
Cornell University
Computer Science 611

Problem Set 1 DUE: Wed., September 7, 5pm

What to turn in

Turn in the written part of the assignment by 5pm on the due date in Upson 4119. The programming
part should be submitted using CMS (http://cms.csuglab.cornell.edu) by the same time. Most of the
assignment is to be done individually, except for the last problem as noted below.

1. Warm up (10 pts.)
Write the following λ-expressions in their fully-parenthesized, curried forms. Identify the bound vari-
ables and indicate which lambda term binds them.

(a) λxyz. z x λx. x

(b) λxy. (λz. z y) λx. z x

(c) (λx. y λy. x y) λy. x y

We defined capture-avoiding substitution into a lambda term using the following three rules:

(λx. e0){e1/x} = λx. e0

(λy. e0){e1/x} = λy. e0{e1/x} (where y 6= x ∧ y 6∈ FV(e1))
(λy. e0){e1/x} = (λy′. e0{y′/y}{e1/x}) (where y′ 6= x ∧ y′ 6∈ FV(e0) ∧ y′ 6∈ FV(e1))

(d) In these rules, there are a number of conjuncts in the side-conditions whose purpose is perhaps
not immediately apparent. Show by counterexample that each of the above conjuncts of the form
x 6∈ FV (e) is independently necessary.

2. Encoding lists (20 pts.)
In lecture we showed one way to represent the natural numbers in the lambda calculus. In this problem
we will encode lists. Consider the following definitions:

TRUE
4
= λxy. x

FALSE
4
= λxy. y

NIL
4
= λx. (x FALSE)

LIST
4
= λhead. λtail. λx. ((x TRUE) head) tail

For convenience, we will write [x1, x2, . . . , xn] for (LIST x1 (LIST x2 (LIST · · · (LIST xn NIL) · · · ))).

(a) Show how to write the HEAD and TAIL functions, so that HEAD (LIST head tail) = head and
TAIL (LIST head tail) = tail. HEAD and TAIL do not need to return anything sensible when
applied to NIL. Show that (HEAD (TAIL [1, 2])) → 2.

(b) Show how to write a λ-term EMPTY, which returns TRUE if a list is NIL, and FALSE if it is not.

(c) Write a λ-term MAP which accepts a function and a list and returns a new list containing the
results of the function applied to each element of the input list. For example,

MAP f [1, 2, 3, 4] = [(f 1), (f 2), (f 3), (f 4)]

If you get problem 3 working, you can use it to test your solution!

1



3. Implementing lambda calculus (30 pts.)

The file lambda.sml contains a partial implementation of some useful lambda calculus mechanisms. In
particular, it contains a correct implementation of call-by-value implementation in the function cbv,
and you can use it to try out evaluation. The function print exp can be used to print a human-readable
representation of an expression.

(a) This file also includes most of the implementation of a function nf that reduces a term to βη-
normal form, but it doesn’t quite work because the substitution function subst is not correct. Fix
the implementation of subst and make nf work correctly.

(b) There is also a very incomplete implementation of a function translate that translates from an
extended language to simple lambda calculus. The extended language includes let expressions
(like in ML), recursive functions, and pairs. Complete translate so that it faithfully translates
extended terms into lambda calculus terms.

Complete the implementation of lambda.sml and submit the result through CMS. You may do this part
of the assignment (and only this part of the assignment) with a partner. Both partners are expected
to understand the solution. Make sure to add a comment to lambda.sml indicating who your partner
is, if any.

2


