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SimplySimply--TypedTyped

Lambda CalculusLambda Calculus

#2

Homework Five Is Alive

• Homework 5 has not been 

returned 

• Waiting on a few students who 

want to turn it in later

• There will be no Number Six

#3

Back to School

• What is operational semantics? When would 

you use contextual (small-step) semantics?

• What is denotational semantics?

• What is axiomatic semantics? What is a 

verification condition? 

#4

Today’s Cunning Plan

• Type System Overview

• First-Order Type Systems

• Typing Rules

• Typing Derivations

• Type Safety

#5

Why Typed Languages?

• Development
– Type checking catches early many mistakes

– Reduced debugging time

– Typed signatures are a powerful basis for design

– Typed signatures enable separate compilation

• Maintenance
– Types act as checked specifications

– Types can enforce abstraction

• Execution
– Static checking reduces the need for dynamic checking

– Safe languages are easier to analyze statically
• the compiler can generate better code

#6

Why Not Typed Languages?

• Static type checking imposes constraints on the 
programmer
– Some valid programs might be rejected

– But often they can be made well-typed easily

– Hard to step outside the language (e.g. OO programming 
in a non-OO language, but cf. Ruby, OCaml, etc.)

• Dynamic safety checks can be costly
– 50% is a possible cost of bounds-checking in a tight loop

• In practice, the overall cost is much smaller

– Memory management must be automatic ⇒ need a 
garbage collector with the associated run-time costs

– Some applications are justified in using weakly-typed 
languages (e.g., by external safety proof)
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#7

Properties of Type Systems

• How do types differ from other program 
annotations
– Types are more precise than comments

– Types are more easily mechanizable than 
program specifications

• Expected properties of type systems:
– Types should be enforceable

– Types should be checkable algorithmically

– Typing rules should be transparent
• It should be easy to see why a program is not well-
typed

#8

Why Formal Type Systems?

• Many typed languages have informal 
descriptions of the type systems (e.g., in 
language reference manuals)

• A fair amount of careful analysis is required 
to avoid false claims of type safety

• A formal presentation of a type system is a 
precise specification of the type checker
– And allows formal proofs of type safety

• But even informal knowledge of the 
principles of type systems help

#9

Formalizing a Type System

1. Syntax
• Of expressions (programs)

• Of types

• Issues of binding and scoping

2. Static semantics (typing rules)
• Define the typing judgment and its derivation rules

3. Dynamic semantics (e.g., operational)
• Define the evaluation judgment and its derivation rules

4. Type soundness
• Relates the static and dynamic semantics

• State and prove the soundness theorem

#10

Typing Judgments

• Judgment (recall)
– A statement J about certain formal entities
– Has a truth value � J

– Has a derivation ⊢ J (= “a proof”)

• A common form of typing judgment: 

Γ ⊢ e : τ (e is an expression and τ is a type)

• Γ (Gamma) is a set of type assignments for the free 
variables of e
– Defined by the grammar Γ ::= · | Γ, x : τ

– Type assignments for variables not free in e are not 
relevant

– e.g,    x : int, y : int ⊢ x + y : int

#11

Typing rules

• Typing rules are used to derive typing 

judgments

• Examples:

#12

Typing Derivations

• A typing derivation is a derivation of a typing 
judgment (big surprise there …)

• Example:

• We say Γ ⊢ e : τ to mean there exists a derivation
of this typing judgment (= “we can prove it”)

• Type checking: given Γ, e and τ find a derivation

• Type inference: given Γ and e, find τ and a 
derivation
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#13

Proving Type Soundness

• A typing judgment is either true or false

• Define what it means for a value to have a type
v ∈ ‖ τ ‖

(e.g. 5 ∈ ‖ int ‖ and true ∈ ‖ bool ‖ )

• Define what it means for an expression to have a 
type

e ∈   | τ | iff ∀v. (e ⇓ v ⇒ v ∈ ‖ τ ‖)

• Prove type soundness
If · ⊢ e : τ then e ∈ | τ |

or equivalently
If · ⊢ e : τ and e ⇓ v then v ∈ ‖ τ ‖

• This implies safe execution (since the result of a 
unsafe execution is not in ‖ τ ‖ for any τ)

#14

Upcoming Exciting Episodes

• We will give formal description of first-order type 

systems (no type variables)

– Function types (simply typed λ-calculus)

– Simple types (integers and booleans)

– Structured types (products and sums)

– Imperative types (references and exceptions)

– Recursive types

• The type systems of most common languages are 

first-order

• The we move to second-order type systems

– Polymorphism and abstract types

#15

Simply-Typed Lambda Calculus

• Syntax:

Terms     e ::=  x | λx:τ. e | e1 e2

|  n | e1 + e2 | iszero e

| true | false | not e                                          
| if e1 then e2 else e3

Types     τ ::= int | bool | τ1 → τ2

• τ1 → τ2 is the function type

• → associates to the right

• Arguments have typing annotations

• This language is also called F1

#16

Static Semantics of F1

• The typing judgment

Γ ⊢ e : τ

• Some (simpler) typing rules: 

#17

More Static Semantics of F1

#18

Typing Derivation in F1

• Consider the term

λx : int. λb : bool. if b then f x else x

– With the initial typing assignment  f : int → int

Where Γ = f : int → int, x : int, b : bool
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#19

Type Checking in F1

• Type checking is easy because

– Typing rules are syntax directed

– Typing rules are compositional (what does this mean?)

– All local variables are annotated with types

• In fact, type inference is also easy for F1

• Without type annotations an expression may have 

no unique type

· ⊢ λx. x : int → int

· ⊢ λx. x : bool → bool

#20

Operational Semantics of F1

• Judgment:

e ⇓ v

• Values:

v ::= n | true | false | λx:τ. e

• The evaluation rules …

– Audience participation time: raise your hand and 

give me an evaluation rule. 

#21

Operational Semantics of F1

(Cont.)
• Call-by-value evaluation rules (sample)

Evaluation is 

undefined for ill-

typed programs ! 

#22

Type Soundness for F1

• Theorem: If · ⊢ e : τ and e ⇓ v then · ⊢ v : τ

– Also called, subject reduction theorem, type 

preservation theorem

• This is one of the most important sorts of 

theorems in PL

• Whenever you make up a new safe language 

you are expected to prove this

– Examples: Vault, TAL, CCured, …

#23

How Can We Prove It?

• Theorem: If · ⊢ e : τ and e ⇓ v then · ⊢ v : τ

#24

Proof Approaches To Type Safety

• Theorem: If · ⊢ e : τ and e ⇓ v then · ⊢ v : τ

• Try to prove by induction on e

– Won’t work because [v2/x]e’1 in the evaluation of e1 e2

– Same problem with induction on · ⊢ e : τ

• Try to prove by induction on τ

– Won’t work because e1 has a “bigger” type than e1 e2

• Try to prove by induction on e ⇓ v

– To address the issue of [v2/x]e’1

– This is it!
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#25

Type Soundness Proof

• Consider the case

• From IH on e1 ⇓⇓⇓⇓ … we have  ·, x : τ2 ⊢⊢⊢⊢ e1’ : τ

• From IH on e2 ⇓⇓⇓⇓ … we have · ⊢⊢⊢⊢ v2 : τ2
• Need to infer that · ⊢⊢⊢⊢ [v2/x]e1’ : τ and use the IH

– We need a substitution lemma (by induction on e1’)

#26

Significance of Type Soundness

• The theorem says that the result of an evaluation 

has the same type as the initial expression

• The theorem does not say that

– The evaluation never gets stuck (e.g., trying to apply a 

non-function, to add non-integers, etc.), nor that

– The evaluation terminates

• Even though both of the above facts are true of F1

• We need a small-step semantics to prove that the 

execution never gets stuck

• I Assert: the execution always terminates in F1

– When does the lambda calculus ever not terminate? 

#27

Small-Step Contextual Semantics 

for F1
• We define redexes

r ::= n1 + n2 | if b then e1 else e2 | (λx:τ.e1) v2

• and contexts
H ::= H1 + e2 | n1 + H2 | if H then e1 else e2 | H1 e2 | 
(λx:τ. e1) H2

• and local reduction rules
n1 + n2 → n1 plus n2

if true then e1 else e2 → e1

if false then e1 else e2 → e2

(λx:τ. e1) v2 → [v2/x]e1

• and one global reduction rule
H[r] → H[e]   iff r → e

#28

Decomposition Lemmas for F1

1. If · ⊢ e : τ and e is not a (final) value then there 
exist (unique) H and r such that e = H[r] 
– any well typed expression can be decomposed

– any well-typed non-value can make progress

2. Furthermore, there exists τ’ such that · ⊢ r : τ’
– the redex is closed and well typed

3. Furthermore, there exists e’ such that r → e’ and ·
⊢ e’ : τ’
– local reduction is type preserving

4. Furthermore, for any e’, · ⊢ e’ : τ’ implies  · ⊢
H[e’] : τ
– the expression preserves its type if we replace the redex

with an expression of same type

#29

Type Safety of F1

• Type preservation theorem
– If · ⊢ e : τ and e → e’ then · ⊢ e’ : τ

– Follows from the decomposition lemma

• Progress theorem
– If · ⊢ e : τ and e is not a value then there exists e’ such 

that e can make progress: e → e’

• Progress theorem says that execution can make 
progress on a well typed expression

• From type preservation we know the execution of 
well typed expressions never gets stuck
– This is a (very!) common way to state and prove type 
safety of a language

#30

What’s Next?

• We’ve got the basic simply-typed 

monomorphic lambda calculus

• Now let’s make it more complicated …

• By adding features!
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#31

Product Types: Static Semantics

• Extend the syntax with (binary) tuples

e ::= ... | (e1, e2)  | fst e | snd e

τ ::= ... | τ1 × τ2
– This language is sometimes called F1

×

• Same typing judgment  Γ ⊢ e : τ

#32

Product Types: Dynamic 

Semantics and Soundness
• New form of values:      v ::= ... | (v1, v2)

• New (big step) evaluation rules:

• New contexts:  H ::= ... | (H1, e2) | (v1, H2) | fst H | snd H

• New redexes:  

fst (v1, v2) → v1

snd (v1, v2) → v2

• Type soundness holds just as before

#33

General PL Feature Plan

• The general plan for language feature design

• You invent a new feature (tuples)

• You add it to the lambda calculus

• You invent typing rules and opsem rules

• You extend the basic proof of type safety

• You declare moral victory, and milling 

throngs of cheering admirers wait to carry 

you on their shoulders to be knighted by the 

Queen, etc. 
#34

Homework

• Read Wright and Felleisen article

• Work on your projects!
– Status Update Due: Thursday Mar 23


