

Plan

- Introduce lambda calculus
 - Syntax
 - Substitution
 - Operational Semantics (... with contexts!)
 - Evaluation strategies
 - Equality
- Relationship to programming languages (next time)
- Study of types and type systems (later)

Lambda Background

- Developed in 1930's by Alonzo Church
- Subsequently studied by many people (still studied today!)
- Considered the "testbed" for procedural and functional languages
 - Simple - Powerful
 - Easy to extend with features of interest
 - Plays similar role for PL research as Turing machines do for computability and complexity

- Somewhat like a crowbar ...

"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus.

(Landin '66)

Lambda Celebrity Representative

- Milton Friedman?
- Morgan Freeman?
- C. S. Friedman?

Lambda Syntax • The λ -calculus has three kinds of expressions (terms) Variables е ::= х Functions (abstraction) | λ**x.e** Application $| e_1 e_2$ • $\lambda x.e$ is a <u>one-argument function</u> with body e • e₁ e₂ is a function application • Application associates to the left

- x y z means (x y) z • Abstraction extends to the right as far as possible
 - $\lambda x. x \lambda y. x y z$ means $\lambda x. (x (\lambda y. ((x y) z)))$

Why Should I Care? • A language with 3 expressions? Woof! • Li and Zdancewick. <i>Downgrading policies and</i> <i>relaxed noninterference</i> . POPL '05 - Just one example of a recent PL/security paper		
4. LOCAL DOWNGRADING POLICIES 4.1 Label Definition	$\frac{\Gamma \vdash m : \tau}{\Gamma \vdash m \equiv m : \tau}$	Q-Refl
Definition 4.1.1 (The policy language). In Figure 1.	$\frac{\Gamma \vdash m_1 \equiv m_2 : \tau}{\Gamma \vdash m_2 \equiv m_1 : \tau}$	Q-Symm
Types $\tau ::= \text{ int } \tau \to \tau$ Constants $c ::= c_i$ Operators $\oplus := +, -, =, \dots$	$\frac{\Gamma \vdash m_1 \equiv m_2 : \tau \qquad \Gamma \vdash m_2 \equiv m_3 : \tau}{\Gamma \vdash m_1 \equiv m_3 : \tau}$	Q-Trans
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	$\frac{\Gamma, x : \tau_1 \vdash m_1 \equiv m_2 : \tau_2}{\Gamma \vdash \lambda x : \tau_1. \ m_1 \equiv \lambda x : \tau_1. \ m_2 : \tau_1 \rightarrow \tau_2}$	Q-Abs
Figure 1: L _{local} Label Syntax The core of the policy language is a variant of the simply- kyped λ-calculus with a base type, binary operators and con-	$\frac{\Gamma \vdash m_1 \equiv m_2: \tau_1 \rightarrow \tau_2}{\Gamma \vdash m_3 \equiv m_4: \tau_1}$ $\frac{\Gamma \vdash m_1 \ m_3 \equiv m_2 \ m_4: \tau_2}{\Gamma \vdash m_1 \ m_3 \equiv m_2 \ m_4: \tau_2}$	Q-App
stants. A downgrading policy is a λ -term that specifies how an integer can be downgraded: when this λ -term is ap- plied to the annotated integer, the result becomes public. A	$\label{eq:generalized_states} \begin{split} \Gamma \vdash m_1 &\equiv m_2: int \\ \Gamma \vdash m_3 &\equiv m_4: int \\ \hline \Gamma \vdash m_1 \oplus m_3 &\equiv m_2 \oplus m_4: int \end{split}$	Q-BinOp

the function body

Free and Bound Variables

- A variable is said to be free in E if it has occurrences that are not bound in E
- We can define the free variables of an expression E recursively as follows: $Free(x) = \{x\}$

Free(
$$E_1 E_2$$
) = Free(E_1) \cup Free(E_2)
Free(λx . E) = Free(E) - { x }

- Example: Free(λx. x (λy. x y z)) = { z }
- Free variables are (implicitly or explicitly) declared outside the term

Combinators

- A λ-term without free variables is closed or a combinator
- Some interesting combinators:
 - = λ**x**. **x** Т
 - Κ = $\lambda x \cdot \lambda y \cdot x$ S
 - = $\lambda f.\lambda g.\lambda x.f x (g x)$
 - D $= \lambda \mathbf{x} \cdot \mathbf{x} \mathbf{x}$
 - = $\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$
- Theorem: Any closed term is equivalent to one written with just S, K, I
 - Example: $D =_{\beta} S I I$
 - (we'll discuss this form of equivalence in a bit)

Corollaries

- If $e_1 =_{\beta} e_2$ and e_1 and e_2 are normal forms then e_1 is identical to e_2
 - From C-R we have $\exists e^{\textbf{`}}.\ e_1 \rightarrow^*_{\ \beta} e^{\textbf{'}} \text{ and } e_2 \rightarrow^*_{\ \beta} e^{\textbf{'}}$
 - Since \boldsymbol{e}_1 and \boldsymbol{e}_2 are normal forms they are identical to \boldsymbol{e}'
- If $e \rightarrow_{\beta}^{*} e_{1}$ and $e \rightarrow_{\beta}^{*} e_{2}$ and e_{1} and e_{2} are normal forms then e_{1} is identical to e_{2} - "All terms have a unique normal form."

Evaluation Strategies

- Church-Rosser theorem says that independent of the reduction strategy we will find \leq 1 normal form
- But some reduction strategies might find 0
 - ($\lambda x. z$) (($\lambda y. y y$) ($\lambda y. y y$)) \rightarrow ($\lambda x. z$) (($\lambda y. y y$) ($\lambda y. y y$)) \rightarrow

- $(\lambda x. z) ((\lambda y. y y) (\lambda y. y y)) \rightarrow z$

- There are three traditional strategies
 - normal order (never used, always works)
 - call-by-name (rarely used, cf. TeX)
 - call-by-value
- (amazingly popular)

- Call To Power (By Value)
- Normal Order
 - Evaluate the left-most redex not contained in another redex
 - If there is a normal form, this finds it
- Not used in practice: requires partially evaluating function pointers and looking "inside" functions
 Call-By-Name ("lazy")
- Don't reduce under λ, don't evaluate a function argument (until you need to)
- Does not always evaluate to a normal form Call-By-Value ("strict" or "eager")
- Don't reduce under λ, do evaluate a function's argument right away
 - Finds normal forms less often than the other two

Endgame

- This time: λ syntax, semantics, reductions, equality, ...
- Next time: encodings, real programs, type systems, and all the fun stuff!

"Wisely done, Mr. Freeman. I will see you up ahead."

