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1 Introduction

The kinds of semantics covered so far in class have been

• Operational Semantics. For describing the semantics in terms of effects on a state (operations).
This style of semantics is useful for translating into an interpeter or explaining operations intuitively.

• Denotation Semantics. A mathematical modeling of the semantics as state transition functions.
Denotation semantics have the nice property of being composable but require more sophisticated
mathematical machinery such as fixed point operators, and are less useful in practice.

These semantics have been used thus far for conducting proofs about the determinism of the language
IMP or determining equivalence between statements, but not for reasoning about the meaning of a specific
program (i.e. this code computes the least common denominator of an integer). In fact, it turns out that there
is another semantic style specifically developed for this task by Hoare and Floyd. Axiomatics semantics is
designed to reasons about a program using basic axioms to determine the semantics of a program (in terms
of what is true after the program executes).

As Dijkstra noted, “program testing can be used to show the presence of bugs, but not their absence”.
Axiomatic semantics is the product of attempts to solve this problem by using formal methods to prove a
program’s correctness with respect to a (mathematical, logical) specification. The goals are to be able to
prove the correctness of an algorithm or hardware implementation (or to find bugs in the same) by supplying
a proof in axiomatic semantics.

However, despite proof techniques being in existence almost as long as programming itself, there has not
been substantial progress towards being able to prove significant facts about real-world programs. In practice,
this means that proving has not replaced testing or debugging in software development. Nevertheless,
axiomatic semantics has still found applications in program analysis, for example to elimiante array bounds
checking or for proof-carrying code.

2 Assertions

Axiomatic semantics consists of a language for making assertions about a program (and judging them!)
and derivation rules for constructing proofs using those assertions. Assertions can be modeled in a variety
of logics. First-order logic using quantifiers is the most common example, but other choices are available.
Temporal logic might be used in order to express assertions such as “program P will at some time be
deadlocked”. In addition, program analysis tool like SLAM may define their own specification language such
as SLIC.

Assertions take the form
{A}c{B}

which the following interpretation: if the precondition A holds and the command c is evaluated then the
postcondition B will hold. These forms are called Hoare triples or Hoare assertions. The notation σ |= A is
a judgment that the assertion A holds (is true) in state σ. As stated the command c may diverge and this
is called a partial correctness assertion and it is a valid assertion even if c does not terminate. The notation
[A]c[B] represents a total correctness assertion meaning that the assertion holds and the command does not
diverge.

The formal meaning of a partial correctness assertion {A}c{B} is

∀σ∈Σ∀σ′∈Σ(σ |= A ∧ 〈c, σ〉 ⇓ σ′) ⇒ σ′ |= B.

For a total correctness assertion [A]c[B] then the formal meaning is

{A}b{C} ∧ ∀σ∈Σ∃σ′∈Σ 〈c, σ〉 ⇓ σ.
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2.1 Assertions in IMP

The language of assertions for IMP consists of first-order predicate logic along with normal expressions:

A ::= true | false | e1 = e2 | e1 ≥ e2 | A1 ∧A2

| A1 ∨A2 | A1 ⇒ A2 | ∀x.A | ∃x.A

where, informally, the logical and program variables are taken to be distinct (this is a straightforward
formalization, see Winskel Chapter 6).

The truth of the assertions (i.e. σ |= A) is defined inductively over the structure of assertions by the
following rules:

σ |= true always
σ |= e1 = e2 iff [[e1]]σ = [[e2]]σ
σ |= e1 ≥ e2 iff [[e1]]σ ≥ [[e2]]σ
σ |= A1 ∧A2 iff σ |= A1 and σ |= A2

σ |= A1 ∨A2 iff σ |= A1 or σ |= A2

σ |= A1 ⇒ A2 iff σ |= A1 implies σ |= A2

σ |= ∀x.A iff ∀n ∈ Z.σ[x := n] |= A
σ |= ∃x.A iff ∃n ∈ Z.σ[x := n] |= A

3 Derivation Rules

In order to use these rules to construct proofs there are a set of derivation rules for working with assertions.
The notation ` A is used to mean that assertion A can be proved from the basic axioms and the given
derivation rules. For IMP this means that the rules are those from first-order logic:

` A ` B
` A ∧B

A ` B
A ⇒ B

` A ⇒ B ` A
` B

` [a/X]A where a is fresh

` ∀xA

` ∀xA

[e/x]A
` [e/x]A
∃xA

` ∃xA [a/x]A ` B

` B

The notation ` {A}c{B} is used whenever it is possible to derive the triple using derivation rules. These
rules are known as (Floyd-) Hoare logic and there is one rule for each command in the language in addition
to the rule of consequence:

` {A}skip{A} ` {[e/x]A}x := e{A}
` {A}c1{B} ` {B}c2{C}

` {A}c1; c2{C}

` {A ∧ b}c1{B} ` {A ∧ ¬b}c2{B}
` {A} if b then c1 else c2{B}

` {A ∧ b}c{A}
` {A} while b do c{A ∧ ¬b}

` A′ ⇒ A ` {A}c{B} ` B ⇒ B′

` {A′}c{B′}
rule of consequence

Some rules have alternate forms, for example the forward axiom for assignment

` {A}x := e{∃x0 [xo/x]A ∧ x = [x0/x]e}

or the rule for a while loop with the loop invariant explicit:

` A ∧ b ⇒ C ` {C}c{A} ` A ∧ ¬b ⇒ B

` {A}while b do c{B}
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3.1 Examples

For example, suppose that x does not appear in e. By the assignment rule then

{e = e}x := e{x = e}

because [e/x](x = e) → e = e. Using this rule and consequence gives the derivation

` true ⇒ e = e {e = e}x := e{x = e}
{true}x := e{x = e}

Note that for languages in which aliasing may be an issue then this form of the assignment rule requires
revision.

The following example shows the application of the conditional rule:

D1 :: ` {true ∧ y ≤ 0}x := 1{x > 0} D2 :: ` {true ∧ y > 0}x := y{x > 0}
{true}if y ≤ 0 then x := 1 else x := y {x > 0}

where D1 and D2 are obtained by consequence and assignment, for example D1 has the form:

` {1 > 0}x := 1{x > 0} ` true ∧ y ≤ 0 ⇒ 1 > 0
` {true ∧ y ≤ 0}x := 1{x > 0}

Finally, suppose that we wish to show that

` {x ≤ 0} while x ≤ 5 do x := x + 1{x = 6}.

Using the rule for while with the invariant x ≤ 6 we obtain

D1 ::

` x ≤ 6 ∧ x ≤ 5 ⇒ x + 1 ≤ 6 ` {x + 1 ≤ 6}x := x + 1{x ≤ 6}
` {x ≤ 6 ∧ x ≤ 5}x := x + 1{x ≤ 6}

` {x ≤ 6} while x ≤ 5 do x := x + 1{x ≤ 6 ∧ x〉5}

and apply the rule of consequence to conclude

` x ≤ 0 ⇒ x ≤ 6 ` x ≤ 6 ∧ x〉5 ⇒ x = 6 D1

` {x ≤ 0} while x ≤ 5 do x := x + 1{x = 6}

4 Using Hoare Rules

The Hoare rules are mostly syntax directed but there are three important questions that come up when
doing derivations:

1. What is the invariant for while?

This question can be approached using fixed point theory or widening, but this is the hardest problem
for automatic application. In practice the current approach is to require the program to specify the
invariants explicitly.

2. When to apply consequence?

3. How to prove the first-order logic implication used by consequence?

In practice both of these problems can be solved automatically by a theorem prover.

5 Summary

Axiomatic semantics is a formal way of specifying and deriving assertions about a program. By introducting
first-order logic into the language for assertions it is possible to write down a proof list for practical assertions
that are not possible using only operation or denotational semantics.

3


