Bonus Lecture Post-Mortem

- Well, the food worked.
- It was a true test of endurance.
- Apparently more than one person wants to hear "the rest of the story", so we'll probably organize Bonus Lecture 2
 - Later.
 - Much later.
 - When the thought of spending more than 75 minutes here doesn't induce nausea.

Old Questions Answered

- Denotational Semantics class question:
- "What's up with the continuity requirement?"
- A function $F:S^m\to S^n$ is $\underline{continuous}$ if for every chain $W\subset S^m$
 - F(W) has a LUB = $\Box F(W)$
 - and $F(\sqcup W) = \sqcup F(W)$
- See the Ed Lee paper retconned into the lectures page.

Soundness of Axiomatic Semantics

- Formal statement of <u>soundness</u>: If \vdash { A } c { B } then \models { A } c { B } or, equivalently For all σ , if $\sigma \models A$ and Op :: <c, $\sigma > \Downarrow \sigma'$ and Pr :: \vdash { A } c { B } then $\sigma' \models B$ • "Op" = "Opsem Derivation"
- "Pr" = "Axiomatic Proof"

By IH on Pr and Op₃ we get $\sigma'' \models A \land \neg b$, q.e.d. - This is the tricky bit!

Soundness of the While Rule

- Note that in the last use of IH the derivation Pr did not decrease
- See Winskel, Chapter 6.5, for a soundness proof with denotational semantics

Completeness of Axiomatic Semantics

- If \vDash {A} c {B} can we always derive \vdash {A} c {B}?
- If so, axiomatic semantics is complete
- If not then there are valid properties of programs that we cannot verify with Hoare rules :-(
- Good news: for our language the Hoare triples are complete
- Bad news: only if the underlying logic is complete (whenever ⊨ A we also have ⊢ A)
 - this is called <u>relative completeness</u>

Weakest Preconditions for Loops

- We start from the unwinding equivalence while b do c =
 - if b then c; while b do c else skip
- Let w = while b do c and W = wp(w, B)
- We have that

 $\mathsf{W} = \mathsf{b} \Rightarrow \mathsf{wp}(\mathsf{c}, \mathsf{W}) \land \neg \mathsf{b} \Rightarrow \mathsf{B}$

- We know how to solve these using domain theory
- But we need a domain for assertions

A Partial Order for Assertions

- Which assertion contains the least information?
 "true" does not say anything about the state
- + What is an appropriate information ordering ? A \sqsubseteq A' $\quad iff \quad \vDash A' \Rightarrow A$
- Is this partial order complete?
 - Take a chain $A_1 \sqsubseteq A_2 \sqsubseteq ...$
 - Let $\land A_i$ be the infinite conjunction of A_i $\sigma \vDash \land A_i$ iff for all i we have that $\sigma \vDash A_i$
 - I assert that $\wedge A_i$ is the least upper bound
- Can \A_i be expressed in our language of assertions?
 In many cases: yes (see Winskel), we'll assume yes for now

Weakest Precondition for WHILE

- Use the fixed-point theorem
 - $F(A) = b \Rightarrow wp(c, A) \land \neg b \Rightarrow B$
 - (Where did this come from? Two slides back!)
 - I assert that ${\sf F}$ is both monotonic and continuous
- The least-fixed point (= the weakest fixed point) is

wp(w, B) = $\wedge F^{i}(true)$

• Notice that unlike for denotational semantics of IMP we are not working on a flat domain!

Weakest Preconditions (Cont.)

- Define a family of wp's
 - wp_k(while e do c, B) = weakest precondition on which the loop terminates in B if it terminates in k or fewer iterations wp₀ = $\neg E \Rightarrow B$

```
wp_{1} = E \Rightarrow wp(c, wp_{0}) \land \neg E \Rightarrow B
```

- + wp(while e do c, B) = $\bigwedge_{k \, \geq \, 0} wp_k$ = lub {wp_k | $k \geq 0$ }
- See Necula document on the web page for the proof of completeness with weakest preconditions
 Weakest preconditions are
- Impossible to compute (in general)
 - Can we find something easier to compute yet sufficient ?

• Mostly follows the definition of the wp function: VC(skip, B) = B VC(c_1; c_2, B) = VC(c_1, VC(c_2, B)) VC(if b then c_1 else c_2, B) = $b \Rightarrow VC(c_1, B) \land \neg b \Rightarrow VC(c_2, B)$ VC(x := e, B) = [e/x] B VC(let x = e in c, B) = [e/x] VC(c, B) VC(while_{Inv} b do c, B) = ?

Example of VC (2)

• VC(w,
$$x \neq 0$$
) = $x+y=2 \land$
 $\forall x,y. \ x+y=2 \Rightarrow$
 $(y>0 \Rightarrow (x+1)+(y-1)=2 \land y \le 0 \Rightarrow x \ne 0)$
• VC(x := 0; y := 2; w, $x \ne 0$) = $0+2=2 \land$
 $\forall x,y. \ x+y=2 \Rightarrow$
 $(y>0 \Rightarrow (x+1)+(y-1)=2 \land y \le 0 \Rightarrow x \ne 0)$
• So now we ask an automated theorem prover
to prove it.

• Simple form

 $\models \{ VC(c,B) \} c \{ B \}$

- Or equivalently that $\vDash VC(c, B) \Rightarrow wp(c, B)$
- Proof is by induction on the structure of c - Try it!
- Soundness holds for any choice of invariant!
- Next: properties and extensions of VCs

- Consider the Hoare triple: $\{x \le 0\} \text{ while}_{I(x)} \ x \le 5 \text{ do } x := x + 1 \ \{x = 6\}$
- The VC for this is: $x \le 0 \Rightarrow |(x) \land \forall x. (|(x) \Rightarrow (x > 5 \Rightarrow x = 6 \land x \le 5 \Rightarrow |(x+1)))$
- Requirements on the invariant:
- Holds on entry $\forall x. \ x \le 0 \Rightarrow \ I(x)$
- $\begin{array}{ll} \mbox{-} \mbox{Preserved by the body} & \forall x. \ l(x) \land \ x \leq 5 \Rightarrow l(x+1) \\ \mbox{-} \ Useful & \forall x. \ l(x) \land x \geq 5 \Rightarrow x = 6 \end{array}$
- Check that $I(x) = x \le 6$ satisfies all constraints

Forward VCGen

- Traditionally the VC is computed <u>backwards</u>
 That's how we've been doing it in class
 - It works well for structured code
- But it can also be computed forward
 - Works even for un-structured languages (e.g., assembly language)
 - Uses symbolic execution, a technique that has broad applications in program analysis
 e.g., the PREfix tool (Intrinsa, Microsoft) does this

Simple Assembly Language

- Consider the language of instructions: I ::= x := e | f() | if e goto L | goto L | L: | return | inv e
- The "inv e" instruction is an annotation - Says that boolean expression e holds at that point
- Each function f() comes with Pre_f and Post_f annotations (pre- and post-conditions)
- New Notation (yay!): ${\boldsymbol{\mathsf{I}}}_k$ is the instruction at address k

Symex States

- We set up a symbolic execution state:
- Σ : Var \rightarrow SymbolicExpressions
- $\Sigma(x)$ = the symbolic value of x in state Σ
- Σ [x:=e] = a new state in which x's value is e
- We use states as substitutions:
- $\Sigma(e)$ obtained from e by replacing x with $\Sigma(x)$
- Much like the opsem so far ...

Symex Invariants

- The symbolic executor tracks invariants passed
- A new part of symex state: $Inv \subseteq \{1...n\}$
- If $k \in Inv$ then I_k is an invariant instruction that we have already executed
- Basic idea: execute an inv instruction only <u>twice</u>:
 - The first time it is encountered
 - Once more time around an arbitrary iteration

Symex Invariants (2a) Two cases when seeing an invariant instruction: 1. We see the invariant for the first time $l_k = inv e$ $k \notin Inv$ (= "not in the set of invariants we've seen") $Let \{y_1, ..., y_m\}$ = the variables that could be modified on a path from the invariant back to itself $Let a_1, ..., a_m$ be fresh new symbolic parameters VC(k, Σ , Inv) = $\Sigma(e) \land \forall a_1...a_m, \Sigma'(e) \Rightarrow VC(k+1, \Sigma', Inv \cup \{k\}])$ with $\Sigma' = \Sigma[y_1 := a_1, ..., y_m := a_m]$ (like a function call)

Symex Invariants (2b) 2. We see the invariant for the second time - $I_k = inv E$ - $k \in Inv$ VC(k, Σ , Inv) = $\Sigma(e)$ (like a function return) • Some tools take a more simplistic approach - Do not require invariants - Iterate through the loop a fixed number of times

- PREfix, versions of ESC (DEC/Compaq/HP SRC)
- Sacrifice completeness for usability

Homework

- Homework 3 Due Today
 - If you're stuck on 3, note that r* is just like WHILE
- Homework 4 Out Today (Due Thur Feb 16)
- Read Winskel 7.4-7.6 (on VC's)
- Read Dijkstra article