

# Class Likes/Dislikes Survey

- "would change [the bijection question] to be one that still tested students' recollection of set theory but that didn't take as much time"
- "I liked the bijection proof in the homework. I thought it ended up being pretty neat."
- "my guess is the student would benefit more from a rephrasing or alternate explanation"
- "I don't need to hear the things explained in another way"

# **Dueling Semantics**

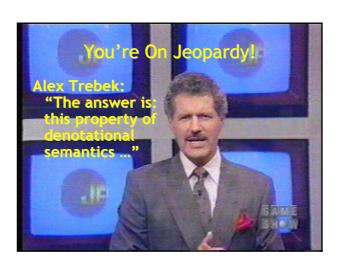
- · Operational semantics is
  - simple
  - of many flavors (natural, small-step, more or less abstract)
  - not compositional
  - commonly used in the real (modern research) world
- · Denotational semantics is
  - mathematical (the meaning of a syntactic expression is a mathematical object)
  - compositional
- Denotational semantics is also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics

# Typical Student Reaction To Denotation Semantics



# Denotational Semantics Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a "math object"
- $\bullet$  DS uses  $\bot$  ("bottom") to mean non-termination
- DS uses fixed points and domains to handle while
  - This is the tricky bit



#### DS In The Real World

- ADA was formally specified with it
- Handy when you want to study non-trivial models of computation
  - e.g., "actor event diagram scenarios", process calculi
- Nice when you want to compare a program in Language 1 to a program in Language 2

## Deno-Challenge

• You may skip the homework assignment of your choice if you can find a post-1995 paper in a first- or second-tier PL conference that uses denotational semantics.

## Foreshadowing

- Denotational semantics assigns meanings to programs
- The meaning will be a mathematical object
  - A number  $a \in \mathbb{Z}$
  - A boolean  $b \in \{true, false\}$
  - A function  $c: \Sigma \to (\Sigma \cup \{\text{non-terminating}\})$
- The meaning will be determined <u>compositionally</u>
  - Denotation of a command is based on the denotations of its immediate sub-commands (= syntax-directed)

## **New Notation**

- · 'Cause, why not?
  - = "means" or "denotes"
- Example:

= "denotation of foo" [foo]

[3 < 5]= true

[3 + 5]

• Sometimes we write  $A[\cdot]$  for arith,  $B[\cdot]$ for boolean, C[.] for command

## Rough Idea of **Denotational Semantics**

- · The meaning of an arithmetic expression e in state  $\sigma$  is a number n
- So, we try to define A[e] as a function that maps the current state to an integer:

$$A\llbracket \cdot \rrbracket : Aexp \to (\Sigma \to \mathbb{Z})$$

The meaning of boolean expressions is defined in a similar way

$$B[\cdot]$$
: Bexp  $\rightarrow$  ( $\Sigma \rightarrow \{true, false\}$ )

- · All of these denotational function are total
  - Defined for all syntactic elements
  - For other languages it might be convenient to define the semantics only for well-typed elements

# Denotational Semantics of **Arithmetic Expressions**

· We inductively define a function

$$A\llbracket \cdot 
rbracket$$
: Aexp  $o$  ( $\Sigma o \mathbb{Z}$ )

 $A[n] \sigma =$ the integer denoted by literal n

 $A[x] \sigma = \sigma(x)$ 

 $A[e_1+e_2] \sigma = A[e_1]\sigma + A[e_2]\sigma$ 

· This is a total function (= defined for all expressions)

# Denotational Semantics of Boolean Expressions

· We inductively define a function

$$B[\cdot]$$
: Bexp  $\to$  ( $\Sigma \to \{true, false\}$ )

 $B[true]\sigma = true$  $B[false]\sigma = false$ 

 $B[[b_1 \wedge b_2]]\sigma = B[[b_1]] \sigma \wedge B[[b_2]] \sigma$   $B[[e_1 = e_2]]\sigma = \text{if } A[[e_1]] \sigma = A[[e_2]] \sigma$ 

then true else false

# Seems Easy So Far

# [Semantics]

of a Structure

= bowling pin

By Tom 7

# Denotational Semantics for Commands

- Running a command c starting from a state  $\sigma$  yields another state  $\sigma'$
- So, we try to define  $C[\![c]\!]$  as a function that maps  $\sigma$  to  $\sigma'$

$$C[\cdot]: Comm \to (\Sigma \to \Sigma)$$

· Will this work? Bueller?

#### $\perp$ = Non-Termination

- We introduce the special element 

  to denote a special resulting state that stands for non-termination
- For any set X, we write  $X_{\bot}$  to denote X  $\cup \, \{\bot\}$

#### Convention:

whenever  $f \in X \to X_{\perp}$  we extend f to  $X_{\perp} \to X_{\perp}$  so that  $f(\perp) = \perp$ 

- This is called strictness

# Denotational Semantics of Commands

• We try:

$$C[\cdot]: Comm \rightarrow (\Sigma \rightarrow \Sigma_{\perp})$$

 $C[skip] \sigma = \sigma$ 

 $C[x := e] \sigma = \sigma[x := A[e] \sigma]$ 

 $C[[c_1; c_2]] \sigma = C[[c_2]] (C[[c_1]] \sigma)$ 

C[if b then  $c_1$  else  $c_2$ ]  $\sigma =$ 

if B[[b]] $\sigma$  then C[[c<sub>1</sub>]] $\sigma$  else C[[c<sub>2</sub>]] $\sigma$ 

C[while b do c]  $\sigma = ?$ 

# Examples

- C[[x:=2; x:=1]] σ =
  - $\sigma[x := 1]$
- C[if true then x:=2; x:=1 else ...] σ = σ[x := 1]
- The semantics does not care about intermediate states
- We haven't used  $\perp$  yet

### **Denotational Semantics of WHILE**

- Notation: W = C[while b do c]
- Idea: rely on the equivalence (from last time)
   while b do c ≈ if b then c; while b do c else skip
- Try

 $W(\sigma) = \text{if } B[\![b]\!]\sigma \text{ then } W(C[\![c]\!]\sigma) \text{ else } \sigma$ 

- · This is called the unwinding equation
- It is not a good denotation of W because:
  - It defines W in terms of itself
  - It is not evident that such a W exists
  - It does not describe W uniquely
  - It is not compositional

#### More on WHILE

- The unwinding equation does not specify W uniquely
- Take C[while true do skip]
- The unwinding equation reduces to  $W(\sigma) = W(\sigma)$ , which is satisfied by every function!
- Take  $C[while x \neq 0 \text{ do } x := x 2]$
- The following solution satisfies equation (for any σ')

$$W(\sigma) = \left\{ \begin{array}{ll} \sigma[x := 0] & \text{if } \sigma(x) = 2k \wedge \sigma(x) \geq 0 \\ \sigma' & \text{otherwise} \end{array} \right.$$

### Denotational Game Plan

- Since WHILE is recursive
  - always have something like:  $W(\sigma) = F(W(\sigma))$
- Admits many possible values for  $W(\sigma)$
- We will order them
  - With respect to non-termination
- · And then find the least fixed point
- LFP  $W(\sigma)=F(W(\sigma))==$  meaning of "while"

#### **WHILE Semantics**

• Define  $W_k \hbox{:}\ \Sigma \to \Sigma_\perp$  (for  $k \in \mathbb{N}) such that$ 

$$W_k(\sigma) = \begin{cases} \sigma' & \text{if "while b do c" in state } \sigma \\ & \text{terminates in } \underline{\text{fewer than k}} \\ & \text{iterations in state } \sigma' \\ \bot & \text{otherwise} \end{cases}$$

 We can define the W<sub>k</sub> functions as follows:

$$\begin{array}{ll} W_0(\sigma) = & \bot \\ W_k(\sigma) = & \left\{ \begin{array}{ll} W_{k-1}(C[\![c]\!]\sigma) & \text{if } B[\![b]\!]\sigma \text{ for } k \geq 1 \\ \sigma & \text{otherwise} \end{array} \right. \end{array}$$

#### **WHILE Semantics**

• How do we get W from W<sub>k</sub>?

$$W(\sigma) = \begin{cases} \sigma' & \text{if } \exists k.W_k(\sigma) = \sigma' \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

- · This is a valid compositional definition of W
  - Depends only on  $C[\![c]\!]$  and  $B[\![b]\!]$
- Try the examples again:
  - For C[while true do skip]

$$W_k(\sigma) = \bot$$
 for all k, thus  $W(\sigma) = \bot$ 

- For C[[while  $x \neq 0$  do x := x - 2]

$$W(\sigma) = \left\{ \begin{array}{ll} \sigma[x \text{:=} 0] & \text{ if } \sigma(x) \text{ = } 2k \, \land \, \sigma(x) \geq 0 \\ \bot & \text{ otherwise} \end{array} \right.$$

#### More on WHILE

- The solution is not quite satisfactory because
  - It has an operational flavor
  - It does not generalize easily to more complicated semantics (e.g., higher-order functions)
- However, precisely due to the operational flavor this solution is easy to prove sound w.r.t operational semantics

## That Wasn't Good Enough!?



## Simple Domain Theory

- Consider programs in an eager, deterministic language with one variable called "x"
  - All these restrictions are just to simplify the examples
- A state  $\sigma$  is just the value of x
  - Thus we can use  $\mathbb Z$  instead of  $\Sigma$
- The semantics of a command give the value of final x as a function of input x

 $C[\![c]\!]: \mathbb{Z} \to \mathbb{Z}_+$ 

## **Examples - Revisited**

- Take C[while true do skip]
  - Unwinding equation reduces to W(x) = W(x)
  - Any function satisfies the unwinding equation
  - Desired solution is  $W(x) = \bot$
- Take C[while  $x \neq 0$  do x := x 2]
  - Unwinding equation:
    - $W(x) = if x \neq 0 then W(x 2) else x$
  - Solutions (for all values n,  $m\in\mathbb{Z}_{\perp}$ ):

 $W(x) = if x \ge 0 then$ 

if x even then 0 else n

else m

- Desired solution: W(x) = if  $x \ge 0 \land x$  even then 0 else  $\bot$ 

## An Ordering of Solutions

- The <u>desired solution</u> is the one in which all the arbitrariness is replaced with non-termination
  - The arbitrary values in a solution are not uniquely determined by the semantics of the code
- · We introduce an ordering of semantic functions
- Let f,  $g \in \mathbb{Z} \to \mathbb{Z}_+$
- Define  $f \sqsubseteq g$  as

 $\forall x \in \mathbb{Z}$ .  $f(x) = \bot$  or f(x) = g(x)

 A "smaller" function terminates at most as often, and when it terminates it produces the same result

# Alternative Views of Function Ordering

• A semantic function  $f\in\mathbb{Z}\to\mathbb{Z}_\perp$  can be written as  $S_f\subseteq\mathbb{Z}\times\mathbb{Z}$  as follows:

$$S_f = \{ (x, y) \mid x \in \mathbb{Z}, f(x) = y \neq \bot \}$$

- A list of the "terminating" values for the function
- If f 
   ⊆ g then
  - $-S_f \subseteq S_g$  (and viceversa)
  - We say that g refines f
  - We say that f approximates g
  - We say that g provides more information than f

### The "Best" Solution

- Consider again C[while  $x \neq 0$  do x := x 2]
  - Unwinding equation:

 $W(x) = if x \neq 0$  then W(x - 2) else x

Not all solutions are comparable: W(x) = if x > 0 then if x even then 0 else

 $\begin{array}{ll} W(x)=\text{if }x\geq 0 \text{ then if }x \text{ even then }0 \text{ else }1 \text{ else }2 \\ W(x)=\text{if }x\geq 0 \text{ then if }x \text{ even then }0 \text{ else }\bot \text{ else }3 \\ W(x)=\text{if }x\geq 0 \text{ then if }x \text{ even then }0 \text{ else }\bot \text{ else }\bot \end{array}$ 

(last one is least and best)

- · Is there always a least solution?
- · How do we find it?
- If only we had a general framework for answering these questions ...

## **Fixed-Point Equations**

- · Consider the general unwinding equation for while while b do c = if b then c; while b do c else skip
- We define a context C (command with a hole) C = if b then c; • else skip

```
while b do c = C[while b do c]
```

- The grammar for C does not contain "while b do c"
- · We can find such a (recursive) context for any looping construct
  - Consider: fact n = if n = 0 then 1 else n \* fact (n 1)
  - C =  $\lambda n$ . if n = 0 then 1 else n \* (n 1)
  - fact = C [ fact ]

## **Fixed-Point Equations**

· The meaning of a context is a semantic functional  $F: (\mathbb{Z} \to \mathbb{Z}_+) \to (\mathbb{Z} \to \mathbb{Z}_+)$  such that

$$F [C[w]] = F [w]$$

• For "while": C = if b then c; • else skip

F w x = if [b] x then w ([c] x) else x

- F depends only on [c] and [b]
- · We can rewrite the unwinding equation for while
  - W(x) = if [b] x then W([c] x) else x
  - or, W x = F W x for all x,
  - or, W = FW (by function equality)

## **Fixed-Point Equations**

- The meaning of "while" is a solution for W = F W
- · Such a W is called a fixed point of F
- · We want the least fixed point
  - We need a general way to find least fixed points
- · Whether such a least fixed point exists depends on the properties of function F
  - Counterexample: F w x = if w x =  $\perp$  then 0 else  $\perp$
  - Assume W is a fixed point
  - F W x = W x = if W x =  $\perp$  then 0 else  $\perp$
  - Pick an x, then if W x =  $\perp$  then W x = 0 else W x =  $\perp$
  - Contradiction. This F has no fixed point!

#### Can We Solve This?

- · Good news: the functions F that correspond to contexts in our language have least fixed points!
- The only way F w x uses w is by invoking it
- If any such invocation diverges, then F w x diverges!
- It turns out: F is monotonic, continuous
  - Not shown here!

#### The Fixed-Point Theorem

- · If F is a semantic functional corresponding to a context in our language
  - F is monotonic and continuous (we assert)
  - ~ For any fixed-point G of F and  $k \in \mathbb{N}$

 $F^k(\lambda x. \perp) \sqsubseteq G$ 

- The least of all fixed points is  $\sqcup_k \mathsf{F}^k(\lambda \mathsf{x}.\bot)$ 

· Proof (not detailed in the lecture):

1. By mathematical induction on k.

Base:  $F^0(\lambda x. \perp) = \lambda x. \perp \sqsubseteq G$ 

Inductive:  $F^{k+1}(\lambda x. \perp) = F(F^k(\lambda x. \perp)) \sqsubseteq F(G) = G$ 

2. Suffices to show that  $\sqcup_k F^k(\lambda x.\bot$  ) is a fixed-point

 $F(\sqcup_k F^k(\lambda x.\bot)) = \sqcup_k F^{k+1}(\lambda x.\bot) = \sqcup_k F^k(\lambda x.\bot)$ 

#### WHILE Semantics

We can use the fixed-point theorem to write the denotational semantics of while:

• Example: [while true do skip] =  $\lambda x. \perp$ 

• Example:  $\llbracket \text{while } x \neq 0 \text{ then } x := x - 1 \rrbracket$ 

- F  $(\lambda x, \perp)$  x = if x = 0 then x else  $\perp$ - F<sup>2</sup> $(\lambda x, \perp)$  x = if x = 0 then x else if x - 1 = 0 then x - 1 elsè 🗆

= if  $1 \ge x \ge 0$  then 0 else  $\perp$ ~  $F^3$  ( $\lambda x. \perp$ )  $x = if 2 \ge x \ge 0$  then 0 else  $\perp$ - LFP<sub>E</sub> = if x > 0 then 0 else  $\perp$ 

· Not easy to find the closed form for general LFPs!

#### Discussion

- We can write the denotational semantics but we cannot always compute it.
  - Otherwise, we could decide the halting problem
  - H is halting for input 0 iff  $[H] 0 \neq \bot$
- We have derived this for programs with one variable
  - Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: domain theory

### Can You Remember?



# Recall: Learning Goals

- DS is compositional
- When should I use DS?
- In DS, meaning is a "math object"
- $\bullet$  DS uses  $\bot$  ("bottom") to mean non-termination
- DS uses fixed points and domains to handle while
  - This is the tricky bit

#### Homework

- Homework 2 Due Today
- Homework 3 Out Today
  - Not as long as it looks separated out every exercise sub-part for clarity.
  - Your denotational answers must be compositional (e.g.,  $W_k(\sigma)$  or LFP)
- Read Winskel Chapter 6
- Read Hoare article
- Read Floyd article