Simply-Typed
Lambda Calculus

BEFORE GOING | (RiGuT

DOWN p. STEEP

WILL LIKE THIS, ’?,
& uE

MWME GNE | @

WS SLED A i

SAFETY CHECK.

Homework Five Is Alive

« Homework 5 has not been
returned

» Waiting on a few students who
want to turn it in later

e There will be no Number Six

/ “Number 6" |

Back to School

» What is operational semantics? When would
you use contextual (small-step) semantics?

« What is denotational semantics?

« What is axiomatic semantics? What is a
verification condition?

Today’s Cunning Plan

» Type System Overview

« First-Order Type Systems
» Typing Rules

« Typing Derivations

» Type Safety

BECAUSE ITS COLD. ICE WANTS | 1S THAT | LOOK \T UP AND [/ 1 SWoulD JusT | You chn
TO GET WARM, SO \T QOES LOOK STUFF UP | LEARN A 10T,
TO THE TOP OF LIQUIDS N I THE FIRST | TALKING TO
=— ORDER TO BE NEARER TO PLACE

=

WY DoEs
ICE FLOAT ?
\

THAT'S MANAGEMENT
FOUL-UP NUMBER TWO.
IT USUALLY HAPPENS
AROUND THE THIRD

4 _jll

WHAT DOES MFUZ
MEAN ON YOUR
TIMELINE?

WE DONT ANTICIPATE
ANY MANAGEMENT
MISTAKES.

THATS ‘
MFUL |

www.dilDert.com _ scottadams@sol.com
320+ © 2008 Scott Adams, Inc./Dist. by UFS Inc.

Why Typed Languages?

» Development
- Type checking catches early many mistakes
- Reduced debugging time
- Typed signatures are a powerful basis for design
- Typed signatures enable separate compilation
» Maintenance
- Types act as checked specifications
- Types can enforce abstraction
o Execution
- Static checking reduces the need for dynamic checking

Safe languages are easier to analyze statically
« the compiler can generate better code

Why Not Typed Languages?

« Static type checking imposes constraints on the
programmer
- Some valid programs might be rejected
- But often they can be made well-typed easily
- Hard to step outside the language (e.g. OO programming
in a non-00 language, but cf. Ruby, OCaml, etc.)
» Dynamic safety checks can be costly
- 50% is a possible cost of bounds-checking in a tight loop
« In practice, the overall cost is much smaller
- Memory management must be automatic = need a
garbage collector with the associated run-time costs

- Some applications are justified in using weakly-typed
languages (e.g., by external safety proof)

Properties of Type Systems

» How do types differ from other program
annotations
- Types are more precise than comments
- Types are more easily mechanizable than
program specifications
» Expected properties of type systems:
- Types should be enforceable
- Types should be checkable algorithmically

- Typing rules should be transparent

« It should be easy to see why a program is not well-
typed

#7

Why Formal Type Systems?

» Many typed languages have informal
descriptions of the type systems (e.g., in
language reference manuals)

« A fair amount of careful analysis is required
to avoid false claims of type safety

» A formal presentation of a type system is a
precise specification of the type checker
- And allows formal proofs of type safety

» But even informal knowledge of the
principles of type systems help

Formalizing a Type System

1. Syntax

« Of expressions (programs)

« Of types

« Issues of binding and scoping
2. Static semantics (typing rules)

« Define the typing judgment and its derivation rules
3. Dynamic semantics (e.g., operational)

« Define the evaluation judgment and its derivation rules
4. Type soundness

« Relates the static and dynamic semantics

» State and prove the soundness theorem

#9

Typing Judgments

» Judgment (recall)
- A statement J about certain formal entities
- Has a truth value = J
- Has a derivation - J (= “a proof”)
e A common form of typing judgment:
'Fe:t (e is an expression and 7 is a type)

o I' (Gamma) is a set of type assignments for the free
variables of e

- Defined by the grammar ' ::=- | I, x: 1
- Type assignments for variables not free in e are not
relevant

- eg, x:int,y:intkx+y:int

Typing rules

» Typing rules are used to derive typing
judgments

[+1:int
» Examples:

x.17 €0

[l s

Fey:int [Feos: int
N—e1 +ep:int

Typing Derivations

» A typing derivation is a derivation of a typing
judgment (big surprise there ...)

« Example:
z:intF 2 :int x:inthk 1:int
2 int b 2 int 2z int bk x4+ 1:int
zoint o+ (z+ 1) int

» Wesay I I e : t to mean there exists a derivation
of this typing judgment (= “we can prove it”)
» Type checking: given T, e and t find a derivation

» Type inference: given T and e, find tand a
derivation

Proving Type Soundness

A typing judgment is either true or false

Define what it means for a value to have a type
Vel |

(e.g. 5 €| int | and true € | bool |)

» Define what it means for an expression to have a

type

ec |t| iff w.(eldv=velr|)

Prove type soundness

If -Fe:t thene e ||
or equivalently
If - +e:tandelv thenve || ||

This implies safe execution (since the result of a
unsafe execution is not in || t | for any 1)

Upcoming Exciting Episodes

» We will give formal description of first-order type
systems (no type variables)
- Function types (simply typed A-calculus)
- Simple types (integers and booleans)
- Structured types (products and sums)
- Imperative types (references and exceptions)
- Recursive types
» The type systems of most common languages are
first-order
» The we move to second-order type systems
- Polymorphism and abstract types

Simply-Typed Lambda Calculus

 Syntax:
Terms e::= X | Axit. e | e e
| n | e, +e, |iszeroe
| true | false | not e
| if e; then e, else e;
Types t::=int| bool | 1, — 1,

e 1, = 1, is the function type

e — associates to the right

» Arguments have typing annotations
« This language is also called F,

Static Semantics of F,

» The typing judgment

'Fe:1
» Some (simpler) typing rules:

z rerl Fz:7ke:7
Mz 71 FrEXxe:te:7— 7
NFep:m—717 [T'Fex:im
Fejex: T

More Static Semantics of F,
Feq:int [Feo:int

M7 int ey 4+ ep:int

[Tk e:bool
[+ true : bool [T+ not e : bool
NFep:ibool [he:7 [hep:T

"t 1if e; theneyelseey ! 7

#17

Typing Derivation in F,

o Consider the term
AX :int. Ab : bool. if b then f x else x
- With the initial typing assignment f : int — int

NFf:int - int [k z:int

MEfz:int

b :bool Mk az:int
[:int — int,z : int,b: bool - if D then [2 else z : int

f:int — int,x : int b Ab: bool. if b then f x else x : bool —» int

[iint — int F Az int.Ab : bool. if b then f x else z ! int — bool — int

Where " = f : int — int, x : int, b : bool

Type Checking in F,

» Type checking is easy because
- Typing rules are syntax directed
- Typing rules are compositional (what does this mean?)
- All local variables are annotated with types

« In fact, type inference is also easy for F,
« Without type annotations an expression may have

no unique type
- Ax. x :int = int

- Ax. x : bool — bool

Operational Semantics of F,

o Judgment:
elv
« Values:
v:ii=n | true | false | ix:it. e
» The evaluation rules ...

- Audience participation time: raise your hand and
give me an evaluation rule.

Operational Semantics of F,
(Cont.)

» Call-by-value evaluation rules (sample)
AriTel A Te
ex b xzire) exlwy [up/ale) bu
eren v

erddny exlny n=mniy+no
nin e1+exln

e | true e v

Evaluation is
undefined for ill-
typed programs !

if eq then ¢; else ¢y Jv

e false eplw

if e; then ¢, else ey Jv s21]

Type Soundness for F,

e Theorem: If - e:t ande l vthen - Fv:t

- Also called, subject reduction theorem, type
preservation theorem

« This is one of the most important sorts of
theorems in PL

» Whenever you make up a new safe language
you are expected to prove this
- Examples: Vault, TAL, CCured, ...

How Can We Prove It?

e Theorem: If --e:t andelvthen - Fv:z

Proof Approaches To Type Safety

Theorem: If --e:t ande lvthen-Fv:rt
» Try to prove by induction on e
- Won’t work because [v,/x]e’; in the evaluation of e e,
- Same problem with inductionon - e : t
« Try to prove by induction on t
- Won’t work because e, has a “bigger” type than e, e,
« Try to prove by inductionon e |l v
- To address the issue of [v,/x]e’,
- This is it!

Type Soundness Proof

 Consider the case
c er b Az el ex vy [up/ale] Lo
h e1ex v
and by inversion on the derivation of ¢y ¢x 1 7

‘e »T -l ep T
D ::

cFeqentT
« FromIHone, U ..wehave -, x: 1, e’ 1t
« FromIHone, U ..wehave - Fv,: 1,

» Need to infer that - - [v,/x]e,’ : T and use the IH
- We need a substitution lemma (by induction on e,’)

Significance of Type Soundness

» The theorem says that the result of an evaluation
has the same type as the initial expression
» The theorem does not say that

- The evaluation never gets stuck (e.g., trying to apply a
non-function, to add non-integers, etc.), nor that

- The evaluation terminates
 Even though both of the above facts are true of F,

» We need a small-step semantics to prove that the
execution never gets stuck

« | Assert: the execution always terminates in F,
- When does the lambda calculus ever not terminate?

Small-Step Contextual Semantics
for F,

We define redexes
r:=n,+n, | if bthene elsee, | (Ax:t.€) v,
» and contexts
H::=H;+e, | nj+H,|if Hthene elsee, | H e, |

(Ax:t.) H,
« and local reduction rules
n, +n, — n; plus n,
if true then e, else e, — e
if false then e, else e, —e,
(AX:T. €) V, — [v,/X]e,

« and one global reduction rule
H[r] — H[e] iffr —»e

Decomposition Lemmas for F,

1. If - e : rand eis not a (final) value then there
exist (unique) H and r such that e = H[r]
- any well typed expression can be decomposed
- any well-typed non-value can make progress

2. Furthermore, there exists ©’ such that - -r: ¢’
- the redex is closed and well typed

3. Furthermore, there exists e’ such thatr — e’ and -
Fe 1
- local reduction is type preserving

4. Furthermore, forany e’, - +¢e’ : ¢’ implies -+
H[e’] : =
- the expression preserves its type if we replace the redex

with an expression of same type

128 |

Type Safety of F,

Type preservation theorem
-If-He:tande —»e’then-+e’:1
- Follows from the decomposition lemma

Progress theorem
- If -+ e: 1 and e is not a value then there exists e’ such
that e can make progress: e — e’
Progress theorem says that execution can make
progress on a well typed expression
From type preservation we know the execution of
well typed expressions never gets stuck

- This is a (very!) common way to state and prove type
safety of a language

What’s Next?

» We’ve got the basic simply-typed
monomorphic lambda calculus

» Now let’s make it more complicated ...

By adding features!

Product Types: Static Semantics

» Extend the syntax with (binary) tuples
e =...] (e, &) |fste|snde
T =Ly xyg
- This language is sometimes called F*
» Same typing judgment T'Fe: 1
MNFep:m MNFes:m

M- (e1,e0) 71 X ™

Ne:miXm TTkhe:iTg X1

M-fste:T M-snde:m

Product Types: Dynamic
Semantics and Soundness
» New form of values: v :i=... | (Vy, V5)

» New (big step) evaluation rules:
ervr exdum
(e1,e2) I (v1,v2)

el (v1,v2) el (vi,v2)
fste | v snd e |} vp
« New contexts: H:=...| (H;, €) | (v4, H,) | fstH | snd H
« New redexes:
fst (vq, V5) = vy
snd (vq, V;) =V,
« Type soundness holds just as before

General PL Feature Plan

» The general plan for language feature design
» You invent a new feature (tuples)

 You add it to the lambda calculus

 You invent typing rules and opsem rules

» You extend the basic proof of type safety

 You declare moral victory, and milling
throngs of cheering admirers wait to carry
you on their shoulders to be knighted by the
Queen, etc.

Homework

» Read Wright and Felleisen article
» Work on your projects!
- Status Update Due: Thursday Mar 23

