Bonus Lecture Post-Mortem

» Well, the food worked.

« It was a true test of endurance.

» Apparently more than one person wants to
hear “the rest of the story”, so we’ll
probably organize Bonus Lecture 2
- Later.

- Much later.

- When the thought of spending more than 75
minutes here doesn’t induce nausea.

#1

Old Questions Answered

» Denotational Semantics class question:

» “What’s up with the continuity
requirement?”

A function F : S™ — S"is continuous if for
every chain W c S™
- F(W) has a LUB = LI F(W)
- and F(UW) = U F(W)

« See the Ed Lee paper retconned into the
lectures page.

The PC Weenies:

¢ “The Real

g 2
sy peal :
e [Axiomatic

Semantics

“NOBODY UNDERSTANDS ME.”

Soundness of Axiomatic Semantics

+ Formal statement of soundness:
If-{A}c{B}thenE{A}c{B}
or, equivalently
Forall o, if c EA
and Op :: <c, o> U &'
andPr::F{A}c{B}
then ' E B
- "Op" = "Opsem Derivation”
+ “Pr" = "Axiomatic Proof”

Simultaneous Induction

+ Consider two structures Op and Pr
- Assume that x <y iff x is a substructure of y
+ Define the ordering
(0, p) < (0, p) iff
0<0 or o=o0andp<p
- Called lexicographic (dictionary) ordering
+ This < is a well founded order and leads to
simultaneous induction
+ If 0 < 0’ then p can actually be larger than p'!
+ It can even be unrelated to p'!

Soundness of the While Rule

(Indiana Proof and the Slide of Doom)
+ Case: last rule used in Pr : - {A} c {B} was the while rule:
Pr,:: - {A A b} c {A}
F {A} while b do c {A A — b}

+ Two possible rules for the root of Op (by inversion)
- We'll only do the complicated case:

Op,::<b,o>Utrue Op,::<c,o>Uc Op,y:: <whilebdoc, o' >Ug"

<whilebdoc, o> U c"
Assume that 6 E A

To show that 6" FAA b

+ By soundness of booleans and Op, we get c F b
- HencecEAAD

+ By IHon Pr; and Op, we get o' F A

+ By IHon Prand Op, we get ¢"FA A - b, q.e.d.
- This is the tricky bit!

Soundness of the While Rule

+ Note that in the last use of IH the derivation
Pr did not decrease

+ See Winskel, Chapter 6.5, for a soundness
proof with denotational semantics

#7

Completeness of Axiomatic
Semantics

« If E {A} c {B} can we always derive - {A} c {B} ?
+ If so, axiomatic semantics is complete
+ If not then there are valid properties of programs

that we cannot verify with Hoare rules :-(

+ Good news: for our language the Hoare triples are

complete

+ Bad news: only if the underlying logic is complete

(whenever E A we also have - A)
- this is called relative completeness

General Plan

» OK, so:
E{x<bAnz=2%}y:=x+2{y<7}

« Can we prove it?
H2{x<5ANz=2}y:=x+2{y<7}

» Well, we could easily prove:

F{x+2<7}y:i=x+2{y<7}
» And we know ...
Fx<5Az=2=x+2<7
« Shouldn’t those two proofs be enough?

#9

Proof Idea

+ Dijkstra's idea: To verify that { A} c{B}
a) Find out all predicates A" such that = { A"} c{B}
- call this set Pre(c, B) (Pre = “pre-conditions")

b) Verify for one A’ € Pre(c, B) that A = A’
+ Assertions can be ordered:

false =
\ Pre(c, B) |

stron t
8 L weakest

precondition: WP(c, B)

true

weak

» Thus: compute WP(c, B) and prove A = WP(c, B)

Proof Idea (Cont.)

Completeness of axiomatic semantics:
IfE{A}c{B}then-{A}c{B}
Assuming that we can compute wp(c, B) with the
following properties:
1. wp is a precondition (according to the Hoare rules)
F{wp(c,B)}c{B}
2. wp is (truly) the weakest precondition
If E{A}c{B} then A= wp(c, B)
F A = wp(c, B) F {wp(c, B)} c {B}
- {A} c {B}
We also need that whenever E A then - A !

Weakest Preconditions

+ Define wp(c, B) inductively on c, following the Hoare rules:
* Wp(cy; ¢y, B) = {A} ¢, {G3 {CG ¢, {B}
wp(c;, Wp(c,, B)) {A}c; ¢, (B}

- wp(x:=e,B)=
[e/x]B

{[e/x]B } x :=E {B}

{A.3 ¢, {B} {A;} ¢, {B}
{E= A, A=E= Aj}ifE then c, else ¢, {B}

+ wp(if E then ¢, else c,, B) =
E = wp(cy, B) A =E = wp(c,, B)

Weakest Preconditions for Loops

+ We start from the unwinding equivalence
whilebdoc =
if b then c¢; while b do c else skip
+ Let w = while b do c and W = wp(w, B)
+ We have that
W=b=wp(c, WWA-b=1B
+ But this is a recursive equation!
- We know how to solve these using domain theory
+ But we need a domain for assertions

A Partial Order for Assertions

+ Which assertion contains the least information?
- “true” - does not say anything about the state
+ What is an appropriate information ordering ?
ACA iff EA=A
+ Is this partial order complete?
- Takeachain A;C A, C ..

- Let AA, be the infinite conjunction of A,
o F AA iff for all i we have that ¢ F A
- | assert that /A, is the least upper bound

+ Can AA, be expressed in our language of assertions?

- In many cases: yes (see Winskel), we'll assume yes for
now

Weakest Precondition for WHILE

+ Use the fixed-point theorem
F(A) =b = wp(c, AAN—-b=B
- (Where did this come from? Two slides back!)
- | assert that F is both monotonic and continuous

+ The least-fixed point (= the weakest fixed
point) is

wp(w, B) = AFi(true)
+ Notice that unlike for denotational semantics

of IMP we are not working on a flat domain!

#15

- Define a family of wp's

+ wp(while edo ¢, B) = A, o wp, = lub {wp, | k > 0}
+ See Necula document on the web page for the

+ Weakest preconditions are

Weakest Preconditions (Cont.)

- wpkiwhile e do ¢, B) = weakest precondition on which
the loop terminates in B if it terminates in k or fewer
iterations

wpy=—-E=B
wp,; =E = wp(c, wpg) A\~ E=B

proof of completeness with weakest preconditions

- Impossible to compute (in general)
- Can we find something easier to compute yet sufficient ?

#16

Not Quite Weakest Preconditions

» Recall what we are trying to do:

false = true
‘ Pre(s, B) }
strong 1 ‘ t weak
weakest
A precondition: WP(c, B)
verification

condition: VC(c, B)

« Construct a verification condition: VC(c, B)
- Our loops will be annotated with loop invariants!
- VC is guaranteed to be stronger than WP
- But still weaker than A: A = VC(c, B) = WP(c, B)

Groundwork

Factor out the hard work

- Loop invariants

- Function specifications (pre- and post-conditions)
Assume programs are annotated with such specs
- Good software engineering practice anyway

- Requiring annotations = Kiss of Death?

New form of while that includes a loop invariant:

while,,, b do ¢
- Invariant formula Inv must hold every time before b is
evaluated
A process for computing VC(annotated_command,
post_condition) is called VCGen

Verification Condition Generation

» Mostly follows the definition of the wp
function:
VC(skip, B) =B
VC(cy; C,, B) = VC(c,, VC(c,, BY)
VC(if b then c, else ¢,, B) =
b = VC(c,, B) A—=b = VC(c,, B)

VCGen for WHILE

VC(while,,, e do c, B) =
Inv A (¥X...X,. Inv = (e = VC(c, Inv) A —e=B))
—~— Y
B holds when the
loop terminates
in an arbitrary iteration

Inv holds

Inv is preserved in
on entry

an arbitrary iteration

« Inv is the loop invariant (provided externally)
* Xy, -, X, are all the variables modified in c

VC(x :=e, B) =[e/x] B « The V is similar to the V in mathematical
VC(let x=einc, B) = [e/x] VC(c, B) induction:
VC(while,, b do ¢, B) _H P(0) A ¥n € N. P(n) = P(n+1)
Inv ’ -
#19 #20]
Example VCGen Problem Example of VC
o Let’s compute the VC of this program with * By the sequencing rule, first we do the while loop
respect to post-condition x = 0 (call it w):
while,,,, y > 0 do
yi=y-1;
x =05 X=X+ 1
y=2; * VCGen(w, x #0) = x+y=2 A
while y > 0 do VX,y. Xx+y=2 = (y>0 = VC(c, x+y=2) Ay<0 = x=0)
x+y=2 eoy] - oye= —9) =
O 1 o VCGen(y:=y-1 ; x:=x+1, x+y=2) =
y:=y-1 (x+1) + (y-1) =2
X:i=X+1 e W Result: x+y=2 A
VX, Y. X+y=2 = (y>0 = (x+1)+(y-1)=2 A y<0 = x=0)
#21] #22]
Example of VC (2) Thoreau, Thoreau, Thoreau
o VC(W, X #0) = x+y=2 A $./simplify
Xy, x+y=2 = > (AND (EQ (+ 0 2) 2)
a (FORALL (x y) (IMPLIES (EQ (+ x y) 2)
(y>0 = (x+1)+(y-1)=2 Ay<0 = x=#0) (AND (IMPLIES (> y 0)
e VC(x:=0;y:=2;w,x=0)=0+2=2 A (EQ (+ (+ x 1) (- y 1)) 2))
VX, Y. X+y=2 = (IMPLIES (<= y 0) (NEQ x 0))))))
(y>0 = (x+1)+(y-1)=2 Ay<0 = x=0) b valid.
e Huzzah!
» So now we ask an automated theorem prover . o L
to prove it. « Simplify is a non-trivial five megabytes
#23] #24]

Can We Mess Up VCGen?

» The invariant is from the user (= the
adversary, the untrusted code base)

 Let’s use a loop invariant that is too weak,
like “true”.

e VC = true A Vx,y. true =
(y>0 = true A y<0=x=0)

 Let’s use a loop invariant that is false, like
“x=0".

e VC=0=0A vX,y. x =0 =
(y>0=x+1#0 A y<0= x=0)

Emerson, Emerson, Emerson

$./Simplify
> (AND TRUE
(FORALL (x y) (IMPLIES TRUE
(AND (IMPLIES (> y 0) TRUE)
(IMPLIES (<= vy 0) (NEQ x 0))))))
Counterexample: context:
(AND
(EQ x 0)
(<= y 0)
)
1: Invalid.

« OK, so we won’t be fooled.

26}
Soundness of VCGen VC and Invariants
» Simple form « Consider the Hoare triple:
F{VC(c,B)}c{B} {x <0} while,, x<5dox:=x+1{x=6}
« Or equivalently that * Thf(;lc flc;r)th's ::‘: (00— (o 5 .
XxXs<U= X) A X. X) = (X > =X = A
E VC(c, B) = wp(c, B) x<5 = I(x+1)))
« Proof is by induction on the structure of c « Requirements on the invariant:
- Try it! - Holds on entry vx. X< 0= I(x)
« Soundness holds for any choice of invariant! - Preserved by the body ¥x. 1(x) A x <5 = 1(x+1)
. . . - Useful VX. I(X)AXx>5=x=6
Next: properties and extensions of VCs » Check that I(x) = x < 6 satisfies all constraints
28}

Forward VCGen

« Traditionally the VC is computed backwards
- That’s how we’ve been doing it in class
- It works well for structured code

« But it can also be computed forward

- Works even for un-structured languages (e.g.,
assembly language)
- Uses symbolic execution, a technique that has
broad applications in program analysis
« e.g., the PREfix tool (Intrinsa, Microsoft) does this

Forward VC Gen Intuition

» Consider the sequence of assignments
X =€ Xy =8
e The VC(c, B) = [e,/x,]([e,/x%,]B)
= [e/xy, eyle/x41/%,] B
» We can compute the substitution in a forward way
using symbolic execution (aka symbolic evaluation)
- Keep a symbolic state that maps variables to expressions
- Initially, £,={}
- Afterx,:=e;, X, ={x, > e}
- Afterx, i=e,, X, = {X; = €, X, > &,[e;/x] }
- Note that we have applied X, as a substitution to right-
hand side of assignment x, := e,

Simple Assembly Language

« Consider the language of instructions:
| ::= x:=e | f()|ifegotoL | gotolL |
L: | return | inve
» The “inv e” instruction is an annotation
- Says that boolean expression e holds at that
point
« Each function f() comes with Pre; and Post;
annotations (pre- and post-conditions)
» New Notation (yay!): |, is the instruction at
address k

Symex States

» We set up a symbolic execution state:

¥ : Var — SymbolicExpressions

(x) = the symbolic value of x in state X

Y[x:=e] = a new state in which x’s value is e
» We use states as substitutions:

>(e) - obtained from e by replacing x with Z(x)
» Much like the opsem so far ...

#31] #32]
: Symex Rules
Symex Invariants . y ‘ _
» Define a VC function as an interpreter:
« The symbolic executor tracks invariants VC : Address x SymbolicState x InvariantState — Assertion
passed VC(L, 2, Inv) if I, = goto L
VC(L, Z, Inv) A . .
« A new part of symex state: Inv C {1...n €= L5 -
P Y) e = { }. ~e = VC(k+1, 5, Inv) ifl = if e goto L
o If k € Inv then |, is an invariant instruction VC(keT, S[xi=3(e)], Inv) iflo=xoe
that we have already executed . 2 (POStoyrorrumceon) if I, = return
« Basic idea: execute an inv instruction only » o z(Pre;) A
twice: Va,..a,.2’ (Post) =
- The first time it is encountered (hVC(k+1, ', Inv) - if 1, = f()
. . . . where y,, ..., ¥, are modified by
- Once more time around an arbitrary iteration and a,, 1 a, are fresh parameters
#33] and X’ = X[y, := @y, .., Yo i=a,] adl

Symex Invariants (2a)

Two cases when seeing an invariant instruction:
1. We see the invariant for the first time
- l=inve
- ke lInv (= “notin the set of invariants we’ve seen”)

- Let{y,, ..., Y} = the variables that could be modified on
a path from the invariant back to itself

- Leta,, ..., a, be fresh new symbolic parameters
VC(k, Z, Inv) =
2(e) A Vaq...an. ’(e) = VC(k+1, 27, Inv U {k}])
with ¥ = 2[y, 1= &y, ooy Vi 1= @]
(like a function call)

#35]

Symex Invariants (2b)

2. We see the invariant for the second time

- l=invE

- kelnv

VC(k, Z, Inv) = Z(e)

(like a function return)

» Some tools take a more simplistic approach

- Do not require invariants

- Iterate through the loop a fixed number of times

- PREfix, versions of ESC (DEC/Compaq/HP SRC)

- Sacrifice completeness for usability

Homework

» Homework 3 Due Today

- If you’re stuck on 3, note that r* is just like
WHILE

o Homework 4 Out Today (Due Thur Feb 16)
» Read Winskel 7.4-7.6 (on VC’s)
» Read Dijkstra article

