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Operational SemanticsOperational Semantics

SmallSmall--Step SemanticsStep Semantics

Today’s Cunning Plan

•Review, Truth, and Provability

• Large-Step Opsem Commentary

• Small-Step Contextual Semantics

– Reductions, Redexes, and Contexts

•Applications

• (Induction)

Summary - Semantics

• A formal semantics is a system for 
assigning meanings to programs.

• For now, programs are IMP commands 
and expressions

• In operational semantics the meaning of a 
program is “what it evaluates to”

• Any opsem system gives rules of 
inference that tell you how to evaluate 
programs

Summary - Judgments

• Rules of inference allow you to derive 

judgments (“something that is knowable”) like

<e, σ> ⇓ n

– In state σ, expression e evaluates to n

<c, σ> ⇓ σ’

– After evaluating command c in state σ the new state 
will be σ’

• State σ maps variables to values (σ : L → Z)

• Inferences equivalent up to variable renaming:

<c, σσσσ> ⇓⇓⇓⇓ σσσσ’ ==   <c’, σσσσ7777> ⇓⇓⇓⇓ σσσσ8888

Summary - Rules

• Rules of inference list the hypotheses 

necessary to arrive at a conclusion

• A derivation involves interlocking 

instances of rules of inference

<x, σ> ⇓ σ(x) <e1 - e2, σ> ⇓ n1 minus n2

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

<(4*2) - 6, σ3> ⇓ 2

<4*2, σ3> ⇓ 8               <6, σ3> ⇓ 6

<4, σ3> ⇓ 4    <2, σ3> ⇓ 2

Provability

• Given an opsem system, <e, σ> ⇓ n is 
provable if there exists a well-formed 

derivation with <e, σ> ⇓ n as its conclusion

– “well-formed” = “every step in the derivation is a 
valid instance of one of the rules of inference for 

this opsem system”

– “���� <e, σ> ⇓ n” = “it is provable that <e, σ> ⇓ n”

• We would like truth and provability to be 

closely related
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Truth?

• “A Vorlon said understanding is a three-

edged sword. Your side, their side and

the truth.”

– Sheridan, Into The Fire

• We will not formally define “truth” yet

• Instead we appeal to your intuition

– <2+2, σ> ⇓ 4 -- should be true

– <2+2, σ> ⇓ 5 -- should be false

Completeness

• A proof system (like our operational 

semantics) is complete if every true 

judgment is provable.

• If we replaced the subtract rule with:

• Our opsem would be incomplete:

– <4-2, σ> ⇓ 2 -- true but not provable

<e1 - e2, σ> ⇓ n

<e1, σ> ⇓ n        <e2, σ> ⇓ 0

Consistency

• A proof system is consistent (or sound) if 

every provable judgment is true.

• If we replaced the subtract rule with:

• Our opsem would be inconsistent (or 

unsound):

– <6-1, σ> ⇓ 9 -- false but provable

<e1 - e2, σ> ⇓ n1 + 3

<e1, σ> ⇓ n1 <e2, σ> ⇓ n2

Desired Traits

• Typically a system (of operational semantics) is 

always complete (unless you forget a rule)

• If you are not careful, however, your system may 

be unsound

• Usually that is very bad

– A paper with an unsound type system is usually rejected

– Papers often prove (sketch) that a system is sound

– Recent research (e.g., Engler, ESP) into useful but 

unsound systems exists, however

• In this class your work should be complete and 

consistent (e.g., on homework problems)

With That In Mind

• We now return to opsem for IMP

<while b do c, σ> ⇓ σ

<b, σ> ⇓ false

Def: σ[x:= n](x) = n

σ[x:= n](y) = σ(y)<x := e, σ> ⇓ σ[x := n]

<e, σ> ⇓ n

<while b do c, σ > ⇓ σ’

<b, σ> ⇓ true   <c; while b do c, σ> ⇓ σ’

Command Evaluation Notes

• The order of evaluation is important

– c1 is evaluated before c2 in c1; c2
– c2 is not evaluated in “if true then c1 else c2”

– c is not evaluated in “while false do c”

– b is evaluated first in “if b then c1 else c2”

– this is explicit in the evaluation rules

• Conditional constructs (e.g., b1 ∨ b2) 

have multiple evaluation rules

– but only one can be applied at one time
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Command Evaluation Trials

• The evaluation rules are not syntax-

directed

– See the rules for while, ∧

– The evaluation might not terminate

• Recall: the evaluation rules suggest an 

interpreter

• Natural-style semantics has two big 

disadvantages (continued …)

Disadvantages of Natural-Style 

Operational Semantics
• It is hard to talk about commands whose 

evaluation does not terminate

– i.e., when there is no σ’ such that <c, σ> ⇓ σ’

– But that is true also of ill-formed or 

erroneous commands (in a richer language)!

• It does not give us a way to talk about 

intermediate states

– Thus we cannot say that on a parallel 

machine the execution of two commands is 

interleaved

Semantics Solution

• Small-step semantics addresses these 

problems

– Execution is modeled as a (possible infinite) 

sequence of states

• Not quite as easy as large-step natural 

semantics, though

• Contextual semantics is a small-step 

semantics where the atomic execution 

step is a rewrite of the program

Contextual Semantics

• We will define a relation <c, σ> → <c’, σ’>

– c’ is obtained from c via an atomic rewrite step

– Evaluation terminates when the program has 

been rewritten to a terminal program

• one from which we cannot make further progress

– For IMP the terminal command is “skip”

– As long as the command is not “skip” we can 
make further progress

• some commands never reduce to skip (e.g., “while 
true do skip”)

Contextual Derivations

• In small-step contextual semantics, 

derivations are not tree-structured

• A contextual semantics derivation is a 

sequence (or list) of atomic rewrites:

<x+(7-3),σ> → <x+(4),σ> → <5+4,σ> → <9,σ>

What is an Atomic Reduction?
• What is an atomic reduction step?

– Granularity is a choice of the semantics designer

• How to select the next reduction step, when 

several are possible?

– This is the order of evaluation issue
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Redexes

• A redex is a syntactic expression or command that 

can be reduced (transformed) in one atomic step

• Defined as a grammar:

r ::= x                                     (x ∈ L)

| n1 + n2

| x := n

| skip; c 

| if true then c1 else c2

| if false then c1 else c2
| while b do c 

• For brevity, we mix exp and command redexes

• Note that (1 + 3) + 2 is not a redex, but 1 + 3 is 

Local Reduction Rules for IMP

• One for each redex: <r, σ> → <e, σ’>
– means that in state σ, the redex r can be replaced in 
one step with the expression e

<x, σ> → <σ(x), σ>

<n1 + n2, σ> → <n, σ>           where n = n1 + n2

<n1 = n2, σ> → <true, σ>                   if n1 = n2

<x := n, σ> → <skip, σ[x := n]>

<skip; c, σ> → <c, σ>

<if true then c1 else c2, σ> → <c1, σ>

<if false then c1 else c2, σ> → <c2, σ>

<while b do c, σ> →

<if b then c; while b do c else skip, σ> 

The Global Reduction Rule

• General idea of contextual semantics

– Decompose the current expression into 

the redex-to-reduce-next and the 

remaining program

• The remaining program is called a context

– Reduce the redex “r” to some other 

expression “e”

– The resulting (reduced) expression 
consists of “e” with the original context

As A Picture (1)

(Context)

…

x := 2+2

…

Step 1: Find The Redex

As A Picture (2)

(Context)

…

x := 

…

2+2 (redex)

Step 1: Find The Redex

Step 2: Reduce The Redex

As A Picture (3)

(Context)

…

x := 

…

2+2 (redex)

Step 1: Find The Redex

Step 2: Reduce The Redex

4 (reduced)
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As A Picture (4)

(Context)

…

x := 

…

4 

Step 1: Find The Redex

Step 2: Reduce The Redex

Step 3: Replace It In The Context

Contextual Analysis

• We use H to range over contexts 

• We write H[r] for the expression obtained 

by placing redex r in context H

• Now we can define a small step

If <r, σ> → <e, σ’> 

then <H[r], σ> → <H[e], σ’>

Contexts

• A context is like an expression (or 

command) with a marker • in the place 

where the redex goes

• Examples:

– To evaluate “(1 + 3) + 2” we use the redex
1 + 3 and the context “• + 2”

– To evaluate “if x > 2 then c1 else c2” we use 
the redex x and the context “if • > 2 then c1
else c2”

Context Terminology

• A context is also called an “expression 
with a hole”

• The marker • is sometimes called a hole

• H[r] is the expression obtained from H by 

replacing • with the redex r

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

What happens next?

x := • + 1x<x := x+1, [x := 1]>

•skip; x := x+1<skip; x := x+1, [x := 1]>

•; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex •<Comm, State>

Contextual Semantics Example

• x := 1 ; x := x + 1 with initial state [x:=0]

<skip, [x := 2]>

•x := 2<x := 2, [x := 1]>

x := •1 + 1<x := 1 + 1, [x := 1]>

x := • + 1x<x := x+1, [x := 1]>

•skip; x := x+1<skip; x := x+1, [x := 1]>

•; x := x+1x := 1<x := 1; x := x+1, [x := 0]>

ContextRedex •<Comm, State>
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More On Contexts

• Contexts are defined by a grammar:

H ::= • | n + H 

| H + e 

| x := H 

| if H then c1 else c2

| H; c 

• A context has exactly one • marker

• A redex is never a value

What’s In A Context?

• Contexts specify precisely how to find the 

next redex

– Consider e1 + e2 and its decomposition as H[r]

– If e1 is n1 and e2 is n2 then H = • and r = n1 + n2

– If e1 is n1 and e2 is not n2 then H = n1 + H2 and e2

= H2[r] 

– If e1 is not n1 then H = H1 + e2 and e1 = H1[r]

– In the last two cases the decomposition is done 

recursively

– Check that in each case the solution is unique

Unique Next Redex

• E.g. c = “c1; c2”– either 
– c1 = skip and then c = H[skip; c2] with H = •

– or c1 ≠ skip and then c1 = H[r]; so c = H’[r] with 
H’ = H; c2

• E.g. c = “if b then c1 else c2”
– either b = true or b = false and then c = H[r] 
with H = •

– or b is not a value and b = H[r]; so c = H’[r] with 
H’ = if H then c1 else c2

Context Decomposition
• Decomposition theorem:

If c is not “skip” then there exist unique H 

and r such that c is H[r]

– “Exist” means progress

– “Unique” means determinism

Short-Circuit Evaluation

• What if we want to express short-circuit 
evaluation of ∧ ?
– Define the following contexts, redexes and 
local reduction rules  

H ::= ... | H ∧ b2

r ::= ... | true ∧ b | false ∧ b

<true ∧ b, σ> → <b, σ>

<false ∧ b, σ> → <false, σ>

– the local reduction kicks in before b2 is 
evaluated

Contextual Semantics Summary

• One can think of the • as representing the program 
counter

• The advancement rules for • are non trivial
– At each step the entire command is decomposed

– This makes contextual semantics inefficient to 
implement directly

• The major advantage of contextual semantics is 
that it allows a mix of local and global reduction 
rules
– For IMP we have only local reduction rules: only the 
redex is reduced

– Sometimes it is useful to work on the context too
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Real-World Example

• Cobbe and Felleisen, POPL 2005

• Small-step contextual opsem for Java

• Their rule for object field access:

• P � <E[obj.fd],S> → <E[F(fd)],S>

– Where F=fields(S(obj)) and fd ∈ dom(F)

• They use “E” for context, we use “H”

• They use “S” for state, we use “σ”

Lost In Translation

• P � <H[obj.fd],σ> → <H[F(fd)],σ>

– Where F=fields(σ(obj)) and fd ∈ dom(F)

• They have “P �”, but that just means “it 

can be proved in our system given P”

• <H[obj.fd],σ> → <H[F(fd)],σ>

– Where F=fields(σ(obj)) and fd ∈ dom(F)

Lost In Translation 2

• <H[obj.fd],σ> → <H[F(fd)],σ>

– Where F=fields(σ(obj)) and fd ∈ dom(F)

• They model objects (like obj), but we do 

not – let’s just make fd a variable:

• <H[fd],σ> → <H[F(fd)],σ>

– Where F=σ and fd ∈ L

• Which is really just our rule:

• <H[fd],σ> → <H[σ(fd)],σ> (when fd ∈ L)

“Sleep On It”

Homework

• Straw Poll

• Homework 2 Out Today

– Due Thursday, Feb 02

• Read Winskel Chapter 3

• Want an extra opsem review?

– Natural deduction article

– Plotkin Chapter 2

• Optional Philosophy of Science article


