. Note that, in this case, the bug is fully and precisely
described by the four patterns loaded in the matcher; thus, no
false-positive matches are produced. Moreover, any attempt to

DECODE

REG

11111 1000 0100 0000

I
|
[}
| x11xx 1000 1000 xxxx
: X11xx 1000 0100 XXxX
x11xx 0100 1000 xxxx
x11xx 0100 0100 xxxx

RECOVERY
i conTroLLER [€EMATCHS

New PC=4

STATE MATCHER

Fig. 8. FRCL for a memory-access bug. Without FRCL, two consecutive
memory accesses (8:STORE and 12:LOAD) would be erroneously allowed
to proceed back-to-back in the pipeline. When the bug is recognized by the
state matcher, the pipeline is flushed, and the execution restarts at the first
uncommitted instruction (4:ADD). In the degraded mode, instructions do not
go through the pipeline back-to-back, avoiding the bug.

compress this set of patterns will introduce false positives, as
can be noted by observing the patterns in Fig. 8.

IV. DESIGN FLow

In this section, we describe a design and verification flow
that incorporates the FRCL technology. First, we show how
the traditional design process needs to be changed to incor-
porate the FRCL technology and then investigate a formal
verification of the degraded mode of operation. Then, we move
on to overview control-state selection techniques, including our
novel automatic selection algorithm. Finally, we present some
insights on incorporating the performance-critical execution
into an FRCL-protected design.

A. Overview of the Design Framework

The overall design flow of a component augmented with
FRCL is shown in Fig. 9. As mentioned previously, the

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS 387

System-level
Verification
(Random / Property

Formally verify
reliable mode
verification)

Manufacture
j component
with on-die

matcher

Initial design

@J

1

Implement
matcher

7
Select critical ':>

Fig. 9. FRCL design flow: By using the initial RTL, designers formally verify
the degraded mode and select the control signals to be monitored by the state
matcher. A matcher is incorporated into the final design that is shipped to the
end customer.

verification of complex hardware components such as the
microprocessors relies today on a variety of formal and
simulation-based methods. The deployment of FRCL technol-
ogy in a processor design requires the addition of two steps
to the mainstream design flow. The first step requires us to
formally verify the processor when operating in the degraded
mode, which is needed by FRCL to recover from the patched
design errors. Note that we set up the degraded mode so that
instructions are never interacting; hence, verification is greatly
simplified. For the most part, this verification effort is reduced
to the verification of individual functional blocks, which are
already heavily addressed today by formal verification tech-
niques. The system-level verification of the entire processor is
still performed using the same mainstream methodology that
was used before the deployment of FRCL, typically a mix of
random simulation and formal property verification.

The second additional task during the system design is the se-
lection of signals that should become part of the “critical control
state.” These signals are then routed to a state matcher which
was shown in Fig. 4. The number of entries in the matcher
is subject to a tradeoff between the total design area and the
overall performance of the deployed component since a smaller
matcher might require compression and reduce the processor’s
performance because of the increased false positives.

B. Verification Methodology

In addressing the formal verification of the degraded mode of
operation, we exploited a series of optimizations made available
by its specific setup. Most of the complex functionality of the
processor is disabled in this mode, and only one instruction is
allowed in the pipeline at any time, greatly reducing the fraction
of the design involved in each individual property proof. To
this end, it is important to note that it is not necessary to
create a new simplified version of the design. Instead, all of
the simplifications are achieved either as a direct consequence
of the nature of the input stream—only one instruction is in
flight at any one time—or by simply disabling the advanced
features through a few configuration bits. For example, modules
such as branch predictors and speculative execution units can be
turned off with a variant of the “chicken bits,”” which are control
bits used in many design developments to enable and disable
features. On the other hand, the control logic responsible for

// (1) RTL checker for ADD validity
module add valid (INST, valid, fail);

assign fail = valid & (INST['OPCODE] !=
endmodule

‘ADD) ;

//(2) RTL checker for ADD forward progress
module add forward (clock, reset, IR, valid, ...);
reg [3:0] count committed _adds; //saturating

reg [3:0] clk_cnt; //saturating
assign fail = (clk _cnt == 4'd5) &
(count committed adds == 4’'d0);
endmodule
//(3) RTL checker for ADD semantics
module add_sem {(clock, reset, add in_ id,

add_in wb, write_dest, write_data, ...);

reg [63:0] read a_ , read b ; //operands from RF
//result register ID read in decode stage
reg [4:0] dest_id;

//shows that destination is chosen correctly
assign faill = ! ((ladd in wb) || ((add _in wb)
& (write dest == dest_id)));
// shows that addition is performed properly
assign fail2 = ! ((tadd in wb) || ((add _in wb)
& (write data == read a_+ read b)));
endmodule

Fig. 10. RTL checkers to verify the correctness of the ADD instruction with
Synopsys’ Magellan. Checkers verify (1) the presence of only the valid ADD
instruction in flight, (2) forward progress, and (3) correctness of execution.

data forwarding, squashing, and out-of-order execution would
be abstracted away by the formal tools due to the fact that
only one instruction appears in the pipeline at a time and these
blocks are irrelevant. These two major simplifications make the
degraded mode operation simple enough for traditional formal
verification tools to handle.

In our experiments, we used Magellan from Synopsys to
verify both our testbed processor designs. Magellan is a hy-
brid verification tool that employs several techniques, includ-
ing formal and directed-random simulation first presented in
[19]. Since the instructions are executed independently, we
use Magellan to verify the functionality of each instruction in
the instruction-set architecture (ISA) one at a time. For each
instruction, we wrote assertions in the Verilog hardware design
language to specify the expected result. Constraint blocks fixed
the instruction’s opcode and function field, whereas immediate
fields and register identifiers were symbolically generated by
Magellan to allow for verification of all possible combinations
of these values. An example of checkers written for ADD
instruction is shown in Fig. 10. The first module, add_valid,
guarantees that only valid instructions, ADDitions in this case,
are in execution. The second checker, add_forward, enforces a
forward progress by forcing the instruction to complete in a set
number of clock cycles. Finally, add_sem enforces the correct
semantics for additions by checking that the correct result is
written to the register file during the writeback stage. For more
complex instructions such as loads and branches, additional
checkers are needed to prove that the execution of the oper-
ation on the degraded pipelined machine matches exactly the
ISA specification.

While we could completely verify the degraded mode for
both our testbeds, it should be pointed out that neither could

388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

be verified in the high-performance mode because of the much
greater complexity involved.

C. Control Signal Selection

A critical aspect of deploying an FRCL is determining which
control-state signals are to be monitored by the matcher. On one
hand, it would be ideal to monitor all the sequential elements of
a design; however, given the amount of control state in complex
designs, such approach would be either infeasible or extremely
costly. For an FRCL to be practical, the set of critical control
signals should be just a handful, selected among any internal
net of the design, although this limitation could potentially be
the source of false positives at runtime. An example of the
impact of a poor signal selection is discussed in Section V,
where we describe a bug, r31-forward, used in our experimental
evaluation, which describes an incorrect implementation of data
forwarding through register 31. In the Alpha ISA, register 31
has a fixed value 0 and, hence, cannot be a reference register
for data forwarding. If the critical signal set does not include
the register fields of the various instructions in execution, it
is impossible to repair this bug without triggering all those
configurations which require any type of forwarding, causing
an extremely high rate of false positives.

We envision two possible solutions to address this problem.
The first and simplest solution is to monitor the destination-
register indexes of the instructions at the EX/MEM and
MEM/WB stage boundaries by including them in the critical
signal set. The downside of this solution is that the critical
signal pool would grow and possibly impact the processor’s
performance; for our in-order experimental testbed, this would
be a 30% increase in the signals being monitored. The alter-
native solution entails including a comparator asserting when a
forwarding on register 31 is detected and one additional single
bit—the output of the comparator—to the critical set. The
additional overhead in this case would be less than the previous
alternative. Both approaches would eliminate the false positives
for the r31-forward bug and, hence, improve the processor’s
performance. Thus, a designer using the FRCL approach should
keep in mind the possible corner cases such as this and select
his critical control pool for a broad range of bugs. A possible
approach for this task would be analyzing the previous designs
to gain a sense of where bugs have been found.

D. Automatic Signal Selection

Since the critical signal selection is of key importance for
FRCL, we have developed a software tool to support a designer
in this task. The tool considers the RTL description of the
design, and it narrows the candidate pool for the critical control
set. It does so by first automatically excluding poor candidates
such as wide buses and then by ranking the remaining can-
didates in decreasing relevance. The rank is computed based
on the width of the cone of logic that a signal drives and the
number of submodules that they feed into. For example, for
the RTL block shown in Fig. 11, the critical state selection
tool marks signal A as data, whereas it designates signals B
and C' as control. However, B will have a higher control signal

module example (A, B, C)
input [64:0] A;

A | data

w

Control rank 1

input B;
output C; C | Control rank 2
assign C = IB & (A == 64'h0);
endmodule

Fig. 11. Example of automatic control selection for a simple module. Signal
A is labeled as data because of its width, and signal B is a higher ranked control
signal than C since it drives C.

DON'T CARE BITS

STATE VECTOR

FIXED BITS CAM ENTRY 0 MATCH

CAM ENTRY 1
CAM ENTRY 2
CAM ENTRY 3

GUARANTEED CORRECTNESS MODE BIT

PROCESSOR
STATUS REGISTER

Fig. 12. State matcher with enabled signal asserted or deasserted by the
corresponding bit in the processor status register.

ranking since it drives more signals than C'—B drives C plus
all the nodes that C' drives, indicating that it is probably a more
important control signal.

When comparing our manually selected critical signal set
with the output of the automatic signal selector tool, we noted
an 80% overlap. It should be noted that the manual selection
was performed by a designer who had full knowledge of the
microarchitecture, whereas the automatic selection tool was
only analyzing the RTL design.

In Section V, we present an experiment comparing the per-
formance, in terms of specificity (precision of the bug-detection
mechanism), of a range of variants of manual and automatic
selections. In particular, we looked at the average specificity
per signal or the measure of how much each signal is con-
tributing to the precision of the matcher. Solutions with higher
average specificity per signal provide a higher specificity, which
translates into higher performance, and require less area for
fewer signals that need to be routed to the matcher.

E. Performance-Critical Execution

In some systems, the speed of execution may be more critical
than its correctness. For example, in real-time systems, it is
important to guarantee task completion at a predictable time
in order to meet scheduling deadlines. In streaming video
applications, the correctness of the color of a particular pixel
may also be less crucial than the jitter of the stream. In these
situations, our approach that trades off the performance for
correctness may be undesirable. For these cases, we propose
having an extra bit to enable/disable the matcher (Fig. 12). The
matcher-enable bit, however, should only be modifiable in the
highest privileged mode of the processor operation to ensure
that a user code cannot exploit the design errors for malicious
reasons.

V. EXPERIMENTAL EVALUATION

In this section, we detail two prototype systems with FRCL
support. By using a simulation-based analysis, we examine the

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS 389

error-detection accuracy of FRCL for a number of design-error
scenarios and varied state-matcher storage sizes. We also ex-
amine different criteria for selecting the control state, including
an automatic selection heuristic outlined in Section IV-D. In
addition, we examine the area costs of adding this support to
simple microprocessors. Finally, we examine the performance
impact of the degraded-mode execution to see the extent of
error recovery that can be tolerated before the overall program
performance is impacted.

A. Experimental Framework

To gauge the benefits and costs of the FRCL, we added this
support to two prototype processors. Although experimental
in nature, these processors have been already deployed and
verified in several research projects. While these prototype
processors do not have the complexity of a commercial offer-
ing, they are nontrivial robust designs that can provide a real-
istic basis to evaluate the FRCL solution. For our experiments,
we implemented two variants of the state matcher, with four
and eight entries, and integrated them into the two baseline
processor designs.

The first design is a five-stage in-order pipeline implementing
a subset of Alpha ISA with 64-b address/data word and 32-b
instructions. The pipeline has forwarding from the MEM and
WB stages to ALU and resolves branches in the EX stage. The
pipeline utilizes a simple global branch predictor and 256-B
direct-mapped instruction and data caches. For this design,
we handpicked 26 control bits, which govern the operation
of different logic blocks of the pipeline (datapath, forwarding,
stalling, etc.), to be monitored by the matcher. These signals
were selected through a two-step process: We first analyzed the
escaped bugs documented in this paper, which are reported in
Section II-A, and then selected those control signals that would
have been good indicators of those bugs. This analysis relies on
the assumption that future escaped bugs are correlated to past
escapes. In addition, in making our selection, we were careful
to choose signals which encoded the critical control situations
in compact ways: For instance, we chose not to monitor the
indexes of source and destination registers of each instruction
(which require several bits each), but, instead, we decided to
track the occurrence of each data forwarding (only a handful
of bits). To limit the monitoring overhead, we also chose not
to observe any of the instruction opcode bits that are marched
down in each pipeline stage. As detailed in Table I, the majority
of the critical control signals were drawn from the ID and
EX stages of the pipeline, where the bulk of computation
occurs. For example, in the ID stage, we selected some of the
output bits of the decoder, which represent, in compact form,
what type of operation must be executed, and in the EX stage,
we selected the ALU control signals. Although this potentially
limited our capability to recognize a buggy state before the
instruction is decoded in the ID stage, it allowed us to reduce the
number of bits monitored. Note also that, while we chose not
to modify the original design in any way, it could be possible
to enhance the precision of the error detection by adding
minimal additional logic. Examples are the solution to the
r31-forward bug described in Section I'V-C and also the addition

TABLE 1
CONTROL-STATE BITS MONITORED IN THE IN-ORDER PIPELINE

Name Number of bits | Pipeline stage
IF_valid 1 Fetch
ID_valid 1 Decode
EX_valid 1 Execute
MEM_valid 1 Memory
WB_valid 1 Write-back
ID_rd_mem 1 Decode
ID_wr_mem 1 Decode
ID_cond_br 1 Decode
ID_uncond_br 1 Decode
EX_rd_mem 1 Execute
EX_wr_mem 1 Execute
EX_cond_br 1 Execute
EX_uncond_br 1 Execute
EX_ALU_function 5 Execute
EX_br_taken 1 Execute
EX_hazard_source_a 2 Execute
EX_hazard_source_b 2 Execute
MEM_br_taken 1 Memory
MEM_bus_command 2 Memory
Total 26

TABLE 1I

CONTROL-STATE BITS MONITORED IN THE TWO-WAY SUPERSCALAR
OUT-OF-ORDER PIPELINE

Name Number of bits | Pipeline module
ROB_head_commit 2 Re-order buffer
ROB_head_store_address 1 Re-order buffer
ROB_head_store_data 1 Re-order buffer
ROB_head_load 1 Re-order buffer
ROB_full 1 Re-order buffer
RS_full 1 Reservation Stations
RS_complete 2 Reservation Stations
RS_br_miss 2 Reservation Stations
Issue_branch 2 Rename

Issue 2 Rename
Total 16

of pipeline latches to propagate more complete information on
the instruction being executed through the pipeline, with the
result that it would become possible to capture more precisely
the specifics of an instruction leading to a bug.

The second processor is a much larger out-of-order two-way
superscalar pipeline, implementing the same ISA. The core
uses Tomasulo’s algorithm with register renaming to reorder
instruction execution. The design has four reservation stations
for each of the functional units and a 32-entry reorder buffer
(ROB) to hold speculative results. The flushing of the core on
a branch mispredict is performed when the branch reaches the
head of the ROB. The memory operations are also performed
when a memory instruction reaches the head of the ROB, with
a store operation requiring two cycles. The ROB can retire
two instructions at a time, unless one is a memory operation
or a mispredicted branch. The design also includes 256-B
direct-mapped instruction and data caches and a global branch
predictor. The signals hand-selected for the critical control pool
include signals from the retirement logic in the ROB as well as
control signals from the reservation stations and the renaming
logic, as reported in Table II.

Similar to the in-order design, no opcodes and instruction
addresses were monitored to minimize the number of observed

390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

TABLE III
BUGS INTRODUCED IN IN-ORDER AND OUT-OF-ORDER PIPELINES

Bug Description
In-order pipeline
2-mem-ops Two consecutive memory operations fail

opA-forward-wb
opA-forward-conf
2-branch-ops
store-mem-op
load-branch
mult-branch
mult-depend

Incorrect forwarding from WB stage on operand A
Incorrect hazard resolution on operand A

Two consecutive taken branches fail

Store followed by another memory operation fails

A conditional branch depending on a preceding load fails
A branch following a multiply instruction fails

Multiply followed by a dependent instruction fails

r31-forward Forwarding on register 31 is done incorrectly

multi-1 2-mem-ops + opA-forward-wb + opA-forward-conf +
2-branch-ops

multi-2 store-mem-op + load-branch + mult-branch

multi-3 mult-depend + r31-forward

multi-4 2-branch-ops + mult-branch + load-branch

Out-of-order pipeline
Store operation fails when ROB is full
Any memory operation fails when ROB is full
Double-issue and double-retirement in the same cycle fails
Retirement of two instruction fails if two non-branch
instructions are added to full ROB at the same time
ROB incorrectly flushes the pipeline if two branches
are mispredicted at the same time

rob-full-store
rob-full-mem
double-retire
double-retire-full

double-mispred

rs-flush Reservation stations do not get flushed on a
branch mispredict if rs_full signal is asserted
load-data Loaded data is not forwarded to dependent
instructions in the reservation stations
multi-all All out-of-order bugs combined

signals. The matcher developed for this design was capable of
correctly matching the scenarios involving branch mispredic-
tion, memory operations, as well as corner cases of operation
of the ROB and reservation stations, for example, when they
were full and the front-end needed to be stalled. Again, a
larger set of signals could be used to gather more detailed
information about the state of the machine; however, for this
design, the benefit would consist of a shorter recovery time
by recognizing the problems earlier on. On the other hand, the
ability to precisely identify erroneous configurations would not
be improved significantly since errors can still be detected when
the instructions reach the head of the ROB.

The processor prototypes were specified in synthesizable
Verilog and then synthesized for minimum delay using Syn-
opsys design compiler. This produces a structural Verilog spec-
ification of the processor implemented with Artisan standard
logic cells in a Taiwan Semiconductor Manufacturing Company
0.18-pm fabrication technology.

For performance analysis, we ran a set of 28 microbench-
mark programs designed to fully exercise the processor while
providing small code footprints. These programs included
branching-logic and memory-interface tests, recursive com-
putation, sorting, and mathematical programs, including inte-
ger matrix multiplication and emulation of the floating-point
computation. In addition, we ran both of the designs for
100 000 cycles with an interactive stimulus generator StressTest
[26] to verify correctness of operation as well as to provide a
more diverse stream of instruction combinations.

B. Design Defects

To evaluate the performance of the FRCL solution, we
equipped the designs with a matcher block, manually inserted a
variety of bugs into our designs, downloaded the appropriate

patch to the matcher, and then examined their overall per-
formance. For each bug or set of bugs, we created a variant
of the design which included them. In crafting the bugs, we
emulated the bugs reported in errata documents that we ana-
lyzed in Section II-A. We also strived to target all levels of
the design hierarchy. Usually, high-level bugs were the result
of bad interactions between instructions in flight. For example,
opA-forward-wb breaks forwarding from the WB stage on one
operand, and 2-branch-ops prevents two consecutive branching
operations from being processed properly under rare circum-
stances. Medium-level bugs introduced incorrect handling of
instruction computations, such as store-mem-op, which causes
store operations to fail. Low-level bugs were highly specific
scenarios in which an instruction would fail. For example,
r31-forward is a bug causing forwarding on register 31 to be
performed incorrectly. Finally, the multibugs are the combined
bugs, where the state matcher is required to recognize larger
collections of bug configurations. For instance, multi-all is a
design variant that includes all bugs that we introduced. A
summary of the bugs introduced in both of the designs is given
in Table III. It can be noted that, even for these simple designs,
some of the bugs require a very unique combination of events
to occur in order to become visible.

C. Specificity of the Matcher

The control state matcher has the task of identifying when the
processor has entered a buggy control state, at which point the
processor is switched into a degraded mode that offers reliable
execution. In this section, we study the specificity of the state
matcher, i.e., its accuracy in entering the degraded mode only
when an erroneous configuration is observed.

Figs. 13 and 14 show the specificity of the state matcher
for bugs in the in-order and out-of-order processor designs.
Recall that the specificity of a bug is the fraction of recoveries
that are due to an actual bug. Thus, if the specificity is 1,
the state matcher only recovers the machine when the bug is
encountered. On the other hand, a matcher with low specificity
would overshoot in its analysis and enter the degraded mode
more often than necessary. For instance, a specificity of 0.40
indicates that an actual bug was corrected only during 40%
of the transitions to a degraded mode, whereas the other 60%
were unnecessary. In order to gather a sense of the correlation
between specificity and matcher size, we plot our results con-
sidering four-entry, eight-entry, and infinite-entry matchers.

It can be noted that, for both processors, many of the bugs
can be detected and recovered with a specificity of 1.0 even
when using the smallest matcher; thus, no spurious recover-
ies were initiated. Some combinations of multiple bugs (e.g.,
multi-1 and multi-2) had low specificities, but when the matcher
size was increased, the specificity again reached 1.0. For these
combinations of bugs, a four-entry matcher was too small to
accurately describe the state space associated with the bugs, but
the larger matcher overcame this problem.

Finally, for a few of the bugs, e.g., mult-depend in Fig. 13
and load-data in Fig. 14, even an infinite-size state matcher
could not reach the perfect specificity. For these particular
bugs, the lack of specificity was not the result of pressure

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS

1
>
a 2'2 M 4 entry matcher
-‘§ 041 8 entry matcher
& o2 Olnfinite matcher
0
) © o ©) X X Y .y
of éx* o o 0 o o N s A %3 .5 NS
o o & X e o2 o2 20® o K > N MY
1_“@ pr e ("‘ﬂ o o o o \oﬂév o R o \‘\\A ‘.3,_&0 M “y ‘(y ‘V
o 9 v o
Fig. 13. Specificity of detection for a range of bugs in the in-order pipeline. Low specificity can be due to insufficient critical control monitored by the matcher
(bugs mult-depend and r31-forward) or to insufficient size of the matcher (four-entry matcher in bugs multi-1, multi-2, and multi-4).
1
2 08
£ 06 B 4 entry matcher
‘q;a_ 0.4 B 8 entry matcher
n 02 O Infinite matcher
0
@ & «© R o~ > D
2° Nl < A % ° 2% B2
oV o‘O'w o < «° < \o? M
\) o\
©° < &0 R 60\«:\"‘

Fig. 14. Specificity of detection for a range of bugs in the out-of-order pipeline. Low specificity can be due to insufficient critical control monitored through the
matcher (for instance, load-data) or to insufficient size of the matcher (for instance, the four-entry matcher with multi-1 bug).

O double-instr W auto-select

W manual-select w/ ID

O single-instr
W manual-select

Avg. specificity per signal
PSS LLLLLS ALY,

Fig. 15. Average specificity per signal for a range of critical signal sets in the
FRCL implementation of the in-order pipeline. In most cases, the manual-select
solution achieves the best specificity at lower cost. However, auto-select, based
on the automatic selection algorithm in Section IV-C, achieves good results
with no effort from the engineering team.

on the matcher but rather of an insufficient access to critical
control information, as was described in Section IV-C. Thus,
these experiments had to initiate recovery whenever there was
a potential error, which lead to the lower specificities.

To evaluate the impact of various critical control signal-
selection policies and compare them to the automatic approach
described in Section IV-D, we developed a range of FRCL
implementations over the in-order pipeline using a different
set of critical signals. The results of this analysis are shown
in Fig. 15.

In the first configuration developed, single-instr, the criti-
cal control consists exclusively of the 32-b instruction being
fetched. The second solution, called double-instr, monitors the
instructions in the fetch and decode stages (64 instruction bits
and 2 valid bits). The third configuration (auto-select) includes
all of the signals automatically selected by our heuristic algo-
rithm from Section IV-D for a total of 52 b. For this setup,
the automatic selection algorithm was configured to return all

RTL signals with nonzero control rank and width less than
16 b. The manual-select implementation exactly corresponds
to the one from the experiment in Section V-B, including all
the signals listed in Table I; thus, its matcher performance
is the same as in the aforementioned experiments. The final
configuration, manual-select w/ID, is the same as the manual-
select, but it includes ten extra signals to monitor the destination
registers in the MEM and WB stages.

Matcher sizes for all of the variants contained enough entries
to accommodate even the largest patches; therefore, pattern
compression was never required. For each design variant, we
developed individual patches for the first nine bugs listed in
Table III (all but the multibugs). For each bug and each design
variant, we measured the average specificity per signal, i.e.,
specificity divided by the number of signals in the critical
control pool. This measure gives us an intuition on how to select
the approach with the best performance/area tradeoff.

As shown in Fig. 15, the manual-select variant produces the
best results for most bugs. The manual-select w/ID solution
has better specificity than the manual-select solution but at
a higher price. Its main advantage is the good result over
r31-forward, which is made possible by its tracking destination-
register indexes. Note also that the automatic selection algo-
rithm performs quite well, particularly taking into account that
this approach does not require any engineering effort.

D. State-Matcher Area and Timing Overheads

Implementing an FRCL solution requires the addition of the
critical control matcher logic, i.e., the matcher itself and the
recovery controller, which cause an area overhead for the final
design. Table IV tabulates the area overheads of a range of
FRCL implementations, including the matcher size of four
and eight entries built over both the in-order and out-of-order
designs and considering 256-B and 64-kB instruction and data

392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

TABLE 1V
AREA OVERHEADS AND PROPAGATION DELAYS FOR A RANGE OF FRCL
IMPLEMENTATIONS ON THE IN-ORDER AND OUT-OF-ORDER PIPELINES
WHEN SYNTHESIZED ON 180-nm TECHNOLOGY

Critical control state matcher area
(% design area)

In-order Out-of-order

256B | 64kB | 256B 64kB

4 entry matcher | 1.10% | 0.01% | 0.34% 0.01%
8 entry matcher | 2.20% | 0.02% | 0.68% 0.02%

Propagation delay of the matcher (ns)

In-order Out-of-order
(clk=11.5ns) (clk=6.5ns)
4 entry matcher 1.18ns 1.17ns
8 entry matcher 1.43ns 1.21ns

450

400 14 —e—Inorder Pipeline

25017 —e— Out of Order Pipeline /
300 L ul ipeli

250 7 /

200

150

100 P
-t

0 * - T T

0.001 0.1 Bug Frequency 1

% Slowdown

Fig. 16. Impact of recovery on processor performance. FRCL technology
incurs less than 5% performance impact as long as the frequency of the
bug does not exceed 6 per 1000 cycles in the in-order pipeline and 10 per
1000 cycles in the out-of-order pipeline.

caches. As shown in the table, the overhead of FRCL is uni-
formly low. Even the larger state matcher with small pipelines
and caches (in-order 256-B) results in an overhead of only about
2%. Designs with larger caches and more complex pipelines
have an even lower overhead. Given the simplicity of our base-
line designs, we would expect the overhead for commercial-
grade designs to be even lower. Table IV also presents the
propagation delays through the matcher block. Note that all
solutions have propagation delays that are well below the clock
speed; hence, they do not affect the overall system’s perfor-
mance. Note that the matcher for the out-of-order processor
performs faster because it monitors fewer control signals. It
should also be pointed out that an FRCL matching is performed
in parallel with a normal pipeline operation, and given the
observed propagation delays through the matcher, they do not
affect the overall design frequency.

E. Performance Impact of Degraded Mode

During recovery, the processor is switched into the de-
graded mode to execute the next instruction, and then, it is
returned to the normal operation. During recovery, only one
instruction is permitted to enter the pipeline; thus, instruction-
level parallelism is lost, and program performance will suffer
accordingly. Fig. 16 shows the performance of the in-order and
out-of-order processors as a function of increasing recovery

295 3.85

| | m4 entry matcher
| | m8entry matcher
O Infinite matcher|

N
h

-

~

o
|

-
-
o

|

e :
oy)
S S I

Normalized CPI

0.251

Fig. 17. Normalized CPI for the in-order pipeline. Average CPI increase is
computed only over design variants with a single bug.

j W 4 entry matcher W 8 entry matcher O Infinite matcher| |

Normalized CPI

Fig. 18. Normalized CPI for the out-of-order pipeline. Average CPI increase
is computed only over design variants with a single bug.

frequency. As shown in the graph, for performance impact to
be contained under 5%, the rate of recovery could not exceed 6
per 1000 cycles for the in-order pipeline and 1 per 1000 cycles
for the out-of-order pipeline. For a more stringent margin of
2% impact, the recovery rates should not exceed 2 per 1000
and 4 per 1000 cycles for the in-order and the out-of-order
processors, respectively. Note that the in-order pipeline suffers
more heavily from the frequency of the recovery, as it can be
easily derived from its higher sensitivity to instruction latencies.

Finally, Figs. 17 and 18 show the clock cycles per instruction
(CPI) of the FRCL-equipped in-order pipeline. The CPI has
been normalized to the average CPI achieved when no patch
was uploaded on the matcher (hence, the degraded mode was
never triggered). By comparison with Fig. 13, it can be noted
that low specificity often results in an increased CPI. However,
the worst-case scenario (four-entry matcher and multi-1 bug)
occurs because of an insufficiently sized matcher and not be-
cause of the critical control selection.

VI. CONCLUSION

In this paper, we presented a novel technology called FRCL.
We also implemented a microprocessor design solution to
detect erroneous control configurations and to recover correct
execution through a low-complexity reliable degraded mode.
We described a low-cost state-matching mechanism that can
detect when to bypass bugs. The technique consistently has an
area cost of less than 2%. Moreover, with moderately sized

WAGNER et al.: USING FRCL TO CORRECT DESIGN ERRORS IN MICROPROCESSORS 393

matchers, we can ensure highly accurate detection of bug
states in nearly all of our experiments. Finally, we examined
the performance impacts of running programs in the degraded
mode, and we found that, if recovery frequency is less than
ten per 1000 instructions in the out-of-order design and less
than six recoveries per 1000 instructions in the in-order design,
the performance impact is below 5%. We feel that this paper
makes a strong case for FRCL and shows that the approach
holds a great promise to ensure against the potential disasters
of releasing buggy silicon.

REFERENCES

[1] DDJ Microprocessor Center. [Online]. Available: http://www.x86.org/

[2] QlIfdiv (Enable Pentium FDIV Fix). [Online]. Available: http://msdn2.
microsoft.com/en_us/library/ms856573.aspx

[3] Intel(R) StrongARM(R) SA_1100 Microprocessor Specification Update,
Feb. 2000.

[4] Intel(R) Celeron(R) Processor Specification Update, 2002.

[5] Intel(R) Pentium(R) II Processor Invalid Instruction Erratum Overview,
Jul. 2002.

[6] AMD Athlon (TM) Processor Model 10 Revision Guide, Oct. 2003.

[7] Intel(R) Pentium(R) Processor Invalid Instruction Erratum Overview,
Jul. 2004.

[8] IBM PowerPC 750GX and 750GL RISC Microprocessor Errata Notice,
Jul. 2005.

[9] Intel(R) Pentium(R) Il Processor Specification Update, May 2005.

[10] Revision Guide for AMD Athlon(TM) 64 and AMD Opteron(TM)
Processors, Aug. 2005.

[11] A. Allan, D. Edenfeld, J. William, H. Joyner, A. B. Kahng,
M. Rodgers, and Y. Zorian, “2001 Technology roadmap for semiconduc-
tors,” Computer, vol. 35, no. 1, pp. 42-53, Jan. 2002.

[12] B. Bentley, “Validating a modern microprocessor,” in Proc. Int. Conf.
CAV, Jul. 2005, pp. 2-4.

[13] B. Bentley and R. Gray, “Validating the Intel Pentium 4 microprocessor,”
Intel Technol. J., vol. 5, no. 1, pp. 1-8, Feb. 2001.

[14] E. B. Brett, D. P. Hunter, and S. L. Smith, “Moving atom to Windows NT
for alpha,” Compaq DIGITAL Tech. J., vol. 10, no. 2, Jan. 1999.

[15] D. Van Campenhout, T. Mudge, and J. P. Hayes, “Collection and analysis
of microprocessor design errors,” IEEE Des. Test Comput., vol. 17, no. 4,
pp. 51-60, Oct.—Dec. 2000.

[16] A. Carbine, “Scan mechanism for monitoring the state of internal signals
of a VLSI microprocessor chip,” U.S. Patent 5 253 255, Nov. 1990.

[17] E. J. McCluskey, “Minimization of Boolean functions,” Bell Syst. Tech.
J., vol. 6, no. 35, pp. 1417-1444, Nov. 1956.

[18] J. Henry, G. Baker, and C. Parker, “High level language programs run
ten times faster in microstore,” in Proc. 13th Annu. Workshop Micropro-
gramming, 1980, pp. 171-177.

[19] P. H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long, “Smart simulation using collaborative formal and
simulation engines,” in Proc. ICCAD, 2000, pp. 120-126.

[20] K. H. Chang, V. Bertacco, and I. Markov, “Simulation-based bug trace
minimization with BMC-based refinement,” in Proc. ICCAD, Nov. 2005,
pp. 1045-1051.

[21] J. K. P. Kevin and J. McGrath, “Microcode patch device and method for
patching microcode using match registers and patch routines,” U.S. Patent
6 438 664, Oct. 1999.

[22] D. Koncaliev, Bugs in the Intel Microprocessors. [Online]. Available:
http://www.cs.earlham.edu/ dusko/cs63/

[23] M. D. Goddard and D. S. Christie, “Microcode patching apparatus and
method,” U.S. Patent 5 796 974, Nov. 1995.

[24] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas, “Patching processor design errors with programmable hard-
ware,” IEEE Micro—Special Issue: Micro’s Top Picks from Computer
Architecture Conferences, vol. 27, no. 1, pp. 12-25, Jan./Feb. 2007.

[25] A. Srivastava and A. Eustace, “ATOM: A system for building customized
program analysis tools,” ACM SIGPLAN Not., vol. 39, no. 4, pp. 528-539,
Apr. 2004.

[26] 1. Wagner, V. Bertacco, and T. Austin, “StressTest: An automatic approach
to test generation via activity monitors,” in Proc. DAC, 2005, pp. 783-788.

[27] 1. Wagner, V. Bertacco, and T. Austin, “Shielding against design flaws
with field repairable control logic,” in Proc. DAC, 2006, pp. 344-347.

Ilya Wagner (S’06) received the B.S. and M.S.
degrees in computer engineering from the Univer-
sity of Michigan, Ann Arbor, in 2004 and 2006,
respectively, where he is currently working toward
the Ph.D. degree at the Advanced Computer Archi-
tecture Laboratory, Department of Electrical Engi-
neering and Computer Science.

His research interests include hardware verifica-
tion and hardware reliability. In summer 2007, he
was a Graduate Technical Intern with Intel’s Valida-
tion Research Laboratory, Hillsboro, OR, research-
ing approaches to pre- and postsilicon validation for multicore processors.

Valeria Bertacco (M’95) received the M.S. and
Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1998 and
2003, respectively.

She joined the faculty at the University of
Michigan, Ann Harbor, after being with Synopsys
for four years as a Lead Developer of Vera and
Magellan—the two popular verification tools. She is
currently an Assistant Professor with the Department
of Electrical Engineering and Computer Science,
University of Michigan. Her research interests are in
the areas of formal and semiformal design verification with emphasis on full
design validation and digital-system reliability.

Dr. Bertacco serves in several program committees, including in the Interna-
tional Conference on Computer-Aided Design and Design Automation and Test
in Europe, and she has been leading the effort for the development of the ver-
ification section in the International Technology Roadmap for Semiconductors
report since 2004.

Todd Austin (M’88) received the Ph.D. degree in
computer science from the University of Wisconsin,
Madison, in 1996.

He is an Associate Professor with the Department
of Electrical Engineering and Computer Science,
University of Michigan, Ann Harbor. His research
interests include computer architecture, compilers,
computer-system verification, and performance-
analysis tools and techniques. Prior to joining acad-
emia, he was a Senior Computer Architect with
Intel’s Microcomputer Research Laboratories, a
product-oriented research laboratory in Hillsboro, OR. He is the first to take
credit (but the last to accept blame) for creating the SimpleScalar Tool Set—
a collection of computer architecture performance-analysis tools.

Dr. Austin is the recipient of the 2007 ACM Wilkes Award in computer
architecture.

