Type Systems For: Exceptions, Continuations, and Recursive Types

Exceptions

- A mechanism that allows non-local control flow
 - Useful for implementing the propagation of errors to caller
- Exceptions ensure* that errors are not ignored
 - Compare with the manual error handling in C
- · Languages with exceptions:
 - C++, ML, Modula-3, Java, C#, ...
- We assume that there is a special type <u>exn</u> of exceptions
 - exp could be int to model error codes
 - In Java or C++, exn is a special object type

Modeling Exceptions

Syntax

 $e ::= ... \mid raise \ e \mid try \ e_1 \ handle \ x \Rightarrow e_2$ $\tau ::= ... \mid exn$

- We ignore here how exception values are created
 - In examples we will use integers as exception values
- The handler binds x in e₂ to the actual exception
- The "raise" expression never returns to the immediately enclosing context
 - 1 + raise 2 is well-typed
 - if (raise 2) then 1 else 2 is also well-typed
 - (raise 2) 5 is also well-typed
 - What should be the type of raise?

Example with Exceptions

A (strange) factorial function

let $f = \lambda x:int.\lambda res:int.$ if x = 0 then raise res

f (x - 1) (res * x)

in try f 5 1 handle $x \Rightarrow x$

- The function returns in one step from the recursion
- The top-level handler catches the exception and turns it into a regular result

Typing Exceptions

New typing rules

$$\frac{\Gamma \vdash e : \text{exn}}{\Gamma \vdash \text{raise } e : \tau}$$

$$\frac{\Gamma \vdash e_1 : \tau \quad \Gamma, x : \text{exn} \vdash e_2 : \tau}{\Gamma \vdash \text{try } e_1 \text{ handle } x \Longrightarrow e_2 : \tau}$$

- A raise expression has an arbitrary type
 - This is a clear sign that the expression does not return to its evaluation context
- The type of the body of try and of the handler must match
 - · Just like for conditionals

Dynamics of Exceptions

- The result of evaluation can be an uncaught exception
 - Evaluation answers: a ::= v | uncaught v
 - "uncaught v" has an arbitrary type
- · Raising an exception has global effects
- It is convenient to use contextual semantics
 - Exceptions <u>propagate</u> through some contexts but not through others
 - We distinguish the handling contexts that intercept exceptions

Contexts for Exceptions

- Contexts
 - $H :: = \bullet \mid H e \mid v H \mid raise H \mid try H handle x \Rightarrow e$
- · Propagating contexts
 - Contexts that propagate exceptions to their own enclosing contexts
 - P ::= | P e | v P | raise P
- Decomposition theorem
 - If e is not a value and e is well-typed then it can be decomposed in exactly one of the following ways:
 - H[(λx:τ. e) v]
 - H[try v handle $x \Rightarrow e$] • H[try P[raise v] handle $x \Rightarrow e$]
 - P[raise v]

(normal lambda calculus) (handle it or not)

(propagate!)

(uncaught exception)

Contextual Semantics for **Exceptions**

• Small-step reduction rules

 $H[(\lambda x:\tau. e) v]$ \rightarrow H[[v/x] e] $H[try v handle x \Rightarrow e]$ $\rightarrow H[v]$ $H[try P[raise v] handle x \Rightarrow e]$ \rightarrow H[[v/x] e] P[raise v] \rightarrow uncaught v

- The handler is ignored if the body of try completes normally
- A raised exception propagates (in one step) to the closest enclosing handler or to the top of the program

Exceptional Commentary

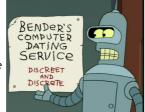
- The addition of exceptions preserves type soundness
- Exceptions are like non-local goto
- However, they cannot be used to implement
 - Thus we still cannot write (well-typed) nonterminating programs
- There are a number of ways to implement exceptions (e.g., "zero-cost" exceptions)

Continuations

- Some languages have a mechanism for taking a snapshot of the execution and storing it for later use
 - Later the execution can be reinstated from the snapshot
 - Useful for implementing threads, for example $% \label{eq:continuous} % \labe$
 - Examples: Scheme, LISP, ML, C (yes, really!)
- Consider the expression: e₁ + e₂ in a context C
 - How to express a snapshot of the execution right after evaluating e_1 but before evaluating e_2 and the rest of C?
 - Idea: as a context $C_1 = C [\bullet + e_2]$
 - Alternatively, as λx₁. C [x₁ + e₂]
 - When we finish evaluating e_1 to v_1 , we fill the context and continue
 - with $C[v_1 + e_2]$ But the C_1 continuation is still available and we can continue several times, with different replacements for e

Continuation Uses in "Real Life"

- You're walking and come to a fork in the road
- You save a continuation "right" for going right
- But you go left (with the "right" continuation in hand)
- You encounter Bender. Bender coerces you into joining his computer dating service.
- You save a continuation "bad-date" for going on the date.
- · You decide to invoke the "right" continuation
- So, you go right (no evil date obligation, but with the "baddate" continuation in hand)
- A train hits you!
- · On your last breath, you invoke the "bad-date" continuation



Continuations

Syntax:

 $e ::= callcc k in e | throw e_1 e_2$ $\tau ::= ... \mid \tau cont$

- τ cont the type of a continuation that expects a τ
- callcc k in e sets k to the current context of the execution and then evaluates expression e
 - when e terminates, the whole callcc terminates
 - e can invoke the saved continuation (many times even)
 - when e invokes k it is as if "callcc k in e" returns
 - k is bound in e
- throw e₁ e₂ evaluates e₁ to a continuation, e₂ to a value and invokes the continuation with the value of e₂ (just wait, we'll explain it!)

Example with Continuations

· Example: another strange factorial callcc k in

```
let f = \lambda x:int.\lambda res:int. if x = 0 then throw k res
                             else f (x - 1) (x * res)
```

- · First we save the current context
 - This is the top-level context
 - A throw to k of value v means "pretend the whole callcc
- This simulates exceptions
- Continuations are strictly more powerful that exceptions
 - The destination is not tied to the call stack

Static Semantics of Continuations

```
\Gamma, k : \tau \text{ cont } \vdash e : \tau
        \Gamma \vdash \mathtt{callcc}\ k \ \mathtt{in}\ e : \tau
\Gamma \vdash e_1 : \tau \text{ cont } \Gamma \vdash e_2 : \tau
         \Gamma \vdash \mathtt{throw} \ e_1 \ e_2 : \tau'
```

- Note that the result of callcc is of type τ "callcc k in e" returns in two possible situations
 - 1. e throws to k a value of type τ , or
 - 2. e terminates normally with a value of type τ
- Note that throw has any type τ'
 - Since it never returns to its enclosing context

Dynamic Semantics of **Continuations**

- Use contextual semantics (wow, again!)
 - Contexts are now manipulated directly
 - Contexts are values of type τ cont
- Contexts

```
H ::= \bullet \mid H e \mid v H \mid throw H_1 e_2 \mid throw v_1 H_2
```

- · Evaluation rules
 - H[(λx.e) v] \rightarrow H[[v/x] e] - H[callcc k in e] \rightarrow H[[H/k] e] - H[throw H₁ v₂] $\rightarrow H_1[V_2]$
- · callcc duplicates the current continuation
- · Note that throw abandons its own context

Implementing Coroutines with **Continuations**

• Example:

```
let client = \lambda k. let res = callcc k' in throw k k' in
                   print (fst res);
                   client (snd res)
```

- "client k" will invoke "k" to get an integer and a continuation for obtaining more integers (for now, assume the list & recursion work) let getnext =
 - $\lambda L.\lambda k.$ if L = nil then raise 999

else getnext (cdr L) (callcc k' in throw k (car L, k')) "getnext L k" will send to "k" the first element of L along with a continuation that can be used to get more elements of L

getnext [0;1;2;3;4;5] (callcc k in client k)

Continuation Comments

- In our semantics the continuation saves the entire context: program counter, local variables, call stack, and the heap!
- In actual implementations the *heap is not saved!*
- Saving the stack is done with various tricks, but it is expensive in general
- · Few languages implement continuations
 - Because their presence complicates the whole compiler
 - Unless you use a continuation-passing-style of compilation (more on this next)

Continuation Passing Style

- · A style of compilation where evaluation of a function never returns directly: instead the function is given a continuation to invoke with its
- · Instead of

f(int a) { return h(g(e); }

we write

 $f(int~a,~cont~k)~\{~g(e,~\lambda r.~h(r,~k)~)~\}$

- Advantages:
 - interesting compilation scheme (supports callcc easily)
 - no need for a stack, can have multiple return addresses (e.g., for an error case)
 - fast and safe (non-preemptive) multithreading

Continuation Passing Style

- Let e ::= x | n | e₁ + e₂ | if e₁ then e₂ else e₃
 | λx.e | e₁ e₂
- Define cps(e, k) as the code that computes e in CPS and passes the result to continuation k

```
cps(x, k) = k x

cps(n, k) = k n

cps(e<sub>1</sub> + e<sub>2</sub>, k) =

cps(e<sub>1</sub>, \lambdan<sub>1</sub>.cps(e<sub>2</sub>,\lambdan<sub>2</sub>.k (n<sub>1</sub> + n<sub>2</sub>)))

cps(\lambdax.e, k) = k (\lambdax\lambdak'. cps(e,k'))

cps(e<sub>1</sub> e<sub>2</sub>, k) = cps(e<sub>1</sub>, \lambdaf<sub>1</sub>.cps(e<sub>2</sub>,\lambdav<sub>2</sub>. f<sub>1</sub> v<sub>2</sub> k))
```

- Example: cps $(h(g(5)), k) = g(5, \lambda x.h x k)$
 - Notice the order of evaluation being explicit

Recursive Types: Lists

- We want to define recursive data structures
- Example: lists
 - A list of elements of type τ (a τ list) is either empty or it is a pair of a τ and a τ list

$$\tau$$
 list = unit + ($\tau \times \tau$ list)

- This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation

$$L = \{*\} \cup (T \times L)$$

where T is the set of values of type $\boldsymbol{\tau}$

- Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism

Recursive Types

• We introduce a recursive type constructor μ ("mu"):

μt. τ

- The type variable t is bound in $\boldsymbol{\tau}$
- This stands for the solution to the equation $t \simeq \tau \quad \text{(t is isomorphic with } \tau \text{)}$
- Example: τ list = μ t. (unit + $\tau \times$ t)
- This also allows "unnamed" recursive types
- We introduce syntactic (sugary) operations for the conversion between μt.τ and [μt.τ/t]τ
- e.g. between " τ list" and "unit + ($\tau \times \tau$ list)"

```
\begin{array}{lll} e ::= ... & \mid \mathsf{fold}_{\mu \mathsf{t},\tau} \, e \mid \mathsf{unfold}_{\mu \mathsf{t},\tau} \, e \\ \tau ::= ... & \mid t \mid \mu \mathsf{t}.\tau \end{array}
```

Example with Recursive Types

Lists

```
 \begin{array}{lll} \tau \ \mbox{list} & = \mu t. \ (\mbox{unit} + \tau \times t) \\ \mbox{nil}_{\tau} & = \mbox{fold}_{\tau \ \mbox{list}} \ (\mbox{injl} \ ^*) \\ \mbox{cons}_{\tau} & = \lambda x : \tau . \lambda L : \tau \ \mbox{list.} \ \mbox{fold}_{\tau \ \mbox{list}} \ \mbox{injr} \ (x, L) \\ \end{array}
```

• A list length function

$$\begin{split} & length_{\tau} = \lambda L; \tau \; list. \\ & case \; (unfold_{\tau \; list} \; L) \; of \; injl \; x \Rightarrow 0 \\ & | \; injr \; y \Rightarrow 1 \; + \; length_{\tau} \; (snd \; y) \end{split}$$

- (At home ...) Verify that
 - nil_ : τ list
 - cons_τ : $\tau \to \tau$ list $\to \tau$ list
 - length $_{\tau}$: τ list \rightarrow int

Type Rules for Recursive Types

$$\frac{\Gamma \vdash e : \mu t.\tau}{\Gamma \vdash \mathtt{unfold}_{\mu t.\tau} \ e : [\mu t.\tau/t]\tau}$$

$$\frac{\Gamma \vdash e : [\mu t.\tau/t]\tau}{\Gamma \vdash \mathtt{fold}_{\mu t.\tau} \ e : \mu t.\tau}$$

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder

Dynamics of Recursive Types

• We add a new form of values

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding
- The evaluation rules:

$$\frac{e \Downarrow v}{\mathtt{fold}_{\mu t.\tau} \ e \Downarrow \mathtt{fold}_{\mu t.\tau} \ v} \quad \frac{e \Downarrow \mathtt{fold}_{\mu t.\tau} \ v}{\mathtt{unfold}_{\mu t.\tau} \ e \Downarrow v}$$

- The folding annotations are for type checking only
- They can be dropped after type checking

4

Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold
- In ML recursive types are bundled with union types type $t = C_1$ of $\tau_1 \mid C_2$ of $\tau_2 \mid \dots \mid C_n$ of τ_n (* t can appear in τ_i *) - E.g., "type intlist = Nil of unit | Cons of int * intlist"
- When the programmer writes

Cons (5, 1)

- the compiler treats it as

 $fold_{intlist}$ (injlr (5, l))

· When the programmer writes

case e of Nil \Rightarrow ... | Cons (h, t) \Rightarrow ...

the compiler treats it as

- case $unfold_{intlist}$ e of Nil $\Rightarrow ...$ | Cons (h,t) $\Rightarrow ...$

Encoding Call-by-Value λ -calculus in F_1^{μ}

- So far, F₁ was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the $\lambda x.x x$ (self-application)
- The addition of recursive types makes typed λ -calculus as expressive as untyped λ -
- We can show a conversion algorithm from call-by-value untyped λ -calculus to call-byvalue F₁^μ

Untyped Programming in F_1^{μ}

- We write \underline{e} for the conversion of the term e to F_1^{μ} - The type of \underline{e} is $V = \mu t$. $t \rightarrow t$
- The conversion rules

= x

 $\frac{\lambda x. e}{\lambda x. e} = fold_V (\lambda x: V. e)$

 $\underline{e_1} \ \underline{e_2} = (unfold_V \underline{e_1}) \underline{e_2}$

Verify that

1. · ⊢ <u>e</u> : V

2. $e \Downarrow v$ if and only if $\underline{e} \Downarrow \underline{v}$

We can express non-terminating computation $D = (unfold_{V} (fold_{V} (\lambda x: V. (unfold_{V} x) x))) (fold_{V} (\lambda x: V. (unfold_{V} x) x)))$ or, equivalently

 $D = (\lambda x: V. (unfold_V x) x) (fold_V (\lambda x: V. (unfold_V x) x)))$

Homework

- Read Goodenough article
 - Optional, perspectives on exceptions
- Thursday: Class Survey #2
- Work on your projects!
 - Status Update Due: Thursday

5