

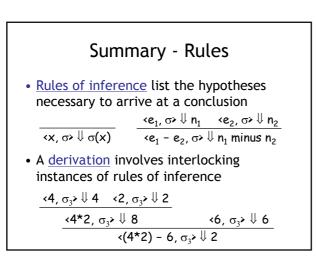
• (Induction)

Summary - Semantics

- A <u>formal semantics</u> is a system for assigning meanings to programs.
- For now, programs are IMP commands and expressions
- In <u>operational semantics</u> the meaning of a program is "what it evaluates to"
- Any opsem system gives <u>rules of</u> <u>inference</u> that tell you how to evaluate programs

Summary - Judgments

- Rules of inference allow you to derive <u>judgments</u> ("something that is knowable") like
 <e, σ> ↓ n
- In state σ , expression e evaluates to n
- <**c,** σ> ∜ σ'
 - After evaluating command c in state σ the new state will be σ'
- State σ maps variables to values (σ : L \rightarrow Z)
- Inferences equivalent up to variable renaming: <c, σ > $\Downarrow \sigma' == <c', \sigma_7 > \Downarrow \sigma_8$



Provability

- Given an opsem system, <e, σ> ↓ n is provable if there exists a well-formed derivation with <e, σ> ↓ n as its conclusion
 - "well-formed" = "every step in the derivation is a valid instance of one of the rules of inference for this opsem system"
 - "H <e, $\sigma \!\!> \Downarrow n''$ = "it is provable that <e, $\sigma \!\!> \Downarrow n''$
- We would like truth and provability to be closely related

Truth?

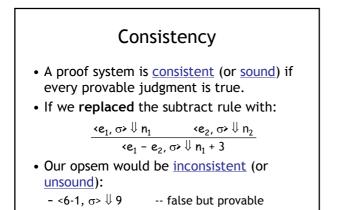
- "A Vorlon said understanding is a threeedged sword. Your side, their side and the truth."
 - Sheridan, Into The Fire
- We will not formally define "truth" yet
- Instead we appeal to your intuition
 - <2+2, σ > \Downarrow 4 -- should be true
 - <2+2, σ > \Downarrow 5 -- should be false

Completeness

- A proof system (like our operational semantics) is <u>complete</u> if every true judgment is provable.
- If we replaced the subtract rule with:

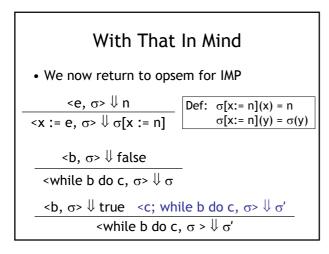
 $\frac{\langle e_1, \sigma \rangle \Downarrow n \qquad \langle e_2, \sigma \rangle \Downarrow 0}{\langle e_1 - e_2, \sigma \rangle \Downarrow n}$

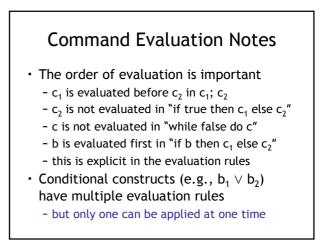
Our opsem would be <u>incomplete</u>:
 - <4-2, σ> ↓ 2
 -- true but not provable



Desired Traits

- Typically a system (of operational semantics) is always complete (unless you forget a rule)
- If you are not careful, however, your system may be unsound
- Usually that is very bad
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however
- In this class your work should be complete and consistent (e.g., on homework problems)





Command Evaluation Trials

- The evaluation rules are <u>not syntax-</u> <u>directed</u>
 - See the rules for while, \wedge
 - The evaluation might not terminate
- Recall: the evaluation rules suggest an interpreter
- Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

- It is hard to talk about commands whose evaluation does not terminate
 - i.e., when there is no σ' such that <c, $\sigma\!\!>\Downarrow\sigma'$
 - But that is true also of ill-formed or erroneous commands (in a richer language)!
- It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved

Semantics Solution

- <u>Small-step semantics</u> addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states
- Not quite as easy as large-step natural semantics, though
- <u>Contextual semantics</u> is a small-step semantics where the atomic execution step is a <u>rewrite</u> of the program

Contextual Semantics

- We will define a relation <c, σ > \rightarrow <c', σ '>
 - c' is obtained from c via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 one from which we cannot make further progress
 - For IMP the terminal command is "skip"
 - As long as the command is not "skip" we can make further progress
 - some commands never reduce to skip (e.g., "while true do skip")

Contextual Derivations

- In small-step contextual semantics, derivations are not tree-structured
- A <u>contextual semantics derivation</u> is a sequence (or list) of atomic rewrites:

<x+(7-3), σ > \rightarrow <x+(4), σ > \rightarrow <5+4, σ > \rightarrow <9, σ >

What is an Atomic Reduction?

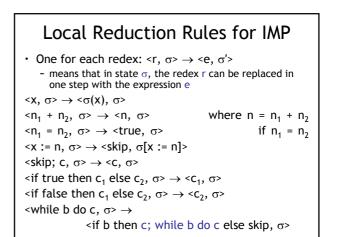
- What is an atomic reduction step?
 Granularity is a choice of the semantics designer
- How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue

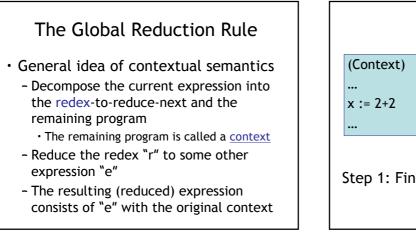
Redexes

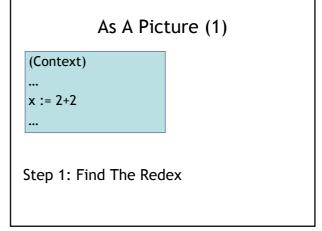
- A <u>redex</u> is a syntactic expression or command that can be reduced (transformed) in one atomic step
- Defined as a grammar:
 r ::= x

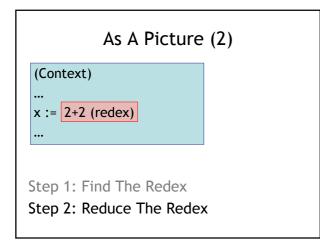
(x ∈ L)

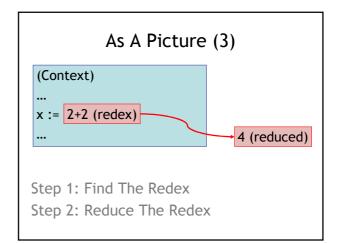
- | n₁ + n₂ | x := n
 - | skip; c
 - | if true then c_1 else c_2
 - | if false then c_1 else c_2
 - | while b do c
- $\boldsymbol{\cdot}$ For brevity, we mix exp and command redexes
- Note that (1 + 3) + 2 is not a redex, but 1 + 3 is

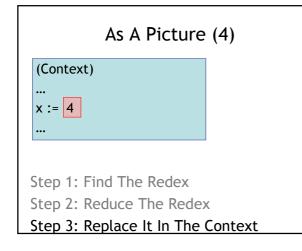


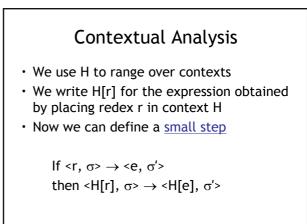


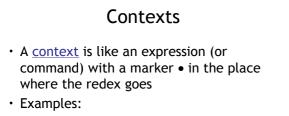












- To evaluate "(1 + 3) + 2" we use the redex 1 + 3 and the context " $\bullet + 2$ "
- To evaluate "if x > 2 then c_1 else c_2 " we use the redex x and the context "if $\bullet > 2$ then c_1 else c_2 "

- A context is also called an "expression with a hole"
- \cdot The marker \bullet is sometimes called a hole
- H[r] is the expression obtained from H by replacing with the redex r

Contextual Semantics Example			
 x := 1 ; x := x + 1 with initial state [x:=0] 			
Redex •	Context		
x := 1	•; x := x+1		
skip; x := x+1	•		
x	x := • + 1		
What happens next?			
	Redex • x := 1 skip; x := x+1 x		

• x := 1 ; x := x + 1 with initial state [x:=0]		
<comm, state=""></comm,>	Redex •	Context
<pre><x :="0]" [x="" x=""></x></pre>	x := 1	•; x := x+1
<skip; :="1]" [x="" x=""></skip;>	skip; x := x+1	•
<x :="1]" [x=""></x>	x	x := • + 1
<x +="" 1,="" :="1]" [x=""></x>	1 + 1	x := •
<x :="1]" [x=""></x>	x := 2	•
<skip, :="2]" [x=""></skip,>		

More On Contexts

Contexts are defined by a grammar:
 H ::= • | n + H

| H + e | x := H | if H then c₁ else c₂ | H; c

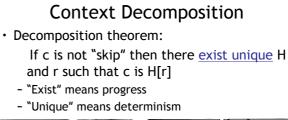
- A context has exactly one marker
- A redex is never a value

What's In A Context? Contexts specify precisely how to find the next redex Consider e₁ + e₂ and its decomposition as H[r] If e₁ is n₁ and e₂ is n₂ then H = • and r = n₁ + n₂ If e₁ is n₁ and e₂ is not n₂ then H = n₁ + H₂ and e₂ H₂[r]

- If e_1 is not n_1 then $H = H_1 + e_2$ and $e_1 = H_1[r]$
- In the last two cases the decomposition is done recursively
- Check that in each case the solution is unique

Unique Next Redex

- E.g. c = "c₁; c₂"- either
 - c_1 = skip and then $c = H[skip; c_2]$ with $H = \bullet$ - or $c_1 \neq$ skip and then $c_1 = H[r]$; so c = H'[r] with H' = H; c_2
- E.g. c = "if b then c₁ else c₂"
 either b = true or b = false and then c = H[r] with H =
 - or b is not a value and b = H[r]; so c = H'[r] with H' = if H then c_1 else c_2



Short-Circuit Evaluation

- What if we want to express short-circuit evaluation of \wedge ?
 - Define the following contexts, redexes and local reduction rules

 $H ::= \dots | H \land b_2$

r ::= ... | true
$$\land$$
 b | false \land b

\land b,
$$\sigma$$
> \rightarrow \sigma

\land b,
$$\sigma$$
> \rightarrow \sigma

- the local reduction kicks in before b₂ is evaluated

Contextual Semantics Summary

- \bullet One can think of the \bullet as representing the program counter
- The advancement rules for

 are non trivial
 At each step the entire command is decomposed
- This makes contextual semantics inefficient to implement directly
- The major advantage of contextual semantics is that it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too

Real-World Example

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:
- $P \vdash \langle E[obj.fd], S \rangle \rightarrow \langle E[F(fd)], S \rangle$ - Where F=fields(S(obj)) and fd \in dom(F)
- They use "E" for context, we use "H"
- \bullet They use "S" for state, we use " σ "

Lost In Translation

- $P \vdash \langle H[obj.fd], \sigma \rangle \rightarrow \langle H[F(fd)], \sigma \rangle$ - Where F=fields($\sigma(obj)$) and fd \in dom(F)
- They have "P ⊢", but that just means "it can be proved in our system given P"
- <H[obj.fd], σ > \rightarrow <H[F(fd)], σ > - Where F=fields(σ (obj)) and fd \in dom(F)

Lost In Translation 2

- <H[obj.fd], σ > \rightarrow <H[F(fd)], σ > - Where F=fields(σ (obj)) and fd \in dom(F)
- They model objects (like obj), but we do not let's just make fd a variable:
- ${\mathsf{H}}[fd], \sigma > \rightarrow {\mathsf{H}}[F(fd)], \sigma >$ - Where F= σ and fd \in L
- Which is really just our rule:

Homework

- Straw Poll
- Homework 2 Out Today
 Due Thursday, Feb 02
- Read Winskel Chapter 3
- Want an extra opsem review?
 - Natural deduction article
 - Plotkin Chapter 2
- Optional Philosophy of Science article