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#1

MS Patch Tuesday
• “eEye Digital Security has reported a vulnerability 
in Windows Media Player … due to a boundary error
within the processing of bitmap files (.bmp) and 
can be exploited to cause a heap-based buffer 
overflow via a specially crafted bitmap file that 
declares its size as 0 … exploitation allows 
execution of arbitrary code”

• Six of seven “critical” or “important” bugs were 
found by people outside of Microsoft

#2

Apologies to 

Ralph Macchio
• Daniel: You're supposed to teach 
and I'm supposed to learn. Four 
homeworks I've been working on 
IMP, I haven't learned a thing.

• Miyagi: You learn plenty.

• Daniel: I learn plenty, yeah. I 
learned how to analyze IMP, 
maybe. I evaluate your 
commands, derive your 
judgments, prove your soundness. 
I learn plenty!

• Miyagi: Not everything is as 
seems.

• Daniel: You’re not even relatively 
complete! I'm going home, man.

• Miyagi: Daniel-san!                   

• Daniel: What?

• Miyagi: Come here. Show me 
“compute the VC”.

#3

Homework

• Exciting, 

practical HW 5 

out today

• If you’ve been 

skiving, now is a 

great time to try 

one out

• Easily applicable 

to other research

#4

Abstract InterpretationAbstract Interpretation

(Non(Non--Standard Semantics)Standard Semantics)

a.k.a.a.k.a.

““Picking The Right AbstractionPicking The Right Abstraction””

#5

The Problem

• It is extremely useful to predict program behavior 

statically (= without running the program)

– For optimizing compilers, program analyses, software 

engineering tools, finding security flaws, etc.

• The semantics we studied so far give us the precise 

behavior of a program

• However, precise static predictions are impossible

– The exact semantics is not computable

• We must settle for approximate, but correct, static 

analyses (e.g. VC vs. WP)

#6

The Plan

• We will introduce abstract 

interpretation by example

• Starting with a miniscule language we 

will build up to a fairly realistic 

application

• Along the way we will see most of the 

ideas and difficulties that arise in a big 

class of applications
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#7

A Tiny Language

• Consider the following language of 

arithmetic (“shrIMP”?) 

e ::= n | e1 * e2

• The denotational semantics of this language

�n� = n

�e1 * e2� = �e1� × �e2�

• We’ll take deno-sem as the “ground truth”

• For this language the precise semantics is 

computable (but in general it’s not)
#8

An Abstraction

• Assume that we are interested not in the 

value of the expression, but only in its sign: 

– positive (+), negative (-), or zero (0)

• We can define an abstract semantics that 

computes only the sign of the result

σ: Exp → {-, 0, +}

σ(n) = sign(n)

σ(e1 * e2) = σ(e1) ⊗⊗⊗⊗ σ(e2)
+0-+

0000

-0+-

+0-⊗⊗⊗⊗

#9

I Saw the Sign
• Why did we want to compute the sign of an 

expression?

– One reason: no one will believe you know 

abstract interp if you haven’t seen the sign thing

• What could we be computing instead? 

– Alex Aiken was here …

#10

Correctness of Sign Abstraction

• We can show that the abstraction is correct 

in the sense that it predicts the sign

�e� > 0 ⇔ σ(e) = +

�e� = 0 ⇔ σ(e) = 0

�e� < 0 ⇔ σ(e) = -

• Our semantics is abstract but precise

• Proof is by structural induction on the 

expression e

– Each case repeats similar reasoning

#11

Another View of Soundness

• Link each concrete value to an abstract one:

β : Z → { -, 0, + }

• This is called the abstraction function (β)
– This three-element set is the abstract domain

• Also define the concretization function (γ):

γ : {-, 0, +} → P(Z)

γ(+) = { n ∈ Z | n > 0 }

γ(0) = { 0 } 

γ(-) = { n ∈ Z | n < 0 }

#12

Another View of Soundness 2

• Soundness can be stated succinctly

∀e ∈ Exp. �e� ∈ γ(σ(e))

(the real value of the expression is among the concrete 

values represented by the abstract value of the expression)

• Let C be the concrete domain (e.g. Z) and A be the 

abstract domain (e.g. {-, 0, +})

• Commutative diagram:

P(C)

Exp A

C
∈

γγγγ

σσσσ

�·�
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#13

Another View of Soundness 3

• Consider the generic abstraction of an 

operator

σ(e1 op e2) = σ(e1) op σ (e2)

• This is sound iff

∀a1∀a2. γ(a1 op a2) ⊃ {n1 op n2 | n1 ∈ γ(a1), n2
∈ γ(a2)}

• e.g. γ(a1 ⊗ a2) ⊃ { n1 * n2 | n1 ∈ γ(a1), n2 ∈
γ(a2) }

#14

Abstract Interpretation

• This is our first example of an abstract 

interpretation

• We carry out computation in an abstract 

domain

• The abstract semantics is a sound 

approximation of the standard semantics

• The concretization and abstraction functions 

establish the connection between the two 

domains

#15

Adding Unary Minus and Addition

• We extend the language to 
e ::= n | e1 * e2 | - e

• We define σ(- e) = ⊖ σ(e)

• Now we add addition: 
e ::= n | e1 * e2 | - e | e1 + e2

• We define σ(e1 + e2) = σ(e1) ⊕ σ(e2)

-0+⊖

+0-

++?+

+0-0

?---

+0-⊕

#16

Adding Addition

• The sign values are not closed under addition

• What should be the value of “+ ⊕ –”?

• Start from the soundness condition:

γ(+ ⊕ –) ⊃ { n1 + n2 | n1 > 0, n2 < 0} = Z

• We don’t have an abstract 

value whose concretization 

includes Z, so we add one:

⊤⊤⊤⊤ (“top” = “don’t know”) ⊤++⊤+

⊤

+

⊤

+

⊤

⊤

⊤

⊤

⊤⊤⊤

0-0

---

0-⊕

#17

Loss of Precision

• Abstract computation might loose 
information

�(1 + 2) + -3� = 0

but σ((1+2) + -3) = 

(σ(1) ⊕ σ(2)) ⊕ σ(-3) = 

(+ ⊕ +) ⊕ - = ⊤

• We loose some precision

• But this will simplify the computation of the 
abstract answer in cases when the precise 
answer is not computable

#18

Adding Division

• Straightforward except for division by 0

– We say that there is no answer in that case

– γ(+ ⊘ 0) = { n | n = n1 / 0 , n1 > 0 } = ∅

• Introduce ⊥⊥⊥⊥ to be the abstraction of the ∅

– We also use the same 

abstraction for 

non-termination!

⊥ ⊥ ⊥ ⊥ = “nothing”

⊤ ⊤ ⊤ ⊤ = “something unknown”

⊥

⊤

⊤

⊥

⊤

⊤

⊥

⊥

⊥

⊥

⊥

⊥

⊤⊤⊤⊤

⊥⊥⊥⊥

+0-+

⊥

-

+

⊥⊥0

0+-

0-⊘
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#19

The Abstract Domain
• Our abstract domain forms a lattice

• A partial order is induced by γ

a1 � a2 iff γ(a1) ⊆ γ(a2)

– We say that a1 is more precise than a2!

• Every finite subset has a least-upper 

bound (lub) and a greatest-lower bound (glb)

⊤⊤⊤⊤

⊥⊥⊥⊥

- 0 +

#20

Lattice Facts

• A lattice is complete when every subset has 

a lub and a gub

– Even infinite subsets!

• Every finite lattice is (trivially) complete

• Every complete lattice is a complete partial 

order (recall: denotational semantics!)

– Since a chain is a subset

• Not every CPO is a complete lattice

– Might not even be a lattice

#21

Lattice History

• Early work in denotational semantics used 

lattices

– But it was later seen that only chains need to 

have lubs

– And there was no need for ⊤ and glb

• In abstract interpretation we’ll use ⊤ to 
denote “I don’t know”

– Corresponds to all values in the concrete domain

#22

From One, Many

• We can start with the abstraction function β

β : C → A

(maps a concrete value to the best abstract value)

– A must be a lattice

• We can derive the concretization function γ

γ : A → P(C)

γ(a) = { x ∈ C | β(x) � a }

• And the abstraction for sets α

α : P(C) → A 

α(S) = lub { β(x) | x ∈ S }

#23

Example

• Consider our sign lattice
+    if n > 0

β(n) =   0     if n = 0

- if n < 0 

• α(S) = lub { β(x) | x ∈ S} 
– Example: α ({1, 2}) = lub { + } = +

α ({1, 0}) = lub { +, 0} = ⊤

α ({}) = lub {} = ⊥

• γ(a) = { n | β(n) � a } 
– Example: γ (+) = { n | β(n) � +} = 

{ n | β(n) = +} =  { n | n > 0 }

γ (⊤) = { n | β(n) � ⊤ } = Z

γ (⊥) = { n | β(n) � ⊥} = ∅
#24

Galois Connections

• We can show that

– γ and α are monotonic (with ⊆ ordering on P(C))

– α (γ (a)) = a for all a ∈ A

– γ (α(S)) ⊃ S for all S ∈ P(C)

• Such a pair of functions is called a Galois 

connection

– Between the lattices A and P(C) 

S C

γ ◦ α
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#25

Correctness Condition

• In general, abstract interpretation satisfies 

the following (amazingly common) diagram

P(C)

Exp A

C
∈

γ

σ

�·� α (�)

#26

Correctness Conditions

• Three conditions define a correct abstract 

interpretation

1. α and γ are monotonic

2. α and γ form a Galois connection

= “α and γ are almost inverses”

3. Abstraction of operations is correct

a1 op a2 = α(γ(a1) op γ(a2)) 

#27

Homework

• Homework 4 Due Today

• Homework 5 Out Today

• Read Ken Thompson Turing Award

• Project Proposal Due On Tuesday


