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#1

Bonus Lecture Post-Mortem

• Well, the food worked.

• It was a true test of endurance.

• Apparently more than one person wants to 

hear “the rest of the story”, so we’ll 

probably organize Bonus Lecture 2

– Later.

– Much later.

– When the thought of spending more than 75 

minutes here doesn’t induce nausea. 

#2

Old Questions Answered

• Denotational Semantics class question:

• “What’s up with the continuity 

requirement?”

• A function F : Sm → Sn is continuous if for 

every chain W ⊂ Sm

– F(W) has a LUB = ⊔ F(W) 

– and F(⊔ W) = ⊔ F(W)

• See the Ed Lee paper retconned into the 

lectures page.

#3

““The Real The Real 

DealDeal””

Axiomatic Axiomatic 

SemanticsSemantics

#4

Soundness of Axiomatic Semantics

• Formal statement of soundness:

If ⊢ { A } c { B } then � { A } c { B } 

or, equivalently

For all σ, if σ � A 

and Op :: <c, σ> ⇓ σ’

and Pr :: ⊢ { A } c { B } 

then σ’ � B 

• “Op” = “Opsem Derivation”

• “Pr” = “Axiomatic Proof”

#5

Simultaneous Induction

• Consider two structures Op and Pr

– Assume that x < y iff x is a substructure of y

• Define the ordering 

(o, p) ≺ (o’, p’) iff

o < o’ or   o = o’ and p < p’

– Called lexicographic (dictionary) ordering

• This ≺ is a well founded order and leads to 

simultaneous induction 

• If o < o’ then p can actually be larger than p’! 

• It can even be unrelated to p’!

#6

Soundness of the While Rule
(Indiana Proof and the Slide of Doom)

• Case: last rule used in Pr : ⊢ {A} c {B} was the while rule:

• Two possible rules for the root of Op (by inversion)
– We’ll only do the complicated case:

Assume that σσσσ ���� A

To show that σσσσ’’ ���� A ∧∧∧∧ ¬¬¬¬ b

• By soundness of booleans and Op1 we get σ � b
– Hence σ � A ∧ b

• By IH on Pr1 and Op2 we get σ’ � A

• By IH on Pr and Op3 we get  σ’’ � A ∧ ¬ b, q.e.d.
– This is the tricky bit!

⊢ {A} while b do c {A ∧ ¬ b}

Pr1 :: ⊢ {A ∧ b} c {A}

<while b do c, σ > ⇓ σ’’

Op1 :: <b, σ> ⇓ true      Op2 :: <c,σ> ⇓ σ’ Op3 ::  <while b do c, σ’ > ⇓ σ’’
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#7

Soundness of the While Rule

• Note that in the last use of IH the derivation 

Pr did not decrease

• See Winskel, Chapter 6.5, for a soundness 

proof with denotational semantics

#8

Completeness of Axiomatic 

Semantics
• If � {A} c {B} can we always derive ⊢ {A} c {B} ?

• If so, axiomatic semantics is complete

• If not then there are valid properties of programs 

that we cannot verify with Hoare rules :-( 

• Good news: for our language the Hoare triples are 

complete

• Bad news: only if the underlying logic is complete
(whenever � A we also have ⊢ A)

- this is called relative completeness

#9

General Plan

• OK, so:

� { x < 5 ∧ z = 2 } y := x + 2 { y < 7 }

• Can we prove it? 

?⊢? { x < 5 ∧ z = 2 } y := x + 2 { y < 7 }

• Well, we could easily prove: 

⊢ { x+2 < 7 } y := x + 2 { y < 7 }

• And we know …

⊢ x < 5 ∧ z = 2 ⇒ x+2 < 7

• Shouldn’t those two proofs be enough? 

#10

Proof Idea
• Dijkstra’s idea: To verify that { A } c { B }

a) Find out all predicates A’ such that � { A’ } c { B }
• call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ ∈ Pre(c, B) that A ⇒ A’

• Assertions can be ordered:

false true⇒

strong weak
Pre(c, B)

weakest

precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A ⇒ WP(c, B)

A

#11

Proof Idea (Cont.)

• Completeness of axiomatic semantics:

If � { A } c { B } then ⊢ { A } c { B }

• Assuming that we can compute wp(c, B) with the 
following properties: 
1. wp is a precondition (according to the Hoare rules)

⊢ { wp(c, B) } c { B } 

2. wp is (truly) the weakest precondition          
If  � { A } c { B }   then  � A ⇒ wp(c, B)

• We also need that whenever � A then ⊢ A !

⊢ {A} c {B}

⊢ A ⇒ wp(c, B)         ⊢ {wp(c, B)} c {B}

#12

Weakest Preconditions
• Define wp(c, B) inductively on c, following the Hoare rules:

• wp(c1; c2, B) = 

wp(c1, wp(c2, B))

• wp(x := e, B) = 

[e/x]B

• wp(if E then c1 else c2, B) = 
E ⇒ wp(c1, B) ∧ ¬E ⇒ wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C}            {C} c2 {B}

{ [e/x]B } x := E {B}

{ E ⇒ A1 ∧ ¬ E ⇒ A2} if E then c1 else c2 {B}

{A1} c1 {B}            {A2} c2 {B}
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#13

Weakest Preconditions for Loops

• We start from the unwinding equivalence

while b do c    =  

if b then c; while b do c else skip

• Let w = while b do c and W = wp(w, B)

• We have that 

W = b ⇒ wp(c, W) ∧ ¬ b ⇒ B

• But this is a recursive equation!
– We know how to solve these using domain theory

• But we need a domain for assertions

#14

A Partial Order for Assertions
• Which assertion contains the least information?

– “true” – does not say anything about the state

• What is an appropriate information ordering ?
A ⊑ A’ iff � A’ ⇒ A

• Is this partial order complete? 
– Take a chain A1 ⊑ A2 ⊑ …

– Let ∧Ai be the infinite conjunction of Ai

σ � ∧Ai iff for all i we have that σ � Ai

– I assert that ∧Ai is the least upper bound

• Can ∧Ai be expressed in our language of assertions?
– In many cases: yes (see Winskel), we’ll assume yes for 
now

#15

Weakest Precondition for WHILE

• Use the fixed-point theorem

F(A) = b ⇒ wp(c, A) ∧ ¬ b ⇒ B

– (Where did this come from? Two slides back!)

– I assert that F is both monotonic and continuous

• The least-fixed point (= the weakest fixed 
point) is

wp(w, B) = ∧Fi(true)

• Notice that unlike for denotational semantics 
of IMP we are not working on a flat domain!

#16

Weakest Preconditions (Cont.)

• Define a family of wp’s
– wpk(while e do c, B) = weakest precondition on which 
the loop terminates in B if it terminates in k or fewer 
iterations

wp0 = ¬ E ⇒ B 

wp1 = E ⇒ wp(c, wp0) ∧ ¬ E ⇒ B

…

• wp(while e do c, B) = ∧k ≥ 0 wpk = lub {wpk | k ≥ 0}

• See Necula document on the web page for the 
proof of completeness with weakest preconditions

• Weakest preconditions are 
– Impossible to compute (in general)

– Can we find something easier to compute yet sufficient ?

#17

Not Quite Weakest Preconditions

• Recall what we are trying to do:
false true⇒

strong weak

Pre(s, B)

weakest

precondition: WP(c, B)A

verification 

condition: VC(c, B)

• Construct a verification condition: VC(c, B)

– Our loops will be annotated with loop invariants!

– VC is guaranteed to be stronger than WP

– But still weaker than A: A ⇒ VC(c, B) ⇒ WP(c, B)

#18

Groundwork

• Factor out the hard work
– Loop invariants

– Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
– Good software engineering practice anyway

– Requiring annotations = Kiss of Death? 

• New form of while that includes a loop invariant:

whileInv b do c
– Invariant formula Inv must hold every time before b is 
evaluated

• A process for computing VC(annotated_command, 
post_condition) is called VCGen
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#19

Verification Condition Generation

• Mostly follows the definition of the wp

function:

VC(skip, B) = B

VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) = 

b ⇒ VC(c1, B) ∧ ¬b ⇒ VC(c2, B)

VC(x := e, B)  = [e/x] B

VC(let x = e in c, B) = [e/x] VC(c, B)

VC(whileInv b do c, B) = ?

#20

VCGen for WHILE

VC(whileInv e do c, B) = 

Inv ∧ (∀x1…xn. Inv ⇒ (e ⇒ VC(c, Inv)  ∧ ¬ e ⇒ B) )

• Inv is the loop invariant (provided externally)

• x1, …, xn are all the variables modified in c
• The ∀ is similar to the ∀ in mathematical 
induction:

P(0) ∧ ∀n ∈ N. P(n) ⇒ P(n+1)

Inv holds

on entry
Inv is preserved in 

an arbitrary iteration

B holds when the 

loop terminates 

in an arbitrary iteration

#21

Example VCGen Problem

• Let’s compute the VC of this program with 

respect to post-condition x ≠ 0

x = 0;

y = 2;

whilex+y=2 y > 0 do

y := y - 1; 

x := x + 1

#22

Example of VC

• By the sequencing rule, first we do the while loop 
(call it w):

whilex+y=2 y > 0 do

y := y - 1; 

x := x + 1

• VCGen(w, x ≠ 0) = x+y=2 ∧

∀x,y. x+y=2 ⇒ (y>0 ⇒ VC(c, x+y=2) ∧ y�0 ⇒ x ≠ 0)

• VCGen(y:=y-1 ; x:=x+1, x+y=2) =

(x+1) + (y-1) = 2

• w Result: x+y=2 ∧

∀x,y. x+y=2 ⇒ (y>0 ⇒ (x+1)+(y-1)=2 ∧ y�0 ⇒ x ≠ 0)

#23

Example of VC (2)

• VC(w, x ≠ 0) = x+y=2 ∧

∀x,y. x+y=2 ⇒

(y>0 ⇒ (x+1)+(y-1)=2 ∧ y�0 ⇒ x ≠ 0)

• VC(x := 0; y := 2 ; w, x ≠ 0) = 0+2=2 ∧

∀x,y. x+y=2 ⇒

(y>0 ⇒ (x+1)+(y-1)=2 ∧ y�0 ⇒ x ≠ 0)

• So now we ask an automated theorem prover

to prove it. 

#24

Thoreau, Thoreau, Thoreau

$ ./Simplify 

> (AND (EQ (+ 0 2) 2) 

(FORALL ( x y ) (IMPLIES (EQ (+ x y) 2) 

(AND (IMPLIES (> y 0) 

(EQ (+ (+ x 1)(- y 1)) 2))

(IMPLIES (<= y 0) (NEQ x 0))))))

1: Valid.

• Huzzah!

• Simplify is a non-trivial five megabytes
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#25

Can We Mess Up VCGen?

• The invariant is from the user (= the 
adversary, the untrusted code base)

• Let’s use a loop invariant that is too weak, 
like “true”. 

• VC = true ∧ ∀x,y. true ⇒

(y>0 ⇒ true ∧ y�0 ⇒ x ≠ 0)

• Let’s use a loop invariant that is false, like 
“x ≠ 0”. 

• VC = 0 ≠ 0 ∧ ∀x,y. x ≠ 0 ⇒

(y>0 ⇒ x+1 ≠ 0 ∧ y�0 ⇒ x ≠ 0)
#26

Emerson, Emerson, Emerson

$ ./Simplify 

> (AND TRUE

(FORALL ( x y ) (IMPLIES TRUE

(AND (IMPLIES (> y 0) TRUE)

(IMPLIES (<= y 0) (NEQ x 0))))))

Counterexample: context:

(AND

(EQ x 0)

(<= y 0)

)

1: Invalid.

• OK, so we won’t be fooled. 

#27

Soundness of VCGen

• Simple form
� { VC(c,B) } c { B }

• Or equivalently that
� VC(c, B) ⇒ wp(c, B)

• Proof is by induction on the structure of c

– Try it!

• Soundness holds for any choice of invariant!

• Next: properties and extensions of VCs

#28

VC and Invariants

• Consider the Hoare triple:

{x ≤ 0} whileI(x) x ≤ 5 do x := x + 1 {x = 6}

• The VC for this is:

x ≤ 0 ⇒ I(x) ∧ ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧

x ≤ 5 ⇒ I(x+1) ))

• Requirements on the invariant:

– Holds on entry ∀x. x ≤ 0 ⇒ I(x)

– Preserved by the body ∀x.  I(x) ∧ x ≤ 5 ⇒ I(x+1)

– Useful ∀x.  I(x) ∧ x > 5 ⇒ x = 6

• Check that I(x) = x ≤ 6 satisfies all constraints

#29

Forward VCGen

• Traditionally the VC is computed backwards

– That’s how we’ve been doing it in class

– It works well for structured code

• But it can also be computed forward

– Works even for un-structured languages (e.g., 

assembly language)

– Uses symbolic execution, a technique that has 

broad applications in program analysis 

• e.g., the PREfix tool (Intrinsa, Microsoft) does this

#30

Forward VC Gen Intuition

• Consider the sequence of assignments

x1 := e1; x2 := e2
• The VC(c, B) = [e1/x1]([e2/x2]B)

= [e1/x1, e2[e1/x1]/x2] B

• We can compute the substitution in a forward way 
using symbolic execution (aka symbolic evaluation)
– Keep a symbolic state that maps variables to expressions

– Initially, Σ0 = { }

– After x1 := e1, Σ1 = { x1 → e1 }

– After x2 := e2, Σ2 = {x1 → e1, x2 → e2[e1/x1] }

– Note that we have applied Σ1 as a substitution to right-
hand side of assignment x2 := e2
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#31

Simple Assembly Language

• Consider the language of instructions:
I ::= x := e |  f() | if e goto L |  goto L | 

L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e holds at that 
point

• Each function f() comes with Pref and Postf
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at 
address k

#32

Symex States

• We set up a symbolic execution state:

Σ : Var→ SymbolicExpressions

Σ(x) = the symbolic value of x in state Σ

Σ[x:=e] = a new state in which x’s value is e

• We use states as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)

• Much like the opsem so far …

#33

Symex Invariants

• The symbolic executor tracks invariants 

passed

• A new part of symex state: Inv ⊆ {1…n}

• If k ∈ Inv then Ik is an invariant instruction 

that we have already executed

• Basic idea: execute an inv instruction only 

twice:

– The first time it is encountered

– Once more time around an arbitrary iteration

#34

Symex Rules
• Define a VC function as an interpreter:
VC : Address × SymbolicState × InvariantState → Assertion

if Ik = returnΣ(Postcurrent-function)

if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref)    ∧

∀a1..am.Σ’(Postf) ⇒

VC(k+1, Σ’, Inv)

(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
e ⇒ VC(L, Σ, Inv)      ∧

¬ e ⇒ VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ,  Inv)

#35

Symex Invariants (2a)

Two cases when seeing an invariant instruction:

1. We see the invariant for the first time

– Ik = inv e

– k ∉ Inv    (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on 

a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) = 

Σ(e) ∧ ∀a1…am. Σ’(e) ⇒ VC(k+1, Σ’, Inv ∪ {k}])

with Σ’ = Σ[y1 := a1, …, ym := am]

(like a function call)

#36

Symex Invariants (2b)

2. We see the invariant for the second time

– Ik = inv E

– k ∈ Inv

VC(k, Σ, Inv) = Σ(e)

(like a function return)

• Some tools take a more simplistic approach

– Do not require invariants

– Iterate through the loop a fixed number of times

– PREfix, versions of ESC (DEC/Compaq/HP SRC)

– Sacrifice completeness for usability
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#37

Homework

• Homework 3 Due Today
– If you’re stuck on 3, note that r* is just like 
WHILE

• Homework 4 Out Today (Due Thur Feb 16)

• Read Winskel 7.4-7.6 (on VC’s)

• Read Dijkstra article


