

Plan

- Introduce lambda calculus
- Syntax
- Substitution
- Operational Semantics (... with contexts!)
- Evaluation strategies
- Equality
- Relationship to programming languages (next time)
- Study of types and type systems (later)

Lambda Background

- Developed in 1930's by Alonzo Church
- Subsequently studied by many people (still studied today!
- Considered the "testbed" for procedural and functional languages
- Simple
- Powerful
- Easy to extend with features of interest
- Plays similar role for PL research as Turing machines do for computability and complexity
Somewhat like a crowbar ..
"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."
(Landin '66)

Lambda Syntax

- The λ-calculus has three kinds of expressions (terms)

$$
\begin{array}{ll}
\text { e }::=x & \text { Variables } \\
\mid \lambda x . e & \text { Functions (abstraction) } \\
\mid \mathrm{e}_{1} \mathrm{e}_{2} & \text { Application }
\end{array}
$$

- λx.e is a one-argument function with body e
- $\mathrm{e}_{1} \mathrm{e}_{2}$ is a function application
- Application associates to the left

$$
x \text { y z means }(x y) z
$$

- Abstraction extends to the right as far as possible $\lambda x . x \lambda y . x y z$ means $\lambda x .(x(\lambda y .((x y) z)))$

Why Should I Care?

Scope of Variables

- As in all languages with variables it is important to discuss the notion of scope
- The scope of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx. E binds variable x in E - x is the newly introduced variable
- E is the scope of $x \quad$ (unless x is shadowed ...)
- We say x is bound in $\lambda \mathrm{x}$. E
- Just like formal function arguments are bound in the function body
- A language with 3 expressions? Woof!
- Li and Zdancewick. Downgrading policies and relaxed noninterference. POPL '05
- Just one example of a recent PL/security paper ...

4. Local downgradng policies
4.1 Label Definition

Examples of Lambda Expressions

- The identity function:
$I={ }_{\text {def }} \lambda x . x$
- A function that given an argument y discards it and yields the identity function:
$\lambda y .(\lambda x . x)$
- A function that given a function f invokes it on the identity function
$\lambda f . f(\lambda x . x)$

$\begin{aligned} & \text { Terms } m::= \\ & \text { Palicies }+,-=, \ldots \mid \\ & \lambda x: \tau, m|m m| x|c| m \oplus m\end{aligned}$
$\begin{array}{ll}\text { Policies } & n::=\lambda x \text { :int. } m \\ \text { Labels } & l:=\left\{n_{1}, \ldots, n_{k}\right\} \quad(k \geq 1)\end{array}$
Figure 1: $\mathbb{L}_{\text {local }}$ Label Syntax
The core of the policy language is a variant of the simplytyped λ-calculus with a base type, binary operators and con-
stants. A downgrading policy is a λ-term that specifies how an integer can be downgraded: when this λ-term is ap-

Free and Bound Variables

- A variable is said to be free in E if it has occurrences that are not bound in E
- We can define the free variables of an expression E recursively as follows:
$\operatorname{Free}(x)=\{x\}$
$\operatorname{Free}\left(E_{1} E_{2}\right)=\operatorname{Free}\left(E_{1}\right) \cup \operatorname{Free}\left(E_{2}\right)$
$\operatorname{Free}(\lambda x . E)=\operatorname{Free}(E)-\{x\}$
- Example: $\operatorname{Free}(\lambda x . x(\lambda y . x y z))=\{z\}$
- Free variables are (implicitly or explicitly) declared outside the term

Free Your Mind!

- Just like in any language with statically nested scoping we have to worry about variable shadowing
- An occurrence of a variable might refer to different things in different contexts
- e.g., IMP with locals: let $x=E$ in $x+\left(\right.$ let $x=E^{\prime}$ in $\left.x\right)+x$

- In λ-calculus: $\lambda x . \times(\lambda x . x) \times$
$\uparrow \square \quad \downarrow$

Renaming Bound Variables

- λ-terms that can be obtained from one another by renaming of the bound variables are considered identical.
- This is called α-equivalence.
- Renaming bound vars is called α-renaming.
- Example: $\lambda x . x$ is identical to $\lambda y . y$ and to $\lambda z . z$
- Intuition:

By changing the name of a formal argument and of all its occurrences in the function body, the behavior of the function does not change

- In λ-calculus such functions are considered identical

Make It Easy On Yourself

- Convention: we will always try to rename bound variables so that they are all unique - e.g., write $\lambda x . x(\lambda y . y) x$ instead of $\lambda x . x(\lambda x . x) x$
- This makes it easy to see the scope of bindings and also prevents confusion!

The deBruijn Notation

- An alternative syntax that avoids naming of bound variables (and the subsequent confusions)
- The deBruijn index of a variable occurrence is the number of lambdas that separate the occurrence from its binding lambda in the abstract syntax tree
- The deBruijn notation replaces names of occurrences with their deBuijn index
- Examples:

- Examples:	$\lambda .0$	Identical terms
$-\lambda x . x$	$\lambda . \lambda .0$	have identical
$-\lambda x . \lambda x . x$	$\lambda . \lambda .0$	representations !
$-\lambda x . \lambda y . y$	$(\lambda .00)(\lambda .00)$	
$-(\lambda x . x \mathrm{x})(\lambda \mathrm{z} . \mathrm{zz})$		
$-\lambda x .(\lambda x . \lambda y . \mathrm{x}) \mathrm{x}$	$\lambda .(\lambda . \lambda .1) 0$	

Informal Semantics

- We consider only closed terms
- The evaluation of
($\lambda x . e) e^{\prime}$

1. Binds x to e^{\prime}
2. Evaluates e with the new binding
3. Yields the result of this evaluation

- Like a function call, or like "let $x=e$ ' in e"
- Example:
($\lambda \mathrm{f} . \mathrm{f}(\mathrm{f} e)) \mathrm{g} \quad$ evaluates to $\mathrm{g}(\mathrm{ge})$

Substitution

- The substitution of E^{\prime} for x in E (written [$\left.E^{\prime} / x\right] E$)

Step 1. Rename bound variables in E and E ' so they are unique

- Step 2. Perform the textual substitution of E^{\prime} for x in E
- Called capture-avoiding substitution.
- Example: $[y(\lambda x . x) / x] \lambda y .(\lambda x . x) y x$
- After renaming: $[y(\lambda v, v) / x] \lambda z .(\lambda u . u) z x$
- After substitution: $\lambda z .(\lambda u . u) z(y(\lambda v . v))$
- If we are not careful with scopes we might get:

$$
\lambda y .(\lambda x . x) y(y(\lambda x . x))
$$

Combinators

- A λ-term without free variables is closed or a combinator
- Some interesting combinators:

I $=\lambda x . x$
$\mathrm{K}=\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x}$
$S \quad=\lambda f . \lambda g . \lambda x . f \times(g x)$
D $=\lambda x . x x$
$Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$

- Theorem: Any closed term is equivalent to one written with just S, K, I
- Example: D $=_{\beta}$ SII
- (we'll discuss this form of equivalence in a bit)

Operational Semantics

- Many operational semantics for the λ-calculus
- All are based on the equation

$$
(\lambda x . e) e^{\prime}={ }_{\beta}\left[e^{\prime} / x\right] e
$$

usually read from left to right

- This is called the β-rule and the evaluation step a β-reduction
- The subterm ($\lambda \mathrm{x} . \mathrm{e}) \mathrm{e}^{\prime}$ is a β-redex
- We write $\mathrm{e} \rightarrow_{\beta}$ e' to say that e β-reduces to e' in one step
- We write $\mathrm{e} \rightarrow_{\beta}{ }^{*}{ }^{\prime}$ ' to say that e β-reduces to e' in 0 or more steps
- Should remind you of small-step opsem term-rewriting

Examples of Evaluation

- The identity function:
$(\lambda x . x) E \rightarrow[E / x] x=E$
- Another example with the identity:
$(\lambda f . f(\lambda x . x))(\lambda x . x) \rightarrow$
$[\lambda x . x / f] f(\lambda x . x))=[(\lambda x, x) / f] f(\lambda y . y))=$
$(\lambda x . x)(\lambda y . y) \rightarrow$
$[\lambda y . y / x] x=\lambda y . y$
- A non-terminating evaluation:
$(\lambda x . x x)(\lambda y . y y) \rightarrow$
$[\lambda y . \mathrm{yy} / \mathrm{x}] \mathrm{xx}=(\lambda \mathrm{y} . \mathrm{yy})(\lambda \mathrm{y} . \mathrm{yy}) \rightarrow \ldots$
- Try T T, where $T=\lambda x . x \times x$

Evaluation and the Static Scope

- The definition of substitution guarantees that evaluation respects static scoping:

(y remains free, i.e., defined externally)
- If we forget to rename the bound y :

(y was free before but is bound now)

Normal Forms

- A term without redexes is in normal form
- A reduction sequence stops at a normal form
- If e is in normal form and $\mathrm{e} \rightarrow{ }_{\beta}{ }^{\mathrm{e}}$ ' then e is identical to e'
- $K=\lambda x \cdot \lambda y . x$ is in normal form
- K I is not in normal form

Nondeterministic Evaluation

- We define a small-step reduction relation

- This is a non-deterministic semantics
- Note that we evaluate under λ (where?)

Lambda Calculus Contexts

- Define contexts with one hole

$$
\mathrm{H}::=\bullet|\lambda x . \mathrm{H}| \mathrm{He} \mid \mathrm{eH}
$$

- Write $\mathrm{H}[\mathrm{e}]$ to denote the filling of the hole in H with the expression e
- Example:

$$
H=\lambda x . x \bullet \quad H[\lambda y . y]=\lambda x . x(\lambda y . y)
$$

- Filling the hole allows variable capture!

$$
H=\lambda x . x \bullet \quad H[x]=\lambda x . x x
$$

Contextual Opsem
 (λx. e) $e^{\prime} \rightarrow\left[e^{\prime} / x\right] e$
 $e \rightarrow e^{\prime}$
 $\mathrm{H}[\mathrm{e}] \rightarrow \mathrm{H}\left[\mathrm{e}^{\prime}\right]$

- Contexts allow concise formulations of congruence rules (application of local reduction rules on subterms)
- Reduction occurs at a β-redex that can be anywhere inside the expression
- The latter rule is called a congruence or structural rule
- The above rules do not specify which redex must be reduced first

The Diamond Property

- A relation R has the diamond property if whenever $e R e_{1}$ and $e R e_{2}$ then there exists e' such that $e_{1} R$ e^{\prime} and $e_{2} R e^{\prime}$

- \rightarrow_{β} does not have the diamond property
- $\rightarrow_{\beta}{ }^{*}$ has the diamond property
- Also called the confluence property

The Order of Evaluation

- In a λ-term there could be more than one instance of ($\lambda x . E) E^{\prime}$, as in:
$(\lambda y .(\lambda x, x) y) E$
- could reduce the inner or the outer λ
- which one should we pick?

The Diamond Property

- Languages defined by non-deterministic sets of rules are common
- Logic programming languages
- Expert systems
- Constraint satisfaction systems
- and thus most pointer analyses ...
- Dataflow systems
- Makefiles
- It is useful to know whether such systems have the diamond property

(Beta) Equality

- Let $=_{\beta}$ be the reflexive, transitive and symmetric closure of \rightarrow_{β}

$$
={ }_{\beta} \text { is }\left(\rightarrow_{\beta} \cup \leftarrow_{\beta}\right)^{*}
$$

- That is, $e_{1}={ }_{\beta} e_{2}$ if e_{1} converts to e_{2} via a sequence of forward and backward \rightarrow_{β}

The Church-Rosser Theorem

- If $e_{1}={ }_{\beta} e_{2}$ then there exists e^{\prime} such that $e_{1} \rightarrow_{\beta}{ }^{*} e^{\prime}$ and $e_{2} \rightarrow_{\beta}{ }^{*} e^{\prime}$

- Proof (informal): apply the diamond property as many times as necessary

Corollaries

- If $e_{1}=_{\beta} e_{2}$ and e_{1} and e_{2} are normal forms then e_{1} is identical to e_{2}
- From C-R we have $\exists e^{\prime} . \mathrm{e}_{1} \rightarrow{ }_{\beta}{ }_{\beta} \mathrm{e}^{\prime}$ and $\mathrm{e}_{2} \rightarrow{ }_{\beta}{ }^{*} \mathrm{e}^{\prime}$
- Since e_{1} and e_{2} are normal forms they are identical to e^{\prime}
- If $\mathrm{e} \rightarrow{ }_{\beta}^{*} \mathrm{e}_{1}$ and $\mathrm{e} \rightarrow{ }_{\beta} \mathrm{e}_{2}$ and e_{1} and e_{2} are normal forms then e_{1} is identical to e_{2} - "All terms have a unique normal form."

Evaluation Strategies

- Church-Rosser theorem says that independent of the reduction strategy we will find ≤ 1 normal form
- But some reduction strategies might find 0

$$
\begin{aligned}
& (\lambda x . z)((\lambda y \cdot y \text { y) }(\lambda y . y y)) \rightarrow(\lambda x . z)((\lambda y . y y)(\lambda y . y y)) \rightarrow \\
& \ldots \\
& (\lambda x . z)((\lambda y \cdot y y)(\lambda y . y y)) \rightarrow z
\end{aligned}
$$

- There are three traditional strategies
- normal order (never used, always works)
- call-by-name (rarely used, cf. TeX)
call-by-value
(amazingly popular)

Call To Power (By Value)

- Normal Order
- Evaluate the left-most redex not contained in another redex
- If there is a normal form, this finds it
- Not used in practice: requires partially evaluating function pointers and looking "inside" functions
- Call-By-Name ("lazy")
- Don't reduce under λ, don't evaluate a function argument (until you need to)
- Does not always evaluate to a normal form
- Call-By-Value ("strict" or "eager")
- Don't reduce under λ, do evaluate a function's argument right away
Finds normal forms less often than the other two

Endgame

- This time: λ syntax, semantics, reductions, equality, ...
- Next time: encodings, real programs, type systems, and all the fun stuff!
"Wisely done, Mr. Freeman. I will see you up ahead."

Homework

- Project Proposal Due Two Days Ago ..
- Read Leroy article, think about axiomatic
- No Class Tuesday (projects, HW5)
- Homework 5 Due Next Thursday

