
1

#1

MonomorphicMonomorphic Type SystemsType Systems

#2

Type Soundness for F1

• Theorem: If · ⊢ e : τ and e ⇓ v then · ⊢ v : τ

– Also called, subject reduction theorem, type 

preservation theorem

• This is one of the most important sorts of 

theorems in PL

• Whenever you make up a new safe language 

you are expected to prove this

– Examples: Vault, TAL, CCured, …

#3

How Can We Prove It?

• Theorem: If · ⊢ e : τ and e ⇓ v then · ⊢ v : τ

#4

Proof Approaches To Type Safety

• Theorem: If · ⊢ e : τ and e ⇓ v then · ⊢ v : τ

• Try to prove by induction on e

– Won’t work because [v2/x]e’1 in the evaluation of e1 e2

– Same problem with induction on · ⊢ e : τ

• Try to prove by induction on τ

– Won’t work because e1 has a “bigger” type than e1 e2

• Try to prove by induction on e ⇓ v

– To address the issue of [v2/x]e’1

– This is it!

#5

Type Soundness Proof

• Consider the case

• From IH on e1 ⇓⇓⇓⇓ … we have  ·, x : τ2 ⊢⊢⊢⊢ e1’ : τ

• From IH on e2 ⇓⇓⇓⇓ … we have · ⊢⊢⊢⊢ v2 : τ2
• Need to infer that · ⊢⊢⊢⊢ [v2/x]e1’ : τ and use the IH

– We need a substitution lemma (by induction on e1’)

#6

Significance of Type Soundness

• The theorem says that the result of an evaluation 

has the same type as the initial expression

• The theorem does not say that

– The evaluation never gets stuck (e.g., trying to apply a 

non-function, to add non-integers, etc.), nor that

– The evaluation terminates

• Even though both of the above facts are true of F1

• We need a small-step semantics to prove that the 

execution never gets stuck

• I Assert: the execution always terminates in F1

– When does the base lambda calculus ever not terminate? 



2

#7

Small-Step Contextual Semantics 

for F1
• We define redexes

r ::= n1 + n2 | if b then e1 else e2 | (λx:τ.e1) v2

• and contexts
H ::= H1 + e2 | n1 + H2 | if H then e1 else e2 | H1 e2 | 
(λx:τ. e1) H2

• and local reduction rules
n1 + n2 → n1 plus n2

if true then e1 else e2 → e1

if false then e1 else e2 → e2

(λx:τ. e1) v2 → [v2/x]e1

• and one global reduction rule
H[r] → H[e]   iff r → e

#8

Decomposition Lemmas for F1

1. If · ⊢ e : τ and e is not a (final) value then there 
exist (unique) H and r such that e = H[r] 
– any well typed expression can be decomposed

– any well-typed non-value can make progress

2. Furthermore, there exists τ’ such that · ⊢ r : τ’
– the redex is closed and well typed

3. Furthermore, there exists e’ such that r → e’ and ·
⊢ e’ : τ’
– local reduction is type preserving

4. Furthermore, for any e’, · ⊢ e’ : τ’ implies  · ⊢
H[e’] : τ
– the expression preserves its type if we replace the redex

with an expression of same type

#9

Type Safety of F1

• Type preservation theorem
– If · ⊢ e : τ and e → e’ then · ⊢ e’ : τ

– Follows from the decomposition lemma

• Progress theorem
– If · ⊢ e : τ and e is not a value then there exists e’ such 

that e can make progress: e → e’

• Progress theorem says that execution can make 
progress on a well typed expression

• From type preservation we know the execution of 
well typed expressions never gets stuck
– This is a (very!) common way to state and prove type 

safety of a language

#10

What’s Next?

• We’ve got the basic simply-typed 

monomorphic lambda calculus

• Now let’s make it more complicated …

• By adding features!

#11

Product Types: Static Semantics

• Extend the syntax with (binary) tuples

e ::= ... | (e1, e2)  | fst e | snd e

τ ::= ... | τ1 × τ2

– This language is sometimes called F1
×

• Same typing judgment  Γ ⊢ e : τ

#12

Product Types: Dynamic 

Semantics and Soundness
• New form of values:      v ::= ... | (v1, v2)

• New (big step) evaluation rules:

• New contexts:  H ::= ... | (H1, e2) | (v1, H2) | fst H | snd H

• New redexes:  

fst (v1, v2) → v1

snd (v1, v2) → v2

• Type soundness holds just as before



3

#13

General PL Feature Plan

• The general plan for language feature design

• You invent a new feature (tuples)

• You add it to the lambda calculus

• You invent typing rules and opsem rules

• You extend the basic proof of type safety

• You declare moral victory, and milling 

throngs of cheering admirers wait to carry 

you on their shoulders to be knighted by the 

Queen, etc. 
#14

Records

• Records are like tuples with labels (w00t!)

• New form of expressions
e ::= ... | {L1 = e1, ..., Ln = en} | e.L

• New form of values
v ::= {L1 = v1, ..., Ln = vn}

• New form of types
τ ::= ... | {L1 : τ1, ..., Ln : τn}

• ... follows the model of F1
×

– typing rules

– derivation rules

– type soundness

#15

Sum Types

• We need disjoint union types of the form: 
– either an int or a float

– either 0 or a pointer

– either a (binary tree node with two children) or a (leaf)

• New expressions and types
e ::= ... | injl e | injr e | 

case e of injl x → e1 | injr y → e2

τ ::= ... | τ1 + τ2
– A value of type τ1 + τ2 is either a τ1 or a τ2
– Like union in C or Pascal, but safe

• distinguishing between components is under compiler control

– case is a binding operator (like “let”): x is bound in e1
and y is bound in e2 (like OCaml’s “match … with”)

#16

Examples with Sum Types

• Consider the type unit with a single element called 
* or ()

• The type integer option defined as “unit + int”
– Useful for optional arguments or return values

• No argument: injl * ( OCaml’s “None”) 

• Argument is 5: injr 5 ( OCaml’s “Some(5)”)

– To use the argument you must test the kind of argument
– case arg of injl x ⇒ “no_arg_case” | injr y ⇒ “...y...”

– injl and injr are tags and case is tag checking

• bool is the union type “unit + unit”
– true is injl *

– false is injr *
– if e then e1 else e2 is case e of injl x ⇒ e1 | injr y ⇒ e2

#17

Static Semantics of Sum Types

• New typing rules

• Types are not unique anymore

injl 1 : int + bool

injl 1 : int + (int → int)

– this complicates type checking, but it is still doable

#18

Dynamic Semantics of Sum Types

• New values v ::= ... | injl v | injr v

• New evaluation rules
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#19

Type Soundness for F1
+

• Type soundness still holds

• No way to use a τ1 + τ2 inappropriately

• The key is that the only way to use a τ1 + τ2
is with case, which ensures that you are not 

using a τ1 as a τ2
• In C or Pascal checking the tag is the 

responsibility of the programmer!

– Unsafe (yes, even Pascal!)

#20

Types for Imperative Features

• So far: types for pure functional languages

• Now: types for imperative features

• Such types are used to characterize non-

local effects

– assignments

– exceptions

– typestate

• Contextual semantics is useful here

– Just when you thought it was safe to forget it …

#21

Reference Types

• Such types are used for mutable memory cells

• Syntax (as in ML)

e ::= ... | ref e : τ | e1 := e2 | ! e

τ ::= ... | τ ref

– ref e - evaluates e, allocates a new memory cell, stores 

the value of e in it and returns the address of the 

memory cell

• like malloc + initialization in C, or new in C++ and Java

– e1 := e2, evaluates e1 to a memory cell and updates its 

value with the value of e2

– ! e - evaluates e to a memory cell and returns its 

contents
#22

Global Effects, Reference Cells

• A reference cell can escape the static scope 
where it was created

(λf:int → int ref. !(f 5))   (λx:int. ref x : int)

• The value stored in a reference cell must be 
visible from the entire program

• The “result” of an expression must now 
include the changes to the heap that it 
makes (cf. IMP’s opsem)

• To model reference cells we must extend 
the evaluation model

#23

Modeling References

• A heap is a mapping from addresses to values

h ::= · | h, a ← v : τ
– a ∈ Addresses

– We tag the heap cells with their types

– Types are useful only for static semantics. They are not 
needed for the evaluation ⇒ are not a part of the 
implementation

• We call a program an expression with a heap
p ::= heap h in e

– The initial program is “heap · in e”

– Heap addresses act as bound variables in the expression

– This is a trick that allows easy reuse of properties of 
local variables for heap addresses
• e.g., we can rename the address and its occurrences at will

#24

Static Semantics of References

• Typing rules for expressions:

• and for programs
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#25

Contextual Semantics for 

References
• Addresses are values:     v ::= ... | a

• New contexts: H ::= ref H | H1 := e2 | a1 := H2 | ! H

• No new local reduction rules

• But some new global reduction rules
– heap h in H[ref v : τ] → heap h, a ← v : τ in H[a] 

• where a is fresh (this models allocation – the heap is extended)

– heap h in H[! a] → heap h in H[v]
• where a ← v : τ ∈ h (heap lookup – can we get stuck?)

– heap h in H[a := v] → heap h[a ← v] in H[*]
• where h[a ← v] means a heap like h except that the part “a ← v1

: τ” in h is replaced by “a ← v : τ” (memory update)

• Global rules are used to propagate the effects of a 
write to the entire program (eval order matters!)

#26

Example with References

• Consider these (the redex is underlined)

– heap · in (λf:int → int ref. !(f 5))   (λx:int. ref x : 

int)

– heap · in !((λx:int. ref x : int)  5)

– heap · in !(ref 5 : int)

– heap a = 5 : int in !a

– heap a = 5 : int in 5 

• The resulting program has a useless memory cell

• An equivalent result would be

heap ···· in 5

• This is a simple way to model garbage collection

#27

Exceptions

• A mechanism that allows non-local control flow

– Useful for implementing the propagation of errors to 

caller

• Exceptions ensure* that errors are not ignored

– Compare with the manual error handling in C

• Languages with exceptions:

– C++, ML, Modula-3, Java, C#, …

• We assume that there is a special type exn of 

exceptions

– exn could be int to model error codes

– In Java or C++, exn is a special object type * Supposedly.
#28

Modeling Exceptions

• Syntax
e ::= ... | raise e | try e1 handle x ⇒ e2

τ ::= ... | exn

• We ignore here how exception values are created
– In examples we will use integers as exception values

• The handler binds x in e2 to the actual exception 
value

• The “raise” expression never returns to the 
immediately enclosing context
– 1 + raise 2 is well-typed

– if (raise 2) then 1 else 2 is also well-typed

– (raise 2) 5 is also well-typed

– What should be the type of raise? 

#29

Example with Exceptions

• A (strange) factorial function

let f = λx:int.λres:int. if x = 0 then 

raise res 

else 

f (x - 1) (res * x)

in  try f 5 1 handle x ⇒ x

• The function returns in one step from the 
recursion

• The top-level handler catches the exception 
and turns it into a regular result

#30

Typing Exceptions

• New typing rules

• A raise expression has an arbitrary type

• This is a clear sign that the expression does not return to its 

evaluation context

• The type of the body of try and of the handler must 

match

• Just like for conditionals
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#31

Dynamics of Exceptions

• The result of evaluation can be an uncaught 
exception
– Evaluation answers:    a ::= v | uncaught v

– “uncaught v” has an arbitrary type

• Raising an exception has global effects

• It is convenient to use contextual semantics
– Exceptions propagate through some contexts but 

not through others

– We distinguish the handling contexts that 
intercept exceptions

#32

Contexts for Exceptions

• Contexts
– H :: = • | H e | v H | raise H | try H handle x ⇒ e

• Propagating contexts
– Contexts that propagate exceptions to their own 

enclosing contexts

– P ::= • | P e | v P | raise P

• Decomposition theorem
– If e is not a value and e is well-typed then it can be 

decomposed in exactly one of the following ways:
• H[(λx:τ. e) v] (normal lambda calculus)

• H[try v handle x ⇒ e] (handle it or not)

• H[try P[raise v] handle x ⇒ e] (propagate!)

• P[raise v] (uncaught exception)

#33

Contextual Semantics for 

Exceptions
• Small-step reduction rules

H[(λx:τ. e) v]                       → H[[v/x] e]

H[try v handle x ⇒ e]         → H[v]

H[try P[raise v] handle x ⇒ e] → H[[v/x] e]

P[raise v]                            → uncaught v

• The handler is ignored if the body of try 
completes normally

• A raised exception propagates (in one step) 
to the closest enclosing handler or to the top 
of the program

#34

Exceptions. Comments.

• The addition of exceptions preserves type 

soundness

• Exceptions are like non-local goto

• However, they cannot be used to implement 

recursion

– Thus we still cannot write non-terminating 

programs

• There are a number of ways to implement 

exceptions (e.g., “zero-cost” exceptions)

#35

Continuations

• Some languages have a mechanism for taking a snapshot of 
the execution and storing it for later use
– Later the execution can be reinstated from the snapshot

– Useful for implementing threads, for example

– Examples: Scheme, LISP, ML, C (yes, really!)

• Consider the expression: e1 + e2 in a context C
– How to express a snapshot of the execution right after evaluating e1

but before evaluating e2 and the rest of C ?

– Idea: as a context C1 = C [ • + e2 ]

• Alternatively, as λx
1
. C [ x

1
+ e

2
]

– When we finish evaluating e1 to v
1
, we fill the context and continue 

with C[v
1
+ e

2
]

– But the C1 continuation is still available and we can continue several 
times, with different replacements for e1

#36

Continuation Uses in “Real Life”
• You’re walking and come to a fork in the road

• You save a continuation “right” for going right

• But you go left (with the “right” continuation in hand)

• You encounter Bender. Bender coerces you into joining his 
computer dating service. 

• You save a continuation “bad-date” for going on the date.

• You decide to invoke the 

“right” continuation

• So, you go right (no evil date 

obligation, but with the “bad-

date” continuation in hand)

• A train hits you! 

• On your last breath, you invoke 

the “bad-date” continuation
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#37

Continuations

• Syntax: 
e ::= callcc k in e  | throw e1 e2

τ ::= … | τ cont

• τ cont - the type of a continuation that expects a τ

• callcc k in e - sets k to the current context of the 
execution and then evaluates expression e
– when e terminates, the whole callcc terminates

– e can invoke the saved continuation (many times even)

– When e invokes k it is as if “callcc k in e” returns

– k is bound in e

• throw e1 e2 - evaluates e1 to a continuation, e2 to a 
value and invokes the continuation with the value 
of e2     (just wait, we’ll explain it!)

#38

Example with Continuations

• Example: another strange factorial
callcc k in 

let f = λx:int.λres:int. if x = 0 then throw k res 
else f (x - 1) (x * res)

in f 5 1

• First we save the current context
– This is the top-level context

– A throw to k of value v means “pretend the whole callcc
evaluates to v”

• This simulates exceptions

• Continuations are strictly more powerful that 
exceptions 
– The destination is not tied to the call stack

#39

Static Semantics of Continuations

• Note that the result of callcc is of type τ

“callcc k in e” returns in two possible situations

1. e throws to k a value of type τ, or

2. e terminates normally with a value of type τ

• Note that throw has any type τ’

– Since it never returns to its enclosing context #40

Dynamic Semantics of 

Continuations
• Use contextual semantics (wow, again!)

– Contexts are now manipulated directly

– Contexts are values of type τ cont

• Contexts
H ::= • | H e | v H | throw H1 e2 | throw v1 H2

• Evaluation rules
– H[(λx.e) v] → H[[v/x] e]

– H[callcc k in e] → H[[H/k] e]

– H[throw H1 v2] → H1[v2]

• callcc duplicates the current continuation

• Note that throw abandons its own context

#41

Implementing Coroutines with 

Continuations
• Example: 
let client = λk. let res = callcc k’ in throw k k’ in

print (fst res);

client (snd res)
– “client k” will invoke “k” to get an integer and a continuation for 

obtaining more integers

let getnext = 

λL.λk. if L = nil then raise 0
else getnext (cdr L) (callcc k’ in throw k  (car L, k’))

– “getnext L k” will send to “k” the first element of L along with a 
continuation that can be used to get more elements of L 

getnext [0;1;2;3;4;5] (callcc k in client k)

#42

Continuation Comments

• In our semantics the continuation saves the entire 

context: program counter, local variables, call 

stack, and the heap!

• In actual implementations the heap is not saved!

• Saving the stack is done with various tricks, but it 

is expensive in general. 

• Few languages implement continuations

– Because their presence complicates the whole compiler 

considerably

– Except if you use a continuation-passing-style of 

compilation (more on this next)
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#43

Continuation Passing Style

• A style of compilation where evaluation of a 
function never returns directly: instead the 
function is given a continuation to invoke with its 
result. 

• Instead of 
f(int a) { return h(g(e); } 

• we write
f(int a, cont k) { g(e, λr. h(r, k) ) }

• Advantages:
– interesting compilation scheme (supports callcc easily)

– no need for a stack, can have multiple return addresses 
(e.g., for an error case)

– fast and safe (non-preemptive) multithreading

#44

Continuation Passing Style

• Let e ::= x | n | e1 + e2 | if e1 then e2 else e3

| λx.e | e1 e2

• Define cps(e, k) as the code that computes e in 
CPS and passes the result to continuation k

cps(x, k) = k x

cps(n, k) = k n

cps(e1 + e2, k) = 

cps(e1, λn1.cps(e2,λn2.k (n1 + n2)))

cps(λx.e, k) = k (λxλk’. cps(e,k’))

cps(e1 e2, k) = cps(e1, λf1.cps(e2,λv2. f1 v2 k))

• Example: cps (h(g(5)), k) = g(5, λx.h x k)
– Notice the order of evaluation being explicit

#45

Homework

• Read Wright and Felleisen article
– … that you didn’t read on Tuesday. 

• Soon: Class Survey #2

• Soon: Bonus Lecture #2

• Work on your projects!
– Status Update Due: Thursday Mar 23


