

Class Likes/Dislikes Survey

- "would change [the bijection question] to be one that still tested students' recollection of set theory but that didn't take as much time"
- "I liked the bijection proof in the homework. thought it ended up being pretty neat."
- "my guess is the student would benefit more from a rephrasing or alternate explanation"
- "I don't need to hear the things explained in another way"

Dueling Semantics

- Operational semantics is
- simple
- of many flavors (natural, small-step, more or less abstract)
- not compositional
- commonly used in the real (modern research) world
- Denotational semantics is
- mathematical (the meaning of a syntactic expression is a mathematical object)
- compositional
- Denotational semantics is also called: fixed-point semantics, mathematical semantics, ScottStrachey semantics

Denotational Semantics Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a "math object"
- DS uses \perp ("bottom") to mean nontermination
- DS uses fixed points and domains to handle while
- This is the tricky bit

DS In The Real World

- ADA was formally specified with it
- Handy when you want to study non-trivial models of computation
- e.g., "actor event diagram scenarios", process calculi
- Nice when you want to compare a program in Language 1 to a program in Language 2

Deno-Challenge

- You may skip the homework assignment of your choice if you can find a post-1995 paper in a first- or second-tier PL conference that uses denotational semantics.

Foreshadowing

- Denotational semantics assigns meanings to programs
- The meaning will be a mathematical object

$$
\text { - A number } \quad a \in \mathbb{Z}
$$

- A boolean $\quad b \in\{$ true, false $\}$
- A function c: $\Sigma \rightarrow(\Sigma \cup\{$ non-terminating $\})$
- The meaning will be determined compositionally

Denotation of a command is based on the denotations of its immediate sub-commands (= syntax-directed)

New Notation

- 'Cause, why not?

$$
\llbracket \rrbracket=\text { "means" or "denotes" }
$$

- Example:

$$
\begin{array}{ll}
\llbracket \mathrm{foo} \rrbracket & =\text { "denotation of foo" } \\
\llbracket 3<5 \rrbracket & =\text { true } \\
\llbracket 3+5 \rrbracket & =8
\end{array}
$$

- Sometimes we write $\mathrm{A} \llbracket \cdot \rrbracket$ for arith, $\mathrm{B} \llbracket \cdot \rrbracket$ for boolean, $\mathrm{C} \llbracket \cdot \rrbracket$ for command

Rough Idea of Denotational Semantics

- The meaning of an arithmetic expression e in state σ is a number n
- So, we try to define $\mathrm{A} \llbracket \mathrm{e} \rrbracket$ as a function that maps the current state to an integer:

$$
\mathrm{A} \llbracket \cdot \rrbracket: A \exp \rightarrow(\Sigma \rightarrow \mathbb{Z})
$$

- The meaning of boolean expressions is defined in a similar way

$$
\mathrm{B} \llbracket \cdot \rrbracket: \text { Bexp } \rightarrow(\Sigma \rightarrow\{\text { true, false }\})
$$

- All of these denotational function are total
- Defined for all syntactic elements
- For other languages it might be convenient to define the semantics only for well-typed elements

Denotational Semantics of Arithmetic Expressions

- We inductively define a function

$$
\mathrm{A} \llbracket \cdot \rrbracket: A \exp \rightarrow(\Sigma \rightarrow \mathbb{Z})
$$

$\mathrm{A} \llbracket \mathrm{n} \rrbracket \sigma=$ the integer denoted by literal n
$\mathrm{A} \llbracket \mathrm{x} \rrbracket \sigma=\sigma(\mathrm{x})$
$\mathrm{A} \llbracket \mathrm{e}_{1}+\mathrm{e}_{2} \rrbracket \sigma=\mathrm{A} \llbracket \mathrm{e}_{1} \rrbracket \sigma+\mathrm{A} \llbracket \mathrm{e}_{2} \rrbracket \sigma$
$\mathrm{A} \llbracket \mathrm{e}_{1}-\mathrm{e}_{2} \rrbracket \sigma=\mathrm{A} \llbracket \mathrm{e}_{1} \rrbracket \sigma-\mathrm{A} \llbracket \mathrm{e}_{2} \rrbracket \sigma$
$A \llbracket e_{1}{ }^{*} e_{2} \rrbracket \sigma=A \llbracket e_{1} \rrbracket \sigma^{*} A \llbracket e_{2} \rrbracket \sigma$

- This is a total function (= defined for all expressions)

Denotational Semantics of Boolean Expressions

－We inductively define a function

$$
\mathrm{B} \llbracket \cdot \rrbracket: \operatorname{Bexp} \rightarrow(\Sigma \rightarrow\{\text { true, false }\})
$$

$\mathrm{B} \llbracket$ true $\rrbracket \sigma \quad=$ true
$\mathrm{B}[$ false $] \sigma=$ false
$B \llbracket b_{1} \wedge b_{2} \rrbracket \sigma=B \llbracket b_{1} \rrbracket \sigma \wedge B \llbracket b_{2} \rrbracket \sigma$
$B \llbracket e_{1}=e_{2} \rrbracket \sigma \quad=$ if $A \llbracket e_{1} \rrbracket \sigma=A \llbracket e_{2} \rrbracket \sigma$ then true else false

Seems Easy So Far
 【Semantics』

of a structure
I 1
By Tom 7
【色】＝bowling pin

$\perp=$ Non－Termination

－We introduce the special element \perp to denote a special resulting state that stands for non－termination
－For any set X ，we write X_{\perp} to denote X $\cup\{\perp\}$
Convention：
whenever $\mathrm{f} \in \mathrm{X} \rightarrow \mathrm{X}_{\perp}$ we extend f to
$X_{\perp} \rightarrow X_{\perp}$ so that $f(\perp)=\perp$
－This is called strictness

Denotational Semantics of

 Commands－We try：

$$
\subset \llbracket \cdot \rrbracket: \text { Comm } \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)
$$

$C \llbracket$ skip $\rrbracket \sigma \quad=\sigma$
$\mathrm{C} \llbracket \mathrm{x}:=\mathrm{e} \rrbracket \sigma \quad=\sigma[\mathrm{x}:=\mathrm{A} \llbracket \mathrm{e} \rrbracket \sigma]$
$C \llbracket c_{1} ; c_{2} \rrbracket \sigma \quad=C \llbracket c_{2} \rrbracket\left(C \llbracket c_{1} \rrbracket \sigma\right)$
$\mathrm{C} \llbracket \mathrm{if} \mathrm{b}$ then C_{1} else $\mathrm{c}_{2} \rrbracket \sigma=$
if $\mathrm{B} \llbracket \mathrm{b} \rrbracket \sigma$ then $\left.\mathrm{C} \llbracket \mathrm{c}_{1}\right] \sigma$ else $\mathrm{C} \llbracket \mathrm{c}_{2} \rrbracket \sigma$
$C \llbracket$ while b do c】 σ
$=$ ？

Examples

－ $\mathrm{C} \llbracket \mathrm{x}:=2 ; \mathrm{x}:=1 \rrbracket \sigma=$ $\sigma[x:=1]$
－$C \llbracket i f$ true then $x:=2 ; x:=1$ else $. . . \rrbracket \sigma=$ $\sigma[x:=1]$
－The semantics does not care about intermediate states
－We haven＇t used \perp yet

Denotational Semantics of WHILE

－Notation：W＝C \llbracket while b do c】
－Idea：rely on the equivalence（from last time） while b do $c \approx$ if b then c ；while b do c else skip －Try
$\mathrm{W}(\sigma)=$ if $\mathrm{B} \llbracket \mathrm{b} \rrbracket \sigma$ then $\mathrm{W}(\mathrm{C} \llbracket \mathrm{c} \rrbracket \sigma)$ else σ
－This is called the unwinding equation
－It is not a good denotation of W because：
－It defines W in terms of itself
－It is not evident that such a W exists
－It does not describe W uniquely
－It is not compositional

More on WHILE

－The unwinding equation does not specify W uniquely
－Take C【while true do skip】
－The unwinding equation reduces to $\mathrm{W}(\sigma)=$ W（ σ ），which is satisfied by every function！
－Take $C \llbracket$ while $x \neq 0$ do $x:=x-2 \rrbracket$
－The following solution satisfies equation（for any σ^{\prime} ）

$$
W(\sigma)= \begin{cases}\sigma[x:=0] & \text { if } \sigma(x)=2 k \wedge \sigma(x) \geq 0 \\ \sigma^{\prime} & \text { otherwise }\end{cases}
$$

Denotational Game Plan

－Since WHILE is recursive
－always have something like： $\mathrm{W}(\sigma)=\mathrm{F}(\mathrm{W}(\sigma))$
－Admits many possible values for $W(\sigma)$
－We will order them
－With respect to non－termination
－And then find the least fixed point
－LFP $\mathrm{W}(\sigma)=\mathrm{F}(\mathrm{W}(\sigma))==$ meaning of＂while＂

WHILE Semantics

－How do we get W from W_{k} ？

$$
\mathrm{W}(\sigma)= \begin{cases}\sigma^{\prime} & \text { if } \exists \mathrm{k} . \mathrm{W}_{\mathrm{k}}(\sigma)=\sigma^{\prime} \neq \perp \\ \perp & \text { otherwise }\end{cases}
$$

－This is a valid compositional definition of W
－Depends only on $C \llbracket \subset \rrbracket$ and $B \llbracket b \rrbracket$
－Try the examples again：
－For C【while true do skip】
$W_{k}(\sigma)=\perp$ for all k ，thus $W(\sigma)=\perp$
－For C【while $\mathrm{x} \neq 0$ do $\mathrm{x}:=\mathrm{x}$－2】
$W(\sigma)=\left\{\begin{array}{cl}\sigma[\mathrm{x}:=0] & \text { if } \sigma(\mathrm{x})=2 \mathrm{k} \wedge \sigma(\mathrm{x}) \geq 0 \\ \perp & \text { otherwise }\end{array}\right.$

WHILE Semantics

－Define $W_{k}: \Sigma \rightarrow \Sigma_{\perp}($ for $k \in \mathbb{N})$ such that
$W_{k}(\sigma)= \begin{cases}\sigma^{\prime} & \begin{array}{l}\text { if＂while b do } c^{\prime \prime} \text { in state } \sigma \\ \text { terminates in fewer than } \mathrm{k}\end{array} \\ \perp & \begin{array}{l}\text { iterations in state } \sigma^{\prime} \\ \text { otherwise }\end{array}\end{cases}$
－We can define the W_{k} functions as follows：
$W_{0}(\sigma)=\left\{\begin{array}{ll}\perp & \\ W_{k}(\sigma)= \begin{cases}W_{k-1}(C \llbracket c \rrbracket \sigma) & \text { if } B \llbracket b \rrbracket \sigma \text { for } k \geq 1 \\ \sigma & \text { otherwise }\end{cases} \end{array}\right.$ ：

That Wasn't Good Enough!?

Simple Domain Theory

- Consider programs in an eager, deterministic language with one variable called "x"
- All these restrictions are just to simplify the examples
- A state σ is just the value of x
- Thus we can use \mathbb{Z} instead of Σ
- The semantics of a command give the value of final x as a function of input x

$$
\mathrm{C} \llbracket \mathrm{c} \rrbracket: \mathbb{Z} \rightarrow \mathbb{Z}_{\perp}
$$

Examples - Revisited

- Take C \llbracket while true do skip】
- Unwinding equation reduces to $\mathrm{W}(\mathrm{x})=\mathrm{W}(\mathrm{x})$
- Any function satisfies the unwinding equation
- Desired solution is $W(x)=\perp$
- Take $C \llbracket$ while $x \neq 0$ do $x:=x-2 \rrbracket$
- Unwinding equation: $W(x)=$ if $x \neq 0$ then $W(x-2)$ else x
- Solutions (for all values $n, m \in \mathbb{Z}_{\perp}$): $W(x)=$ if $x \geq 0$ then
if x even then 0 else n else m
- Desired solution: $W(x)=$ if $x \geq 0 \wedge x$ even then 0 else \perp

An Ordering of Solutions

- The desired solution is the one in which all the arbitrariness is replaced with non-termination
- The arbitrary values in a solution are not uniquely determined by the semantics of the code
- We introduce an ordering of semantic functions
- Let $\mathrm{f}, \mathrm{g} \in \mathbb{Z} \rightarrow \mathbb{Z}_{\perp}$
- Define $f \sqsubseteq g$ as $\forall x \in \mathbb{Z} . f(x)=\perp$ or $f(x)=g(x)$
- A "smaller" function terminates at most as often, and when it terminates it produces the same result

Alternative Views of Function Ordering

- A semantic function $f \in \mathbb{Z} \rightarrow \mathbb{Z}_{\perp}$ can be written as $\mathrm{S}_{\mathrm{f}} \subseteq \mathbb{Z} \times \mathbb{Z}$ as follows:

$$
S_{f}=\{(x, y) \mid x \in \mathbb{Z}, f(x)=y \neq \perp\}
$$

- A list of the "terminating" values for the function
- If $f \sqsubseteq g$ then
- $\mathrm{S}_{\mathrm{f}} \subseteq \mathrm{S}_{\mathrm{g}} \quad$ (and viceversa)
- We say that g refines f
- We say that f approximates g
- We say that g provides more information than f

The "Best" Solution

- Consider again C【while $\mathrm{x} \neq 0$ do $\mathrm{x}:=\mathrm{x}-2 \rrbracket$
- Unwinding equation:
$W(x)=$ if $x \neq 0$ then $W(x-2)$ else x
- Not all solutions are comparable:
$W(x)=$ if $x \geq 0$ then if x even then 0 else 1 else 2
$W(x)=$ if $x \geq 0$ then if x even then 0 else \perp else 3
$W(x)=$ if $x \geq 0$ then if x even then 0 else \perp else \perp (last one is least and best)
- Is there always a least solution?
- How do we find it?
- If only we had a general framework for answering these questions ...

Fixed-Point Equations

- Consider the general unwinding equation for while while b do $c \equiv$ if b then c; while b do celse skip
- We define a context C (command with a hole)

$$
C=\text { if b then c; • else skip }
$$

while b do $c \equiv C[$ while b do $c]$

- The grammar for C does not contain "while b do c"
- We can find such a (recursive) context for any looping construct
- Consider: fact $\mathrm{n}=$ if $\mathrm{n}=0$ then 1 else n * fact $(\mathrm{n}-1)$
$-C=\lambda n$. if $n=0$ then 1 else $n^{*} \bullet(n-1)$
- fact $=C$ [fact $]$

Fixed-Point Equations

- The meaning of a context is a semantic functional $F:\left(\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}\right) \rightarrow\left(\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}\right)$ such that

$$
F \llbracket C[w] \rrbracket=F \llbracket w \rrbracket
$$

- For "while": C = if b then c; • else skip

$$
\mathrm{F} w \mathrm{x}=\mathrm{if} \llbracket \mathrm{~b} \rrbracket \mathrm{x} \text { then } \mathrm{w}(\llbracket \mathrm{c} \rrbracket \mathrm{x}) \text { else } \mathrm{x}
$$

- F depends only on $\llbracket c \rrbracket$ and $\llbracket b \rrbracket$
- We can rewrite the unwinding equation for while
- $W(x)=$ if $\llbracket b \rrbracket x$ then $W(\llbracket c \rrbracket x)$ else x
- or, W x = F W x for all x,
- or, $W=F W$ (by function equality)

Fixed-Point Equations

- The meaning of "while" is a solution for $W=F W$
- Such a W is called a fixed point of F
- We want the least fixed point
- We need a general way to find least fixed points
- Whether such a least fixed point exists depends on the properties of function F
- Counterexample: F w x = if w $x=\perp$ then 0 else \perp
- Assume W is a fixed point
- $\mathrm{FW} x=W \mathrm{x}=$ if $\mathrm{W} \mathrm{x}=\perp$ then 0 else \perp
- Pick an x, then if $W x=\perp$ then $W x=0$ else $W x=\perp$
- Contradiction. This F has no fixed point!

Can We Solve This?

- Good news: the functions F that correspond to contexts in our language have least fixed points!
- The only way F w x uses w is by invoking it
- If any such invocation diverges, then $F w x$ diverges!
- It turns out: F is monotonic, continuous
- Not shown here!

The Fixed-Point Theorem

If F is a semantic functional corresponding to a context in our language

- F is monotonic and continuous (we assert)
- For any fixed-point G of F and $k \in \mathbb{N}$

$$
\mathrm{F}^{\mathrm{k}}(\lambda \mathrm{x} . \perp) \sqsubseteq \mathrm{G}
$$

- The least of all fixed points is

$$
\sqcup_{k} F^{k}(\lambda x . \perp)
$$

- Proof (not detailed in the lecture):

1. By mathematical induction on k.

Base: $\mathrm{F}^{0}(\lambda x . \perp)=\lambda \mathrm{x} . \perp \sqsubseteq \mathrm{G}$
Inductive: $\mathrm{F}^{\mathrm{k}+1}(\lambda \mathrm{x} . \perp)=\mathrm{F}\left(\mathrm{F}^{\mathrm{k}}(\lambda \mathrm{x} . \perp)\right) \sqsubseteq \mathrm{F}(\mathrm{G})=\mathrm{G}$
2. Suffices to show that $\sqcup_{k} F^{k}(\lambda x . \perp)$ is a fixed-point $F\left(\sqcup_{k} F^{k}(\lambda x . \perp)\right)=\sqcup_{k} F^{k+1}(\lambda x . \perp)=\sqcup_{k} F^{k}(\lambda x . \perp)$

WHILE Semantics

- We can use the fixed-point theorem to write the denotational semantics of while:
\llbracket while b do $c \rrbracket=\sqcup_{k} F^{k}(\lambda x . \perp)$
where $F f x=$ if $\llbracket b \rrbracket x$ then $f(\llbracket c \rrbracket x)$ else x
- Example: \llbracket while true do skip】 $=\lambda x . \perp$- Example: 【while $x \neq 0$ then $x:=x-1 \rrbracket$
- $F(\lambda x . \perp) x=$ if $x=0$ then x else \perp
- $F^{2}(\lambda x . \perp) x=$ if $x=0$ then x else if $x-1=0$ then $x-1$ else \perp
$=$ if $1 \geq x \geq 0$ then 0 else \perp
- $\mathrm{F}^{3}(\lambda x . \perp) x=$ if $2 \geq x \geq 0$ then 0 else \perp
- LFP $_{F}=$ if $x \geq 0$ then 0 else \perp
- Not easy to find the closed form for general LFPs!

Discussion

- We can write the denotational semantics but we cannot always compute it.
- Otherwise, we could decide the halting problem
- H is halting for input 0 iff $\llbracket \mathrm{H} \rrbracket 0 \neq \perp$
- We have derived this for programs with one variable
- Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: domain theory

Recall: Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a "math object"
- DS uses \perp ("bottom") to mean nontermination
- DS uses fixed points and domains to handle while
- This is the tricky bit

Can You Remember?

Homework

- Homework 2 Due Today
- Homework 3 Out Today
- Not as long as it looks - separated out every exercise sub-part for clarity.
- Your denotational answers must be compositional (e.g., $\mathrm{W}_{\mathrm{k}}(\sigma)$ or LFP)
- Read Winskel Chapter 6
- Read Hoare article
- Read Floyd article

