

Tool Time

- How's Homework 5 going?
- Get started early
- Compilation problems?
- See FAQ
(trivia: what tool brand is this?)

Review

- We introduced abstract interpretation
- An abstraction mapping from concrete to abstract values
- Has a concretization mapping which forms a Galois connection
- We'll look a bit more at Galois connections
- We'll lift Al from expressions to programs
- ... and we'll discuss the mythic "widening"

Why Galois Connections?

- We have an abstract domain A
- An abstraction function $\beta: \mathbb{Z} \rightarrow \mathrm{A}$
- Induces $\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow \mathrm{A}$ and $\gamma: \mathrm{A} \rightarrow \mathcal{P}(\mathbb{Z})$
- We argued that for correctness

$$
\gamma\left(\mathrm{a}_{1} \underline{\mathrm{op}} \mathrm{a}_{2}\right) \supseteq \gamma\left(\mathrm{a}_{1}\right) \text { op } \gamma\left(\mathrm{a}_{2}\right)
$$

- We wish for the set on the left to be as small as possible

To reduce the loss of information through abstraction

- For each set $S \subseteq C$, define $\alpha(S)$ as follows:
- Pick smallest S ' that includes S and is in the image of γ

Define $\alpha(S)=\gamma^{-1}\left(S^{\prime}\right)$
Then we define: a_{1} op $a_{2}=\alpha\left(\gamma\left(a_{1}\right)\right.$ op $\left.\gamma\left(a_{2}\right)\right)$

- Then α and γ form a Galois connection

Galois Connections

- A Galois connection between complete lattices A and $\mathcal{P}(\mathrm{C})$ is a pair of functions α and γ such that:
- γ and α are monotonic (with the \subseteq ordering on $\mathcal{P}(\mathrm{C})$)
- $\alpha(\gamma(\mathrm{a}))=\mathrm{a}$
- $\gamma(\alpha(\mathrm{S})) \supseteq \mathrm{S}$
for all $a \in A$

Collecting Semantics

- Recall
- A state $\sigma \in \Sigma$. Any state σ has type $\operatorname{Var} \rightarrow \mathbb{Z}$

States vary from program point to program point

- We introduce a set of program points: labels
- We want to answer questions like:
- Is x always positive at label i?
- Is x always greater or equal to y at label j ?
- To answer these questions we'll construct
$\mathrm{C} \in$ Contexts. C has type Labels $\rightarrow \mathcal{P}(\Sigma)$
- For each label $\mathbf{i}, \mathrm{C}(\mathrm{i})=$ all possible states at label i
- This is called the collecting semantics of the program
- This is basically what SLAM and BLAST approximate (using BDDs to store $\mathcal{P}(\Sigma)$ efficiently)

Abstract Interpretation for Imperative Programs

- So far we abstracted the value of expressions
- Now we want to abstract the state at each point in the program
- First we define the concrete semantics that we are abstracting - We'll use a collecting semantics

Defining the Collecting Semantics

- We first define relations between the collecting semantics at different labels
- We do it for unstructured CFGs (cf. HW5!)
- Can do it for IMP with careful notion of program points
- Define a label on each edge in the CFG
- For assignment

$$
\left.C_{j}=\left\{\sigma[x:=n] \mid \sigma \in C_{i} \wedge \llbracket e\right] \sigma=n\right\}
$$

Collecting Semantics: Example

- Assume $x \geq 0$ initially

Collecting Semantics: Example

- Assume $x \geq 0$ initially

Collecting Semantics: Example

- Assume $x \geq 0$ initially

Collecting Semantics: Example

- Assume $x \geq 0$ initially

Collecting Semantics: Example

- Assume $x \geq 0$ initially

Collecting Semantics: Example

- Assume $x \geq 0$ initially

$x:=x-1$

Why Does This Work?

- We just made a system of recursive equations that are defined largely in terms of themselves
- e.g., $C_{2}=F\left(C_{4}\right), C_{4}=G\left(C_{3}\right), C_{3}=H\left(C_{2}\right)$
- Why do we have any reason to believe that this will get us what we want?

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Collecting Semantics: Example

- (assume $x \geq 0$ initially)

Abstract Interpretation

- Pick a complete lattice A (abstractions for $\mathcal{P}(\Sigma)$)
- Along with a monotonic abstraction $\alpha: \mathcal{P}(\Sigma) \rightarrow \mathrm{A}$
- Alternatively, pick $\beta: \Sigma \rightarrow \mathrm{A}$
- This uniquely defines its Galois connection γ
- Take the relations between C_{i} and move them to the abstract domain:

$$
\text { a : Label } \rightarrow \text { A }
$$

- Assignment

Concrete: $\mathrm{C}_{\mathrm{j}}=\left\{\sigma[\mathrm{x}:=\mathrm{n}] \mid \sigma \in \mathrm{C}_{\mathrm{i}} \wedge \llbracket \mathrm{e} \rrbracket \overline{ }=\mathrm{n}\right\}$
Abstract: $\mathrm{a}_{\mathrm{j}}=\alpha\left\{\sigma[\mathrm{x}:=\mathrm{n}] \mid \sigma \in \gamma\left(\mathrm{a}_{\mathrm{i}}\right) \wedge \llbracket \mathrm{e} \rrbracket \sigma=\mathrm{n}\right\}$

Abstract Interpretation

- Conditional

Concrete: $\mathrm{C}_{\mathrm{j}}=\left\{\sigma \mid \sigma \in \mathrm{C}_{\mathrm{i}} \wedge \llbracket b \rrbracket \sigma=\right.$ false $\}$ and
$C_{k}=\left\{\sigma \mid \sigma \in C_{i} \wedge \llbracket b \rrbracket \sigma=\right.$ true $\}$
Abstract: $\mathrm{a}_{\mathrm{j}}=\alpha\left\{\sigma \mid \sigma \in \gamma\left(\mathrm{a}_{\mathrm{i}}\right) \wedge \llbracket \mathrm{b} \rrbracket \sigma=\right.$ false $\}$ and
$\mathrm{a}_{\mathrm{k}}=\alpha\left\{\sigma \mid \sigma \in \gamma\left(\mathrm{a}_{\mathrm{i}}\right) \wedge \llbracket \mathrm{b} \rrbracket \sigma=\operatorname{true}\right\}$

- Join

Concrete: $\quad \mathrm{C}_{\mathrm{k}}=\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Abstract: $\quad a_{k}=\alpha\left(\gamma\left(a_{i}\right) \cup \gamma\left(a_{j}\right)\right)=\operatorname{lub}\left\{a_{i}, a_{j}\right\}$

Least Fixed Points In The Abstract Domain

- We have a recursive equation with unknown "a"
- Defined by a monotonic and continuous function on the domain Labels \rightarrow A
- We can use the least fixed-point theorem:
- Start with $\mathrm{a}^{0}=\lambda \mathrm{L} . \perp \quad\left(\right.$ aka: $\left.\mathrm{a}^{0}(\mathrm{~L})=\perp\right)$
- Apply the monotonic function to compute a^{k+1} from a^{k}
- Stop when $a^{k+1}=a^{k}$
- Exactly the same computation as for the collecting semantics
- What is new?
"There is nothing new under the sun but there are lots of old things we don't know." - Ambrose Bierce

Least Fixed Points In The Abstract Domain

- We have a hope of termination!
- Classic setup: A has only uninteresting chains (finite number of elements in each chain) - A has finite height h (= "finite-height lattice")
- The computation takes $O\left(h \times \mid\right.$ Labels $\left.\left.\right|^{2}\right)$ steps
- At each step "a" makes progress on at least one label
- We can only make progress h times
- And each time we must compute |Labels| elements
- This is a quadratic analysis: good news
- This is exactly the same as Kildall's 1973 analysis of dataflow's polynomial termination given a finite-height lattice and monotonic transfer functions.

Abstract Interpretation: Example

- Consider the following program, $x>0$

We want to do the sign analysis on it.

Abstract Domain for Sign Analysis

- Invent the complete sign lattice

$$
S=\{\perp,-, 0,+, \top\}
$$

- Construct the complete lattice

$$
A=\{x, y\} \rightarrow S
$$

- With the usual point-wise ordering - Abstract state gives the sign for x and y
- We start with $a^{0}=\lambda L . \lambda v \in\{x, y\} . \perp$ - aka: $a^{0}(L, v)=\perp$

Let's Do lt!											
Label		Iterations \rightarrow									
1	x	+									+
	y	T									T
2	x	-	+			T					T
	y	\perp	+						T		T
3	x	\perp		+			T				T
	y	\perp		+						T	T
4	x	\perp			+			T			T
	y	\perp			+			T			T
5	x	\perp					0				0
	y	\perp					+			T	T

Notes, Weaknesses, Solutions

- We abstracted the state of each variable independently

$$
A=\{x, y\} \rightarrow\{\perp,-, 0,+, \top\}
$$

- We lost relationships between variables
- E.g., at a point x and y may always have the same sign
- In the previous abstraction we get $\{x:=\mathrm{T}, \mathrm{y}:=$ $T\}$ at label 2 (when in fact y is always positive!)
- We can also abstract the state as a whole

$$
\mathrm{A}=\mathcal{P}(\{\perp,-, 0,+, \top\} \times\{\perp,-, 0,+, \top\})
$$

Other Abstract Domains

- Range analysis
- Lattice of ranges: $R=\{\perp,[n . . m],(-\infty, m],[n,+\infty), T\}$
- It is a complete lattice
- $[\mathrm{n} . . \mathrm{m}] \sqcup\left[\mathrm{n}^{\prime} . . \mathrm{m}^{\prime}\right]=\left[\min \left(\mathrm{n}, \mathrm{n}^{\prime}\right) . . \max \left(\mathrm{m}, \mathrm{m}^{\prime}\right)\right]$
- $[n . . m] \sqcap\left[n^{\prime} . . m^{\prime}\right]=\left[\max \left(n, n^{\prime}\right) . . \min \left(m, m^{\prime}\right)\right]$
- With appropriate care in dealing with ∞
$\beta: \mathbb{Z} \rightarrow \mathrm{R}$ such that $\beta(\mathrm{n})=[\mathrm{n} . . \mathrm{n}]$
$-\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow R$ such that $\alpha(S)=\operatorname{lub}\{\beta(n) \mid n \in S\}=$ [min(S)..max(S)]
$\gamma: \mathrm{R} \rightarrow \mathcal{P}(\mathrm{Z})$ such that $\gamma(\mathrm{r})=\{\mathrm{n} \mid \mathrm{n} \in \mathrm{r}\}$
- This lattice has infinite-height chains
- So the abstract interpretation might not terminate!

Example of Non-Termination

- Consider this (common) program fragment

Formal Definition of Widening

(Cousot 16.399 "Abstract Interpretation", 2005)

- A widening $\nabla:(\mathrm{P} \times \mathrm{P}) \rightarrow \mathrm{P}$ on a poset $\langle\mathrm{P}, \sqsubseteq\rangle$ satisfies:
$-\forall x, y \in P . \quad x \sqsubseteq(x \nabla y) \wedge y \sqsubseteq(x \nabla y)$
- For all increasing chains $\mathrm{x}^{0} \sqsubseteq \mathrm{x}^{1} \sqsubseteq$... the increasing chain $y^{0}=\operatorname{def} x^{0}, \ldots, y^{n+1}=\operatorname{def} y^{n} \nabla x^{n+1}, \ldots$ is not strictly increasing.
- Two different main uses:
- Approximate missing lubs. (Not for us.)
- Convergence acceleration. (This is the real use.)
- A widening operator can be used to effectively compute an upper approximation of the least fixpoint of $\mathrm{F} \in \mathrm{L} \mapsto \mathrm{L}$ starting from below when L is computer-representable but does not satisfy the ascending chain condition.

Other Abstract Domains

- Linear relationships between variables
- A convex polyhedron is a subset of \mathbb{Z}^{k} whose elements satisfy a number of inequalities:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{k} x_{k} \geq c_{i}
$$

- This is a complete lattice; linear programming methods compute lubs
- Linear relationships with at most two variables
- Convex polyhedra but with ≤ 2 variables per constraint
- Octagons ($x \pm y \geq c$) have efficient algorithms
- Modulus constraints (e.g. even and odd)

Example of Non-Termination

- Consider the sequence of abstract states at point 2
- [1..1], [1..2], [1..3], ...
- The analysis never terminates
- Or terminates very late if the loop bound is known statically
- It is time to approximate even more: widening
- We redefine the join (lub) operator of the lattice to ensure that from [1..1] upon union with [2..2] the result is $[1 . .+\infty)$ and not [1..2]
- Now the sequence of states is [1..1], $[1,+\infty),[1,+\infty)$ Done (no more infinite chains)

Formal Widening Example
 $[1,1] \nabla[1,2]=[1,+\infty)$

- Range Analysis on z :

LO: $\quad z:=1$;
L1: while $z<99$ do
L2: $\quad z:=z+1$
L3: done /* $z \geq 99$ */
L4:
$\mathrm{X}^{\mathrm{L}_{\mathrm{i}}}=$ =def the jth iterative attempt to compute an abstract value for z at label Li
Recall lub $\mathrm{S}=[\min (\mathrm{S}) . . \max (\mathrm{S})]$ lub $\{[2,+\infty),[1,+\infty)\}=\{[1,+\infty)\}$

Original x^{i}	Widened y^{i}
$\mathrm{x}^{\mathrm{LO}}{ }_{0}=\perp$	$\mathrm{y}^{\mathrm{L} 0}{ }_{0}=\perp$
$\mathrm{x}^{\mathrm{L} 1}{ }_{0}=[1,1]$	$\mathrm{y}^{\mathrm{L} 1}{ }_{0}=[1,1]$
$\mathrm{x}^{\mathrm{L} 2}{ }_{0}=[1,1]$	$\mathrm{y}^{\mathrm{L} 2}{ }_{0}=[1,1]$
$\mathrm{x}^{\mathrm{L3}}{ }_{0}=[2,2]$	$\mathrm{y}^{\mathrm{L} 3}{ }_{0}=[2,2]$
$\mathrm{x}^{\mathrm{L} 2}{ }_{1}=[1,2]$	$\mathrm{y}^{\mathrm{L} 2}{ }_{1}=[1,+\infty)$
$\mathrm{x}^{\mathrm{L3}}{ }_{1}=[2,+\infty)$	$\mathrm{y}^{\mathrm{L3}}{ }_{1}=[2,+\infty)$
$\mathrm{x}^{\mathrm{L4}{ }_{0}=[99,+\infty)}$	$\mathrm{y}^{\mathrm{L4}}{ }_{0}=[99,+\infty)$
stable (fewer than 99 iterations!)	

Abstract Chatter

- AI, Dataflow and Software Model Checking
- The big three (aside from flow-insensitive type systems) for program analyses
- Are in fact quite related:
- David Schmidt. Data flow analysis is model checking of abstract interpretation. POPL '98.
- Al is usually flow-sensitive (per-label answer)
- Al can be path-sensitive (if your abstract domain includes \vee, for example), which is just where model checking uses BDD's
- Metal, SLAM, ESP, ... can all be viewed as AI

Abstract Interpretation Conclusions

- Al is a very powerful technique that underlies a large number of program analyses
- Al can also be applied to functional and logic programming languages
- There are a few success stories
- Strictness analysis for lazy functional languages - PolySpace for linear constraints
- In most other cases however Al is still slow
- When the lattices have infinite height and widening heuristics are used the result becomes unpredictable

Homework

- Project Proposal Due Today
- Read Pierce Article, pages 1-10 only
- Homework 5 Due Thursday

