

Wei Hu Memorial Lecture

- I will give a <u>completely optional</u> bonus survey lecture: "A Recent History of PL in Context"
 - It will discuss what has been hot in various PL subareas in the last 20 years
 - This may help you get ideas for your class project or locate things that will help your real research
 - Put a tally mark on the sheet if you'd like to attend that day I'll pick a most popular day
- Likely Topics:
 - Bug-Finding, Software Model Checking, Automated Deduction, Proof-Carrying Code, PL/Security, Alias Analysis, Constraint-Based Analysis, Run-Time Code Generation

Today's Cunning Plan

- Why Bother?
- Mathematical Induction
- Well-Founded Induction
- Structural Induction
 - "Induction On The Structure Of The Derivation"

Why Bother?

- I am loathe to teach you anything that I think is a waste of your time.
- Thus I must convince you that inductive opsem proof techniques are useful.
 - Recall class goals: understand PL research techniques and apply them to your research
- This should also highlight where you might use such techniques in your own research.

Never Underestimate

"Any counter-example posed by the Reviewers against this proof would be a useless gesture, no matter what technical data they have obtained. Structural Induction is now the ultimate proof technique in the universe. I suggest we use it." --- Admiral Motti, A New Hope

Classic Example (Schema)

- "<u>A well-typed program cannot go wrong.</u>"
 Robin Milner
- When you design a new type system, you must show that it is safe (= that the type system is sound with respect to the operational semantics).
- A Syntactic Approach to Type Soundness. Andrew K. Wright, Matthias Felleisen, 1992.
 - <u>Type preservation</u>: "if you have a well-typed program and apply an opsem rule, the result is well-typed."
 - <u>Progress</u>: "a well-typed program will never get stuck in a state with no applicable opsem rules"
- Done for real languages: SML/NJ, SPARK ADA, Java - Plus basically every toy PL research language ever.

Classic Examples

- CCured Project (Berkeley)

 A program that is instrumented with CCured run-time checks (= "adheres to the CCured type system") will not segfault (= "the x86 opsem rules will never get stuck").
- Vault Language (Microsoft Research)

 A well-typed Vault program does not leak any tracked resources and invokes tracked APIs correctly (e.g., handles IRQL correctly in asynchronous Windows device drivers, cf. Capability Calculus)
- RC Reference-Counted Regions For C (Intel Research)
 A well-typed RC program gains the speed and convenience of regionbased memory management but need never worry about freeing a region too early (run-time checks).
- Typed Assembly Language (Cornell)
 Reasonable C programs (e.g., device drivers) can be translated to TALx86. Well-typed TALx86 programs are type- and memory-safe.
- Secure Information Flow (Many, e.g., Volpano et al. '96)
 Lattice model of secure flow analysis is phrased as a type system, so type soundness = noninterference.

Recent Examples

- "The proof proceeds by <u>rule induction</u> over the target term producing translation rules."
 Chakravarty et al. '05
- "Type preservation can be proved by standard induction on the derivation of the evaluation relation."

- Hosoya et al. '05

- "Proof: By <u>induction on the derivation</u> of N ↓ W."
 Sumi and Pierce '05
- Method: chose four POPL 2005 papers at random, the three above mentioned structural induction.

Induction

- Most important technique for studying the formal semantics of prog languages
 - If you want to perform or understand PL research, you must grok this!
- Mathematical Induction (simple)
- Well-Founded Induction (general)
- Structural Induction (widely used in PL)

Mathematical Induction

- Goal: prove $\forall n \in \mathbb{N}$. P(n)
- <u>Base Case</u>: prove P(0)
- Inductive Step:
 - Prove \forall n>0. p(n) \Rightarrow p(n+1)
 - "Pick arbitrary n, assume p(n), prove p(n+1)"

Why Does It Work?

- There are no <u>infinite descending chains</u> of natural numbers
- For any n, P(n) can be obtained by starting from the base case and applying n instances of the inductive step

Well-Founded Induction

- A relation $\prec \, \subseteq \, A \times A$ is <u>well-founded</u> if there are no infinite descending chains in A
 - Example: <_1 = { (x, x + 1) | $x \in \mathbb{N}$ } • the predecessor relation
 - Example: < = { (x, y) | x, y $\in \mathbb{N}$ and x < y }
- Well-founded induction:
 To prove ∀x ∈ A. P(x) it is enough to prove ∀x ∈ A. [∀y ≺ x ⇒ P(y)] ⇒ P(x)
- If \prec is $<_1$ then we obtain mathematical induction as a special case

Structural Induction

• Recall e ::= n | $e_1 + e_2$ | $e_1 * e_2$ | x • Define $\prec \subseteq$ Aexp * Aexp such that $e_1 \prec e_1 + e_2$ $e_2 \prec e_1 + e_2$ $e_1 \prec e_1 * e_2$ $e_2 \prec e_1 * e_2$ - no other elements of Aexp * Aexp are related by \prec • To prove $\forall e \in$ Aexp. P(e) 1. $\vdash \forall n \in Z$. P(n) 2. $\vdash \forall x \in$ L. P(x) 3. $\vdash \forall e_1, e_2 \in$ Aexp. P(e_1) \land P(e_2) \Rightarrow P($e_1 + e_2$) 4. $\vdash \forall e_1, e_2 \in$ Aexp. P(e_1) \land P(e_2) \Rightarrow P($e_1 * e_2$)

Notes on Structural Induction

- Called <u>structural induction</u> because the proof is guided by the <u>structure</u> of the expression
- One proof case per form of expression
 Atomic expressions (with no subexpressions) are all base cases
- Composite expressions are the inductive case
- This is the most useful form of induction in PL study

Example of Induction on Structure of Expressions

- Let
 - L(e) be the # of literals and variable occurrences in e O(e) be the # of operators in e
- Prove that $\forall e \in Aexp. L(e) = O(e) + 1$
- · Proof: by induction on the structure of e
 - Case e = n. L(e) = 1 and O(e) = 0
 - Case e = x. L(e) = 1 and O(e) = 0
 - Case $e = e_1 + e_2$.
 - $L(e) = L(e_1) + L(e_2)$ and $O(e) = O(e_1) + O(e_2) + 1$
 - By induction hypothesis $L(e_1) = O(e_1) + 1$ and $L(e_2) = O(e_2) + 1$ • Thus $L(e) = O(e_1) + O(e_2) + 2 = O(e) + 1$
 - Case $e = e_1 * e_2$. Same as the case for +

Other Proofs by Structural Induction on Expressions

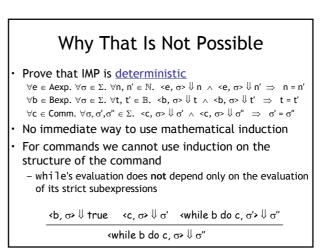
- Most proofs for Aexp sublanguage of IMP
- Small-step and natural semantics obtain equivalent results:

 $\forall e \in Exp. \ \forall n \in \mathbb{N}. \ e \rightarrow^* n \Leftrightarrow e \Downarrow n$

 Structural induction on expressions works here because all of the semantics are syntax directed

Stating The Obvious (With a Sense of Discovery)

- \bullet You are given a concrete state $\sigma.$
- You have $\vdash \langle \mathbf{x} + 1, \sigma \rangle \Downarrow 5$
- You also have $\vdash \langle \mathbf{x} + \mathbf{1}, \sigma \rangle \Downarrow \mathbf{88}$
- Is this possible?



Recall Opsem

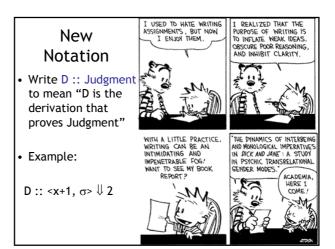
- Operational semantics assigns meanings to programs by listing rules of inference that allow you to prove judgments by making derivations.
- A derivation is a tree-structured object made up of valid instances of inference rules.

Induction on the Structure of Derivations Key idea: The hypothesis does not just assume a c \in Comm but the existence of a derivation of <c, σ > $\Downarrow \sigma'$ Derivation trees are also defined inductively, just like expression trees A derivation is built of subderivations: <x + 1, σ_{i+1}> ↓ 6 - i $\langle \mathbf{x}, \sigma_{i+1} \rangle \Downarrow \mathbf{5} - \mathbf{i} \quad \mathbf{5} - \mathbf{i} \leq \mathbf{5}$ <x≔x+1, σ_{i+1}> ↓ σ_i <₩, σ,> ∜ σ₀ <x:=x+1; W, ज_{i+1}> ∜ ज₀ $x \le 5$, $\sigma_{i+1} > \Downarrow$ true while $x \le 5$ do x := x + 1, $\sigma_{i+1} \neq 0$ Adapt the structural induction principle to work on the structure of derivations

Induction on Derivations

- To prove that for all derivations D of a judgment, property P holds
- 1. For each derivation rule of the form

- 2. Assume that P holds for derivations of H_i (i = 1, .., n)
- 3. Prove the the property holds for the derivation obtained from the derivations of H_i using the given rule

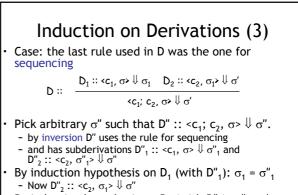


Induction on Derivations (2) • Prove that evaluation of commands is deterministic: $<\!\!\mathsf{c},\,\sigma\!\!>\Downarrow\sigma'\Rightarrow\forall\sigma''\in\Sigma.<\!\!\mathsf{c},\,\sigma\!\!>\Downarrow\sigma''\Rightarrow\sigma'=\sigma''$ • To prove: $\forall \sigma'' \in \Sigma$. <c, $\sigma > \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''$

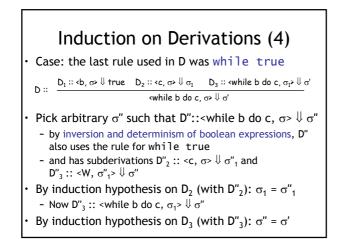
- Proof: by induction on the structure of the derivation D
- · Case: last rule used in D was the one for skip

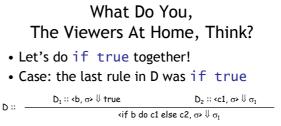
D :: $\textbf{<skip, \sigma > } \Downarrow \sigma$

- This means that c = skip, and $\sigma' = \sigma$ By <u>inversion</u> <c, σ > $\Downarrow \sigma''$ uses the rule for skip
- Thus $\sigma'' = \sigma$
- This is a base case in the induction

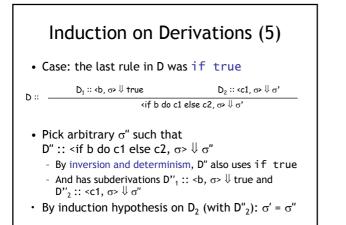


- By induction hypothesis on D₂ (with D''_2): $\sigma'' = \sigma'$
- This is a simple inductive case



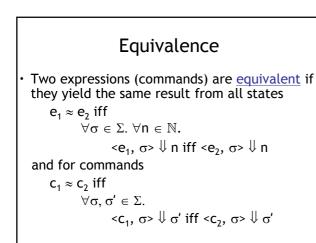


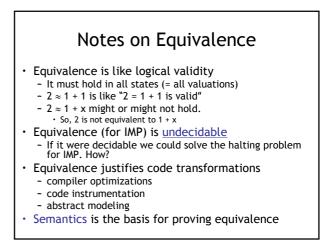
• Try to do this on a piece of paper. In a few minutes I'll have some lucky winners come on down.

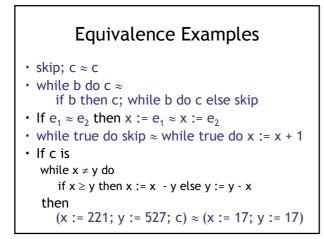


Induction on Derivations Summary

- If you must prove $\forall x \in A$. $P(x) \Rightarrow Q(x)$
 - with A inductively defined and $\mathsf{P}(\mathsf{x})$ rule-defined
 - we pick arbitrary $x \in A$ and D :: P(x)
 - we could do induction on both facts
 - $x \in A$ leads to induction on the structure of x
 - D:: P(x) leads to induction on the structure of D
 Generally, the induction on the structure of the derivation is more powerful and a safer bet
- Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot

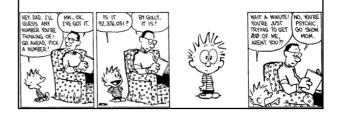






Potential Equivalence

- $(x := e_1; x := e_2) \approx x := e_2$
- Is this a valid equivalence?



Not An Equivalence

- $(x := e_1; x := e_2) \sim x := e_2$
- · lie. Chigau yo. Dame desu!
- Not a valid equivalence for all e₁, e₂.
- Consider:
 (x := x+1; x := x+2) ∞ x := x+2
- But for n₁, n₂ it's fine:
 (x := n₁; x := n₂) ≈ x := n₂

Proving An Equivalence

- Prove that "skip; $c \approx c''$ for all c
- Assume that D :: <skip; c, σ > $\Downarrow \sigma'$
- By inversion (twice) we have that

 $\mathsf{D} :: \qquad \underbrace{ \begin{array}{c} \mathsf{skip}, \sigma \! > \! \Downarrow \sigma \\ \mathsf{skip}; \mathsf{c}, \sigma \! > \! \Downarrow \sigma' \end{array} }_{\mathsf{skip}; \mathsf{c}, \sigma \! > \! \Downarrow \sigma'} \mathsf{D}_1 :: \mathsf{c}, \sigma \! > \! \Downarrow \sigma'}$

- Thus, we have $D_1 :: \langle c, \sigma \rangle \Downarrow \sigma'$
- The other direction is similar

Proving An Inequivalence • Prove that $x := y \approx x := z$ when $y \neq z$ • <u>It suffices to exhibit a σ </u> in which the two commands yield different results • Let $\sigma(y) = 0$ and $\sigma(z) = 1$ • Then $\langle x := y, \sigma \rangle \Downarrow \sigma[x := 0]$ $\langle x := z, \sigma \rangle \Downarrow \sigma[x := 1]$

Summary of Operational Semantics

- Precise specification of dynamic semantics
 order of evaluation (or that it doesn't matter)
 - error conditions (sometimes implicitly, by rule applicability; "no applicable rule" = "get stuck")
- Simple and abstract (vs. implementations)
 no low-level details such as stack and memory management, data layout, etc.
- Often not compositional (see while)
- Basis for many proofs about a language
 Especially when combined with type systems!
- Basis for much reasoning about programs
 Point of reference for other semantics

6

Homework

- Homework 1 Due Today
- Homework 2 Due Thursday - No more homework overlaps.
- Read Winskel Chapter 5 - Pay careful attention.
- Read Winskel Chapter 8 - Summarize.