MS Patch Tuesday

- "eEye Digital Security has reported a vulnerability in Windows Media Player ... due to a boundary error within the processing of bitmap files (.bmp) and can be exploited to cause a heap-based buffer overflow via a specially crafted bitmap file that declares its size as 0 ... exploitation allows execution of arbitrary code"
- Six of seven "critical" or "important" bugs were

Apologies to

 Ralph Macchio- Daniel: You're supposed to teach and I'm supposed to learn. Four homeworks l've been working on IMP, I haven't learned a thing. Miyagi: You learn plenty. Daniel: I learn plenty, yeah. I learned how to analyze IMP, maybe. I evaluate your commands, derive your judgments, prove your soundness 1 learn plenty!

Abstract Interpretation (Non-Standard Semantics)

a.k.a.
"Picking The Right Abstraction"

The Plan

- We will introduce abstract interpretation by example
- Starting with a miniscule language we will build up to a fairly realistic application
- Along the way we will see most of the ideas and difficulties that arise in a big class of applications

A Tiny Language

- Consider the following language of arithmetic ("shrIMP"?)

$$
\mathrm{e}::=\mathrm{n} \mid \mathrm{e}_{1}{ }^{*} \mathrm{e}_{2}
$$

- The denotational semantics of this language

$$
\begin{aligned}
& \llbracket n \rrbracket=n \\
& \llbracket e_{1} * e_{2} \rrbracket=\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
$$

- We'll take deno-sem as the "ground truth"
- For this language the precise semantics is computable (but in general it's not)

I Saw the Sign

- Why did we want to compute the sign of an expression?
- One reason: no one will believe you know abstract interp if you haven't seen the sign thing
- What could we be computing instead? - Alex Aiken was here ...

Another View of Soundness

- Link each concrete value to an abstract one:

$$
\beta: \mathbb{Z} \rightarrow\{-, 0,+\}
$$

- This is called the abstraction function (β)
- This three-element set is the abstract domain
- Also define the concretization function (γ) :

\[

\]

An Abstraction

- Assume that we are interested not in the value of the expression, but only in its sign: - positive (+), negative (-), or zero (0)
- We can define an abstract semantics that computes only the sign of the result

Correctness of Sign Abstraction

- We can show that the abstraction is correct in the sense that it predicts the sign
$\llbracket e \rrbracket>0 \Leftrightarrow \sigma(e)=+$
$\llbracket e \rrbracket=0 \Leftrightarrow \sigma(e)=0$
$\llbracket \mathrm{e} \rrbracket<0 \Leftrightarrow \sigma(\mathrm{e})=-$
- Our semantics is abstract but precise
- Proof is by structural induction on the expression e
- Each case repeats similar reasoning

Another View of Soundness 2

- Soundness can be stated succinctly

$$
\forall \mathrm{e} \in \operatorname{Exp} . \llbracket \mathrm{e} \rrbracket \in \gamma(\sigma(\mathrm{e}))
$$

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

- Let C be the concrete domain (e.g. \mathbb{Z}) and A be the abstract domain (e.g. \{-, $0,+\}$)
- Commutative diagram:

Another View of Soundness 3

- Consider the generic abstraction of an operator

$$
\sigma\left(e_{1} \text { op } e_{2}\right)=\sigma\left(e_{1}\right) \text { op } \sigma\left(e_{2}\right)
$$

- This is sound iff
$\forall a_{1} \forall a_{2} \cdot \gamma\left(\mathrm{a}_{1}\right.$ op $\left.\mathrm{a}_{2}\right) \supseteq\left\{\mathrm{n}_{1}\right.$ op $\mathrm{n}_{2} \mid \mathrm{n}_{1} \in \gamma\left(\mathrm{a}_{1}\right), \mathrm{n}_{2}$

$$
\left.\in \gamma\left(a_{2}\right)\right\}
$$

- e.g. $\gamma\left(\mathrm{a}_{1} \otimes \mathrm{a}_{2}\right) \supseteq\left\{\mathrm{n}_{1}{ }^{*} \mathrm{n}_{2} \mid \mathrm{n}_{1} \in \gamma\left(\mathrm{a}_{1}\right), \mathrm{n}_{2} \in\right.$

Adding Unary Minus and Addition

- We extend the language to

$$
\mathrm{e}::=\mathrm{n}\left|\mathrm{e}_{1}{ }^{*} \mathrm{e}_{2}\right|-\mathrm{e}
$$

- We define $\sigma(-\mathrm{e})=\ominus \sigma(\mathrm{e})$

Now we add addition:

$$
\mathrm{e}::=\mathrm{n}\left|\mathrm{e}_{1} * \mathrm{e}_{2}\right|-\mathrm{e} \mid \mathrm{e}_{1}+\mathrm{e}_{2}
$$

- We define $\sigma\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)=\sigma\left(\mathrm{e}_{1}\right) \oplus \sigma\left(\mathrm{e}_{2}\right)$

Loss of Precision

- Abstract computation might loose information

$$
\llbracket(1+2)+-3 \rrbracket=0
$$

$$
\text { but } \quad \sigma((1+2)+-3)=
$$

$$
(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3)=
$$

$$
(+\oplus+) \oplus-=\top
$$

- We loose some precision
- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable

Abstract Interpretation

- This is our first example of an abstract interpretation
- We carry out computation in an abstract domain
- The abstract semantics is a sound approximation of the standard semantics
- The concretization and abstraction functions establish the connection between the two domains
\#14

Adding Addition

- The sign values are not closed under addition
- What should be the value of "+ \oplus-"?
- Start from the soundness condition:

$$
\gamma(+\oplus-) \supseteq\left\{n_{1}+n_{2} \mid n_{1}>0, n_{2}<0\right\}=\mathbb{Z}
$$

- We don't have an abstract value whose concretization includes \mathbb{Z}, so we add one:

T ("top" = "don't know")

Adding Division

- Straightforward except for division by 0
- We say that there is no answer in that case $-\gamma(+\oslash 0)=\left\{n \mid n=n_{1} / 0, n_{1}>0\right\}=\emptyset$
- Introduce \perp to be the abstraction of the \emptyset
- We also use the same abstraction for non-termination!
\perp = "nothing"
T = "something unknown"

\ominus	-	0	+	T	\perp
-	+	0	-	T	\perp
0	\perp	\perp	\perp	\perp	\perp
+	-	0	+	T	\perp
\top	\top	T	\top	T	\perp
\perp	\perp	\perp	\perp	\perp	\perp

The Abstract Domain

- Our abstract domain forms a lattice
- A partial order is induced by γ

$$
a_{1} \leq a_{2} \quad \text { iff } \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)
$$

- We say that a_{1} is more precise than a_{2} !
- Every finite subset has a least-upper bound (lub) and a greatest-lower bound (glb)

Lattice History

- Early work in denotational semantics used lattices
- But it was later seen that only chains need to have lubs
- And there was no need for T and glb
- In abstract interpretation we'll use T to denote "I don't know"
- Corresponds to all values in the concrete domain

Example

- Consider our sign lattice

$$
\begin{aligned}
& \beta(n)= \begin{cases}+ & \text { if } n>0 \\
0 & \text { if } n=0 \\
- & \text { if } n<0\end{cases} \\
& \text { - } \alpha(S)=\operatorname{lub}\{\beta(x) \mid x \in S\} \\
& \text { - Example: } \quad \alpha(\{1,2\}) \\
& \alpha(\{1,0\})=\operatorname{lub}\{+, 0\}=T \\
& \alpha(\})=\text { lub }\}=\perp
\end{aligned}
$$

- $\gamma(\mathrm{a})=\{\mathrm{n} \mid \beta(\mathrm{n}) \leq \mathrm{a}\}$

$$
\text { - Example: } \gamma(+)=\quad\{\mathrm{n} \mid \beta(\mathrm{n}) \leq+\} \quad=
$$

$\{n \mid \beta(n)=+\}=\{n \mid n>0\}$
$\gamma(T)=\{n \mid \beta(n) \leq T\}=\mathbb{Z}$
$\gamma(\perp)=\{n \mid \beta(n) \leq \perp\}=\emptyset$

Lattice Facts

- A lattice is complete when every subset has a lub and a gub
- Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a complete partial order (recall: denotational semantics!)
- Since a chain is a subset
- Not every CPO is a complete lattice
- Might not even be a lattice

From One, Many

- We can start with the abstraction function β

$$
\beta: C \rightarrow A
$$

(maps a concrete value to the best abstract value) - A must be a lattice

- We can derive the concretization function γ
$\gamma: A \rightarrow \mathcal{P}(C)$
$\gamma(\mathrm{a})=\{\mathrm{x} \in \mathrm{C} \mid \beta(\mathrm{x}) \leq \mathrm{a}\}$
- And the abstraction for sets α
$\alpha: \mathcal{P}(\mathrm{C}) \rightarrow \mathrm{A}$
$\alpha(S)=\operatorname{lub}\{\beta(x) \mid x \in S\}$

Galois Connections

- We can show that
- γ and α are monotonic (with \subseteq ordering on $\mathcal{P}(\mathrm{C})$)
- $\alpha(\gamma(\mathrm{a}))=\mathrm{a} \quad$ for all $\mathrm{a} \in \mathrm{A}$
- $\gamma(\alpha(\mathrm{S})) \supseteq \mathrm{S} \quad$ for all $\mathrm{S} \in \mathcal{P}(\mathrm{C})$
- Such a pair of functions is called a Galois connection
- Between the lattices A and $\mathcal{P}(\mathrm{C})$

Correctness Condition

- In general, abstract interpretation satisfies the following (amazingly common) diagram

Correctness Conditions

- Three conditions define a correct abstract interpretation

1. α and γ are monotonic
2. α and γ form a Galois connection
= " α and γ are almost inverses"
3. Abstraction of operations is correct

$$
\mathrm{a}_{1} \text { op } \mathrm{a}_{2}=\alpha\left(\gamma\left(\mathrm{a}_{1}\right) \text { op } \gamma\left(\mathrm{a}_{2}\right)\right)
$$

Homework

- Homework 4 Due Today
- Homework 5 Out Today
- Read Ken Thompson Turing Award
- Project Proposal Due On Tuesday

