
CS615 – Homework Assignment 5

September 20, 2006

The previous homework assignment was largely theoretical. This home-
work assignment is largely practical.

In class we have covered operational semantics (large- and small-step),
denotational semantics, axiomatic semantics (including verification condi-
tion generation) and some abstract interpretation. You are now qualified to
pull ideas from many of those techniques together and create a non-trivial
program analysis.

This analysis will target off-the-shelf C programs. We will use the CIL
library to intercept the standard Makefile build process of a program and
present you with an OCaml intermediate representation of the program. We
will use John Kodumal’s implementation of Manuvir Das’ One-Level Flow
alias analysis to aid in reasoning about pointers. We will use the Simplify
automated theorem prover of Detlefs, Nelson and Saxe to reason about in-
feasible paths or otherwise decide questions of logic.

Our analysis will print out a warning if it believes that the argument to
a system call must be or may be 0 (zero). This is undecidable in general (by
direct reduction with the halting problem). This analysis could be used to
find bugs on its own: passing 0 to free, memcpy, bzero, strcmp, or the first
argument to printf is a fatal bug. This analysis will be similar in flavor to
a simplified version PREfix or Metal. It is also more-or-less isomorphic to
security analyses that check to make sure that you have dropped privileges
before calling exec (e.g., make sure that along every path that includes exec
the most recent call to setuid had a non-zero argument).

I have provided an introductory analysis. It performs flow-sensitive, path-
sensitive, context-insensitive, intraprocedural symbolic execution and uses
McCarthy’s Select and Update axioms as well as an alias analysis to reason
about memory. Unlike previous assignments, for this assignment you may
change anything in the main file you like.

Initial steps:

1. Familiarize yourself with the source code in nf.ml (“null-finder”) and
the C AST in cil/src/cil.mli. I have placed the formal papers on
CIL (“make it easy to write C analyses by boiling C down to a small set

1



of expressions”), PREfix (“pick N paths, do forward symbolic execution
to find bugs”), GOLF (“one-level flow alias analysis”), and Simplify
(“automated theorem proving”) on the homework page if you desire
more background.

2. Compile nf and run it on risky/risky.i (the post-processed form of
risky/risky.c). It should miss all of the potential false positives in
main() and find the real bug in method with actual error(). The
README.txt file contains build instructions.

3. Use CIL to intercept nullhttpd-0.5.1’s build process and merge all of
its source files into the single stand-alone file http comb.c. (Optionally,
since nullhttpd is bundled with the homework code pack you can skip
this step and just use the pre-generated http comb.c.) Run nf on that
and note that every bug report is a false positive.

Exercise 1: This exercise is open-ended. You must do something to con-
vince me that you have an integrated understanding of the theory and prac-
tice of using PL research techniques to analyze programs. More concretely,
you must modify nf.ml so that it is “better” in a way of your choosing. As
a rough estimate, I would expect a diff of your modified source to indicate
at least 200 changed lines. Then you must write up a formal three- or four-
paragraph explanation of what you did and why it was worthwhile. Your
explanation should motivate your changes and explain why the problem you
tackled is important.

Any of the following could suffice:

• Modify nf so that it handles loops in an intelligent manner. For exam-
ple, you might use a dataflow-style join – if it is to possible reach the
loop head knowing x = 0 ∧ y = 55 and it is also possible to reach the
loop head knowing x = 5 ∧ y = 55, you should process the loop in a
state where y = 55 (or, better yet, x ≥ 0 ∧ y = 55).

• Modify nf so that it handles the heap more precisely. For example, you
might introduce an explicit handling of malloc (which either returns 0
or a new non-zero address that is distinct from all previous addresses)
and free.

• Modify nf so that it actually uses the computed alias information.
Currently the alias information is not used when decide is called to
evaluate expressions and possibly invoke the theorem prover. This
would be a relatively short change, so you should also do something
else and/or provide compelling examples to show that the alias analysis
really helps.

2



• Modify nf so that its performance and scalability are non-trivially im-
proved. This typically requires more “engineering” than “theory”, but
getting an analysis to run on millions of lines of code (e.g., the Linux
kernel, SQL Server) is very difficult. Your modified version should run
significantly faster on nullhttpd and other benchmarks of your choos-
ing.

• Modify nf to remove (or rank, or otherwise deal with) false positives.
You might get started by inspecting all of the false positives reports
that nf generates on nullhttpd and finding principled, reasoned ways
to remove them.

• Modify nf to accept different safety policies (e.g., a global finite state
machine that has state transitions on certain function calls). After in-
specting the code you may well have concluded that it is pretty much
equivalently difficult to check most safety properties but that some
properties are much more likely to yield real bugs and avoid false pos-
itives. Notably, the “non-null system call argument” policy is actually
a very poor choice. Feel free to use domain-specific knowledge and
concentrate your specification on a particular area. A stellar job would
involve finding a bug in a real program (even an old version where the
bug is known to be there).

• Modify nf to be context-sensitive. You might compute the call graph
and analyze the functions in reverse dependency order. You might do
a full-blown CFL reachability analysis. Or you might just start in main

and take very long paths through the entire program (note that if you
start in main it can actually be very difficult to have any sort of decent
statement or path coverage).

• Modify nf so that it more directly implements a small-valued abstract
interpretation like the one that we covered in class (e.g., positive,
negative, zero). Then you must show convincingly that this actually
achieves something (e.g., faster performance, fewer false positives, more
bugs found). Many researchers have gotten quite a bit of mileage out
of nominally-simple abstract domains (e.g., locked and unlocked, null
and non-null, socket – bind – listen – accept – read, int32 wraparound).

• Modify nf so that it computes a “semantic checksum” of methods based
on the resulting symbolic states (either their “average” or their “differ-
ence” or whatever ends up being useful). For example, see if you can
find some way of summarizing procedures so that two hand-written
“viruses” appear similar but a “virus” does not appear similar to the
example “risky.i” code.

3



You should submit your modified lastname-nf.ml file, an ASCII text file
containing your multi-paragraph report, and any other compelling examples
or figures that you feel back up your case. Recall that you should demonstrate
that you did something useful with respect to this homework’s goals of using
program analysis techniques either (1) in your research or (2) to understand
programs or (3) to find bugs or (4) to verify properties of programs or (5) to
make related tools more usable.

Exercise 2: Submit two post-processed C files (e.g., .i files or comb.c

files) named lastname-zero.c and lastname-one.c. The first file should
have no errors and your analysis should not report any false positives on it.
The second file should have exactly one error and your analysis should report
exactly that error. We will have the standard extra-credit shootout based on
these. Your program must not loop forever or crash on any input.

If you did something non-standard (e.g., the semantic checksum variant),
instead submit two or three files that demonstrate that your modified pro-
gram behaves as intended.

Exercise 3: Compose a brief (one- or two-paragraph) email to one of the
authors of the infrastructure or papers you used in this homework and send
the email to me (not to that person). In addition, indicate whether you are
willing to use your name or whether you would like to be portrayed as an
anonymous student in my class. I will check off the fact that you wrote some-
thing and potentially forward it along. You can comment on any aspect of
your experience with their work — your comments need not be positive. For
example, you might ask Saxe why Simplify doesn’t handle multiplication,
complain to Kodumal or Das that OLF isn’t precise enough for C programs,
or tell Necula or McPeak that you find CIL’s memory lvalue semantics un-
intuitive. You might even write to Pincus and ask him how he managed to
get some part of PREfix to work given all the difficulties you observed when
wrestling with C. If you do offer criticism, strive to make it constructive by
commenting on what you would have liked to have seen instead or how you
might like to see things improved if the time were available. If you absolutely
cannot think of anything to say, thank them for making their tools available
and let them know that you used them with success. Even minor comments
about documentation or a fresh-eyed perspective on usability can be helpful.

The purpose of this non-standard exercise is two-fold.

• First, I have observed multiple instances in this class of a student be-
ing unwilling to contact the author of some publicly-available project.
While I realize that you don’t want to be known as a whiny grad stu-
dent who didn’t bother to read the manual, it’s also not worth wasting
your time to try to decipher a research prototype when the author is
only an email away. I think it would legitimately be good practice for

4



many of you to correspond with a random researcher. You may not
get a response, but the sky won’t fall. (In addition, I know the people
involved in all of this software and they are all quite friendly.)

• Second, internships are not the only way to build up contacts and
networks. It is entirely reasonable to grow a friendship or collaboration
with someone over time, starting with a lowly email about research,
moving on to chatting a conferences, and eventually working together
on new research. You’re rarely certain of exactly where you will end up
or what you will be working on, so it behooves you to know as many
people out there as possible.

5


