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Abstract InterpretationAbstract Interpretation

(Galois, Collections, Widening)(Galois, Collections, Widening)

#2

Tool Time

• How’s Homework 5 going?

• Get started early

• Compilation problems?

– See FAQ

(trivia: what tool brand is this?)

#3

More Power!

• You can handle it!

#4

Review

• We introduced abstract interpretation

• An abstraction mapping from concrete to 

abstract values

– Has a concretization mapping which forms a 

Galois connection 

• We’ll look a bit more at Galois connections

• We’ll lift AI from expressions to programs

• … and we’ll discuss the mythic “widening”

#5

Why Galois Connections?

• We have an abstract domain A
– An abstraction function β : Z → A

– Induces α : P(Z) → A and γ : A → P(Z)

• We argued that for correctness

γ(a1 op a2) ⊃ γ(a1) op γ(a2)
– We wish for the set on the left to be as small as possible

– To reduce the loss of information through abstraction

• For each set S ⊆ C, define α(S) as follows:
– Pick smallest S’ that includes S and is in the image of γ

– Define α(S) = γ-1(S’)

– Then we define: a1 op a2 = α(γ(a1) op γ(a2))

• Then α and γ form a Galois connection

#6

Galois Connections
• A Galois connection between complete 

lattices A and P(C) is a pair of functions α
and γ such that:
– γ and α are monotonic (with the ⊆ ordering on 
P(C))  

– α (γ (a)) = a for all a ∈ A

– γ (α(S)) ⊃ S for all S ∈ P(C)
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#7

More on Galois Connections

• All Galois 

connections 

are monotonic

• In a Galois 

connection 

one function 

uniquely and 

absolutely 

determines 

the other
#8

Abstract Interpretation for 

Imperative Programs

• So far we abstracted the value of 

expressions

•Now we want to abstract the state

at each point in the program

•First we define the concrete 

semantics that we are abstracting

– We’ll use a collecting semantics

#9

Collecting Semantics

• Recall
– A state σ ∈ Σ. Any state σ has type Var → Z

– States vary from program point to program point

• We introduce a set of program points: labels

• We want to answer questions like:
– Is x always positive at label i?

– Is x always greater or equal to y at label j?

• To answer these questions we’ll construct

C ∈ Contexts. C has type Labels → P(Σ)
– For each label i, C(i) = all possible states at label i

– This is called the collecting semantics of the program

– This is basically what SLAM and BLAST approximate 
(using BDDs to store P(Σ) efficiently)

#10

Defining the Collecting Semantics
• We first define relations between the collecting 

semantics at different labels

– We do it for unstructured CFGs (cf. HW5!) 

– Can do it for IMP with careful notion of program points

• Define a label on each edge in the CFG

• For assignment

Cj = {σ[x := n] | σ ∈ Ci ∧ 
e�σ = n}x := e

i

j

#11

Defining the Collecting Semantics

• For conditionals

Celse = { σ | σ ∈ Cin ∧ 
b�σ = false}

Cthen = { σ | σ ∈ Cin ∧ 
b�σ = true}

• Assumes b has no side effects (as in IMP or HW5)

in

b
truefalse

else then

#12

Defining the Collecting Semantics

• For a join

Cout = Ci ∪ Cj

• Verify that these relations are monotonic

– If we increase a Cx all other Cy can only increase

i

out

j
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#13

Collecting Semantics: Example

• Assume x ≥ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}

#14

Collecting Semantics: Example

• Assume x ≥ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 = { σ[y:=1] | σ ∈ C1}

#15

Collecting Semantics: Example

• Assume x ≥ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 = { σ[y:=1] | σ ∈ C1}
C3 = C2 ∩ {σ | σ(x) ≠ 0}

#16

Collecting Semantics: Example

• Assume x ≥ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 = { σ[y:=1] | σ ∈ C1}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ ∈ C3}

#17

Collecting Semantics: Example

• Assume x ≥ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 = { σ[y:=1] | σ ∈ C1}
∪ {σ[x:=σ(x)-1] | σ∈C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ ∈ C3}

#18

Collecting Semantics: Example

• Assume x ≥ 0 initially

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 = { σ[y:=1] | σ ∈ C1}
∪ {σ[x:=σ(x)-1] | σ∈C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C4 = {σ[y:=σ(y)*σ(x)] | 

σ ∈ C3}
C5 = C2 ∩ {σ | σ(x) = 0}
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#19

Why Does This Work?
• We just made a system of recursive 

equations that are defined largely in terms 
of themselves
– e.g., C2 = F(C4), C4 = G(C3), C3 = H(C2)

• Why do we have any reason to believe that 
this will get us what we want?

#20

The Collecting Semantics

• We have an equation with the unknown C
– The equation is defined by a monotonic and 

continuous function on the domain Labels →
P(Σ)

• We can use the least fixed-point theorem 
– Start with C0(L)=∅ (aka C0 = λL.∅)

– Apply the relations between Ci and Cj to get C1
i

from C0
j

– Stop when all Ck = Ck-1

– Problem: we’ll go on forever for most programs

– But we know the fixed point exists

#21

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

∅

∅

∅

∅

∅

∅

#22

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

{ x ≥ 0 }

∅

∅

∅

∅

∅

#23

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

{ x ≥ 0 }

{x ≥ 0, y = 1} 

∅

∅

∅

∅

#24

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

{ x ≥ 0 }

{x ≥ 0, y = 1} 

{x=0,y=1}

∅

∅

{x>0,y=1}
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#25

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

{ x ≥ 0 }

{x ≥ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

∅

{x>0,y=1}

#26

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

{ x ≥ 0 }

{x ≥ 0, y = 1} 

{x=0,y=1}

{x>0,y=x}

{x≥ 0, y=x+1}

{x>0,y=1}

#27

Collecting Semantics: Example
• (assume x ≥ 0 initially)

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

C1 = {σ | σ(x) ≥ 0}
C2 =    { σ[y:=1] | σ ∈ C1}

∪ {σ[x:=σ(x)-1] | σ ∈ C4}
C3 = C2 ∩ {σ | σ(x) ≠ 0}
C5 = C2 ∩ {σ | σ(x) = 0}
C4 = {σ[y:=σ(y)*σ(x) | σ ∈ C3}

{ x ≥ 0 }

{x ≥ 0, y = 1 ∨ y = x + 1} 

{x=0,y=1}

{x>0,y=x}

{x≥ 0, y=x+1}

{x>0,y=1}

#28

Abstract Interpretation 

• Pick a complete lattice A (abstractions for P(Σ) )

– Along with a monotonic abstraction α : P(Σ) → A

– Alternatively, pick β : Σ → A

– This uniquely defines its Galois connection γ

• Take the relations between Ci and move them to 

the abstract domain:

a : Label → A

• Assignment

Concrete: Cj = {σ[x := n] | σ ∈ Ci ∧ 
e�σ = n}

Abstract: aj = α {σ[x := n] | σ ∈ γ(ai) ∧ 
e�σ = n}

#29

Abstract Interpretation

• Conditional

Concrete: Cj = { σ | σ ∈ Ci ∧ 
b�σ = false} and  

Ck = { σ | σ ∈ Ci ∧ 
b�σ = true}

Abstract: aj = α { σ | σ ∈ γ(ai) ∧ 
b�σ = false} and  

ak = α { σ | σ ∈ γ(ai) ∧ 
b�σ = true}

• Join

Concrete: Ck = Ci ∪ Cj

Abstract: ak = α (γ(ai) ∪ γ(aj)) = lub {ai, aj}

#30

Least Fixed Points 

In The Abstract Domain
• We have a recursive equation with unknown “a”

– Defined by a monotonic and continuous function on the 
domain Labels → A

• We can use the least fixed-point theorem:
– Start with a0 = λL.⊥       (aka: a0(L) = ⊥)

– Apply the monotonic function to compute ak+1 from ak

– Stop when ak+1 = ak

• Exactly the same computation as for the collecting 
semantics
– What is new?

– “There is nothing new under the sun but there are lots 
of old things we don't know.” – Ambrose Bierce 
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#31

Least Fixed Points 

In The Abstract Domain
• We have a hope of termination!

• Classic setup: A has only uninteresting chains 
(finite number of elements in each chain)
– A has finite height h (= “finite-height lattice”)

• The computation takes O(h × |Labels|2) steps

– At each step “a” makes progress on at least one label

– We can only make progress h times 

– And each time we must compute |Labels| elements

• This is a quadratic analysis: good news
– This is exactly the same as Kildall’s 1973 analysis of 

dataflow’s polynomial termination given a finite-height 
lattice and monotonic transfer functions. 

#32

Abstract Interpretation: Example
• Consider the following program, x>0

y := 1

x == 0

y := y * x

x := x - 1

1

2

3

4

5
F T

We want to do the

sign analysis on it.

#33

Abstract Domain for Sign Analysis

• Invent the complete sign lattice 

S = { ⊥, -, 0, +, ⊤ }

• Construct the complete lattice 

A = {x, y} → S

– With the usual point-wise ordering

– Abstract state gives the sign for x and y

• We start with a0 = λL.λv∈{x,y}.⊥

– aka: a0(L,v) = ⊥
#34

Let’s Do It!

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥y

00⊥⊥⊥⊥x5

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥y

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥x4

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥y

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥x3

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥y

⊤⊤⊤⊤⊤⊤⊤⊤+⊥⊥⊥⊥x2

⊤⊤⊤⊤⊤⊤⊤⊤y

++x1

Iterations →Label

#35

Notes, Weaknesses, Solutions

• We abstracted the state of each variable 

independently

A = {x, y } → {⊥, -, 0, +, ⊤ }

• We lost relationships between variables

– E.g., at a point x and y may always have the 

same sign

– In the previous abstraction we get {x := ⊤, y := 

⊤} at label 2 (when in fact y is always positive!)

• We can also abstract the state as a whole

A = P({⊥, -, 0, +, ⊤} × {⊥, -, 0, +, ⊤})
#36

Other Abstract Domains

• Range analysis
– Lattice of ranges: R ={ ⊥, [n..m], (-∞, m], [n, +∞), ⊤ }

– It is a complete lattice
• [n..m] ⊔ [n’..m’] = [min(n, n’)..max(m,m’)]

• [n..m] ⊓ [n’..m’] = [max(n, n’)..min(m, m’)]

• With appropriate care in dealing with ∞

– β : Z → R such that β(n) = [n..n]

– α : P(Z) → R such that α(S) = lub {β(n) | n ∈ S} = 

[min(S)..max(S)]

– γ : R → P(Z) such that γ(r) = { n | n ∈ r }

• This lattice has infinite-height chains
– So the abstract interpretation might not terminate!
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#37

Example of Non-Termination

• Consider this (common) program fragment

z := 1

z � n

z := z + 1

1

2

3 4
T F

We want to do range 

analysis on it.

#38

Example of Non-Termination

• Consider the sequence of abstract states at point 2

– [1..1], [1..2], [1..3], …

– The analysis never terminates

– Or terminates very late if the loop bound is known 

statically

• It is time to approximate even more: widening

• We redefine the join (lub) operator of the lattice to 

ensure that from [1..1] upon union with [2..2] the 
result is [1..+∞) and not [1..2]

• Now the sequence of states is

– [1..1], [1, +∞), [1, +∞)  Done (no more infinite chains)

#39

Formal Definition of Widening 
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening ▽ : (P × P) → P on a poset 〈P,⊑〉
satisfies:
– ∀ x, y ∈ P .   x ⊑ (x ▽ y)   ∧ y ⊑ (x ▽ y)

– For all increasing chains x0 ⊑ x1 ⊑ … the increasing chain 
y0 =def x0, …, yn+1 =def yn ▽ xn+1, … is not strictly 
increasing.

• Two different main uses:
– Approximate missing lubs.  (Not for us.) 

– Convergence acceleration.  (This is the real use.) 
• A widening operator can be used to effectively compute an upper 

approximation of the least fixpoint of F ∈ L a L starting from 
below when L is computer-representable but does not satisfy the 
ascending chain condition. 

#40

Formal Widening Example 
[1,1]▽[1,2] = [1,+∞)

• Range Analysis on z:

L0: z := 1 ;

L1: while z<99 do

L2: z := z+1

L3: done /* z ≥ 99 */

L4:     

yL4
0 = [99,+∞)xL4

0 = [99,+∞)

yL3
1 = [2,+∞)xL3

1 = [2,+∞)

yL2
1 = [1,+∞)xL2

1 = [1,2]

yL3
0 = [2,2]xL3

0 = [2,2]

yL1
0 = [1,1]xL1

0 = [1,1]

stable (fewer than 99 iterations!)

yL2
0 = [1,1]xL2

0 = [1,1]

yL0
0 = ⊥xL0

0 = ⊥

Widened yiOriginal xi

xLi
j =def the jth iterative attempt 

to compute an abstract value for 

z at label Li

Recall lub S = [min(S)..max(S)]
lub {[2,+∞),[1,+∞)} = {[1,+∞)}

#41

Other Abstract Domains

• Linear relationships between variables
– A convex polyhedron is a subset of Zk whose elements 

satisfy a number of inequalities: 

a1x1 + a2x2 + … + akxk ≥ ci

– This is a complete lattice; linear programming methods 

compute lubs

• Linear relationships with at most two variables

– Convex polyhedra but with � 2 variables per constraint

– Octagons (x + y ≥ c) have efficient algorithms

• Modulus constraints (e.g. even and odd)

#42

Abstract Chatter

• AI, Dataflow and Software Model Checking

– The big three (aside from flow-insensitive type systems) 

for program analyses

• Are in fact quite related:

– David Schmidt. Data flow analysis is model checking of 

abstract interpretation. POPL ’98. 

• AI is usually flow-sensitive (per-label answer)

• AI can be path-sensitive (if your abstract domain 
includes ∨, for example), which is just where 

model checking uses BDD’s

• Metal, SLAM, ESP, … can all be viewed as AI
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#43

Abstract Interpretation 

Conclusions
• AI is a very powerful technique that underlies a 

large number of program analyses

• AI can also be applied to functional and logic 
programming languages

• There are a few success stories
– Strictness analysis for lazy functional languages

– PolySpace for linear constraints

• In most other cases however AI is still slow

• When the lattices have infinite height and widening 
heuristics are used the result becomes 
unpredictable 

#44

Homework

• Project Proposal Due Today

• Read Pierce Article, pages 1-10 only

• Homework 5 Due Thursday


